mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-05 23:01:38 +00:00

template. This consolidates three copies of nearly the same core logic. It adds "complexity" to the ModuleAnalysisManager in that it makes it possible to share a ModuleAnalysisManager across multiple modules... But it does so by deleting *all of the code*, so I'm OK with that. This will naturally make fixing bugs in this code much simpler, etc. The only down side here is that we have to use 'typename' and 'this->' in various places, and the implementation is lifted into the header. I'll take that for the code size reduction. The convenient names are still typedef-ed and used throughout so that users can largely ignore this aspect of the implementation. The follow-up change to this will do the exact same refactoring for the PassManagers. =D It turns out that the interesting different code is almost entirely in the adaptors. At the end, that should be essentially all that is left. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@225757 91177308-0d34-0410-b5e6-96231b3b80d8
109 lines
3.7 KiB
C++
109 lines
3.7 KiB
C++
//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
DebugPM("debug-cgscc-pass-manager", cl::Hidden,
|
|
cl::desc("Print CGSCC pass management debugging information"));
|
|
|
|
PreservedAnalyses CGSCCPassManager::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager *AM) {
|
|
PreservedAnalyses PA = PreservedAnalyses::all();
|
|
|
|
if (DebugPM)
|
|
dbgs() << "Starting CGSCC pass manager run.\n";
|
|
|
|
for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
|
|
if (DebugPM)
|
|
dbgs() << "Running CGSCC pass: " << Passes[Idx]->name() << "\n";
|
|
|
|
PreservedAnalyses PassPA = Passes[Idx]->run(C, AM);
|
|
|
|
// If we have an active analysis manager at this level we want to ensure we
|
|
// update it as each pass runs and potentially invalidates analyses. We
|
|
// also update the preserved set of analyses based on what analyses we have
|
|
// already handled the invalidation for here and don't need to invalidate
|
|
// when finished.
|
|
if (AM)
|
|
PassPA = AM->invalidate(C, std::move(PassPA));
|
|
|
|
// Finally, we intersect the final preserved analyses to compute the
|
|
// aggregate preserved set for this pass manager.
|
|
PA.intersect(std::move(PassPA));
|
|
}
|
|
|
|
if (DebugPM)
|
|
dbgs() << "Finished CGSCC pass manager run.\n";
|
|
|
|
return PA;
|
|
}
|
|
|
|
char CGSCCAnalysisManagerModuleProxy::PassID;
|
|
|
|
CGSCCAnalysisManagerModuleProxy::Result
|
|
CGSCCAnalysisManagerModuleProxy::run(Module &M) {
|
|
assert(CGAM->empty() && "CGSCC analyses ran prior to the module proxy!");
|
|
return Result(*CGAM);
|
|
}
|
|
|
|
CGSCCAnalysisManagerModuleProxy::Result::~Result() {
|
|
// Clear out the analysis manager if we're being destroyed -- it means we
|
|
// didn't even see an invalidate call when we got invalidated.
|
|
CGAM->clear();
|
|
}
|
|
|
|
bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
|
|
Module &M, const PreservedAnalyses &PA) {
|
|
// If this proxy isn't marked as preserved, then we can't even invalidate
|
|
// individual CGSCC analyses, there may be an invalid set of SCC objects in
|
|
// the cache making it impossible to incrementally preserve them.
|
|
// Just clear the entire manager.
|
|
if (!PA.preserved(ID()))
|
|
CGAM->clear();
|
|
|
|
// Return false to indicate that this result is still a valid proxy.
|
|
return false;
|
|
}
|
|
|
|
char ModuleAnalysisManagerCGSCCProxy::PassID;
|
|
|
|
char FunctionAnalysisManagerCGSCCProxy::PassID;
|
|
|
|
FunctionAnalysisManagerCGSCCProxy::Result
|
|
FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C) {
|
|
assert(FAM->empty() && "Function analyses ran prior to the CGSCC proxy!");
|
|
return Result(*FAM);
|
|
}
|
|
|
|
FunctionAnalysisManagerCGSCCProxy::Result::~Result() {
|
|
// Clear out the analysis manager if we're being destroyed -- it means we
|
|
// didn't even see an invalidate call when we got invalidated.
|
|
FAM->clear();
|
|
}
|
|
|
|
bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
|
|
LazyCallGraph::SCC &C, const PreservedAnalyses &PA) {
|
|
// If this proxy isn't marked as preserved, then we can't even invalidate
|
|
// individual function analyses, there may be an invalid set of Function
|
|
// objects in the cache making it impossible to incrementally preserve them.
|
|
// Just clear the entire manager.
|
|
if (!PA.preserved(ID()))
|
|
FAM->clear();
|
|
|
|
// Return false to indicate that this result is still a valid proxy.
|
|
return false;
|
|
}
|
|
|
|
char CGSCCAnalysisManagerFunctionProxy::PassID;
|