llvm/lib/IR/LLVMContextImpl.h
2014-03-05 06:35:38 +00:00

381 lines
13 KiB
C++

//===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares LLVMContextImpl, the opaque implementation
// of LLVMContext.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LLVMCONTEXT_IMPL_H
#define LLVM_LLVMCONTEXT_IMPL_H
#include "AttributeImpl.h"
#include "ConstantsContext.h"
#include "LeaksContext.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ValueHandle.h"
#include <vector>
namespace llvm {
class ConstantInt;
class ConstantFP;
class LLVMContext;
class Type;
class Value;
struct DenseMapAPIntKeyInfo {
struct KeyTy {
APInt val;
Type* type;
KeyTy(const APInt& V, Type* Ty) : val(V), type(Ty) {}
bool operator==(const KeyTy& that) const {
return type == that.type && this->val == that.val;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
friend hash_code hash_value(const KeyTy &Key) {
return hash_combine(Key.type, Key.val);
}
};
static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
static unsigned getHashValue(const KeyTy &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
};
struct DenseMapAPFloatKeyInfo {
struct KeyTy {
APFloat val;
KeyTy(const APFloat& V) : val(V){}
bool operator==(const KeyTy& that) const {
return this->val.bitwiseIsEqual(that.val);
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
friend hash_code hash_value(const KeyTy &Key) {
return hash_combine(Key.val);
}
};
static inline KeyTy getEmptyKey() {
return KeyTy(APFloat(APFloat::Bogus,1));
}
static inline KeyTy getTombstoneKey() {
return KeyTy(APFloat(APFloat::Bogus,2));
}
static unsigned getHashValue(const KeyTy &Key) {
return static_cast<unsigned>(hash_value(Key));
}
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
return LHS == RHS;
}
};
struct AnonStructTypeKeyInfo {
struct KeyTy {
ArrayRef<Type*> ETypes;
bool isPacked;
KeyTy(const ArrayRef<Type*>& E, bool P) :
ETypes(E), isPacked(P) {}
KeyTy(const StructType* ST) :
ETypes(ArrayRef<Type*>(ST->element_begin(), ST->element_end())),
isPacked(ST->isPacked()) {}
bool operator==(const KeyTy& that) const {
if (isPacked != that.isPacked)
return false;
if (ETypes != that.ETypes)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline StructType* getEmptyKey() {
return DenseMapInfo<StructType*>::getEmptyKey();
}
static inline StructType* getTombstoneKey() {
return DenseMapInfo<StructType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(),
Key.ETypes.end()),
Key.isPacked);
}
static unsigned getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
}
static bool isEqual(const KeyTy& LHS, const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const StructType *LHS, const StructType *RHS) {
return LHS == RHS;
}
};
struct FunctionTypeKeyInfo {
struct KeyTy {
const Type *ReturnType;
ArrayRef<Type*> Params;
bool isVarArg;
KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
ReturnType(R), Params(P), isVarArg(V) {}
KeyTy(const FunctionType* FT) :
ReturnType(FT->getReturnType()),
Params(ArrayRef<Type*>(FT->param_begin(), FT->param_end())),
isVarArg(FT->isVarArg()) {}
bool operator==(const KeyTy& that) const {
if (ReturnType != that.ReturnType)
return false;
if (isVarArg != that.isVarArg)
return false;
if (Params != that.Params)
return false;
return true;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline FunctionType* getEmptyKey() {
return DenseMapInfo<FunctionType*>::getEmptyKey();
}
static inline FunctionType* getTombstoneKey() {
return DenseMapInfo<FunctionType*>::getTombstoneKey();
}
static unsigned getHashValue(const KeyTy& Key) {
return hash_combine(Key.ReturnType,
hash_combine_range(Key.Params.begin(),
Key.Params.end()),
Key.isVarArg);
}
static unsigned getHashValue(const FunctionType *FT) {
return getHashValue(KeyTy(FT));
}
static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
}
static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
return LHS == RHS;
}
};
// Provide a FoldingSetTrait::Equals specialization for MDNode that can use a
// shortcut to avoid comparing all operands.
template<> struct FoldingSetTrait<MDNode> : DefaultFoldingSetTrait<MDNode> {
static bool Equals(const MDNode &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
assert(!X.isNotUniqued() && "Non-uniqued MDNode in FoldingSet?");
// First, check if the cached hashes match. If they don't we can skip the
// expensive operand walk.
if (X.Hash != IDHash)
return false;
// If they match we have to compare the operands.
X.Profile(TempID);
return TempID == ID;
}
static unsigned ComputeHash(const MDNode &X, FoldingSetNodeID &) {
return X.Hash; // Return cached hash.
}
};
/// DebugRecVH - This is a CallbackVH used to keep the Scope -> index maps
/// up to date as MDNodes mutate. This class is implemented in DebugLoc.cpp.
class DebugRecVH : public CallbackVH {
/// Ctx - This is the LLVM Context being referenced.
LLVMContextImpl *Ctx;
/// Idx - The index into either ScopeRecordIdx or ScopeInlinedAtRecords that
/// this reference lives in. If this is zero, then it represents a
/// non-canonical entry that has no DenseMap value. This can happen due to
/// RAUW.
int Idx;
public:
DebugRecVH(MDNode *n, LLVMContextImpl *ctx, int idx)
: CallbackVH(n), Ctx(ctx), Idx(idx) {}
MDNode *get() const {
return cast_or_null<MDNode>(getValPtr());
}
void deleted() override;
void allUsesReplacedWith(Value *VNew) override;
};
class LLVMContextImpl {
public:
/// OwnedModules - The set of modules instantiated in this context, and which
/// will be automatically deleted if this context is deleted.
SmallPtrSet<Module*, 4> OwnedModules;
LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler;
void *InlineAsmDiagContext;
LLVMContext::DiagnosticHandlerTy DiagnosticHandler;
void *DiagnosticContext;
typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt *,
DenseMapAPIntKeyInfo> IntMapTy;
IntMapTy IntConstants;
typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
DenseMapAPFloatKeyInfo> FPMapTy;
FPMapTy FPConstants;
FoldingSet<AttributeImpl> AttrsSet;
FoldingSet<AttributeSetImpl> AttrsLists;
FoldingSet<AttributeSetNode> AttrsSetNodes;
StringMap<Value*> MDStringCache;
FoldingSet<MDNode> MDNodeSet;
// MDNodes may be uniqued or not uniqued. When they're not uniqued, they
// aren't in the MDNodeSet, but they're still shared between objects, so no
// one object can destroy them. This set allows us to at least destroy them
// on Context destruction.
SmallPtrSet<MDNode*, 1> NonUniquedMDNodes;
DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
typedef ConstantAggrUniqueMap<ArrayType, ConstantArray> ArrayConstantsTy;
ArrayConstantsTy ArrayConstants;
typedef ConstantAggrUniqueMap<StructType, ConstantStruct> StructConstantsTy;
StructConstantsTy StructConstants;
typedef ConstantAggrUniqueMap<VectorType, ConstantVector> VectorConstantsTy;
VectorConstantsTy VectorConstants;
DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
DenseMap<Type*, UndefValue*> UVConstants;
StringMap<ConstantDataSequential*> CDSConstants;
DenseMap<std::pair<const Function *, const BasicBlock *>, BlockAddress *>
BlockAddresses;
ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
ExprConstants;
ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
InlineAsm> InlineAsms;
ConstantInt *TheTrueVal;
ConstantInt *TheFalseVal;
LeakDetectorImpl<Value> LLVMObjects;
// Basic type instances.
Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy;
Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy;
IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty;
/// TypeAllocator - All dynamically allocated types are allocated from this.
/// They live forever until the context is torn down.
BumpPtrAllocator TypeAllocator;
DenseMap<unsigned, IntegerType*> IntegerTypes;
typedef DenseMap<FunctionType*, bool, FunctionTypeKeyInfo> FunctionTypeMap;
FunctionTypeMap FunctionTypes;
typedef DenseMap<StructType*, bool, AnonStructTypeKeyInfo> StructTypeMap;
StructTypeMap AnonStructTypes;
StringMap<StructType*> NamedStructTypes;
unsigned NamedStructTypesUniqueID;
DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes;
DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes;
DenseMap<Type*, PointerType*> PointerTypes; // Pointers in AddrSpace = 0
DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes;
/// ValueHandles - This map keeps track of all of the value handles that are
/// watching a Value*. The Value::HasValueHandle bit is used to know
/// whether or not a value has an entry in this map.
typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
ValueHandlesTy ValueHandles;
/// CustomMDKindNames - Map to hold the metadata string to ID mapping.
StringMap<unsigned> CustomMDKindNames;
typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy;
typedef SmallVector<MDPairTy, 2> MDMapTy;
/// MetadataStore - Collection of per-instruction metadata used in this
/// context.
DenseMap<const Instruction *, MDMapTy> MetadataStore;
/// ScopeRecordIdx - This is the index in ScopeRecords for an MDNode scope
/// entry with no "inlined at" element.
DenseMap<MDNode*, int> ScopeRecordIdx;
/// ScopeRecords - These are the actual mdnodes (in a value handle) for an
/// index. The ValueHandle ensures that ScopeRecordIdx stays up to date if
/// the MDNode is RAUW'd.
std::vector<DebugRecVH> ScopeRecords;
/// ScopeInlinedAtIdx - This is the index in ScopeInlinedAtRecords for an
/// scope/inlined-at pair.
DenseMap<std::pair<MDNode*, MDNode*>, int> ScopeInlinedAtIdx;
/// ScopeInlinedAtRecords - These are the actual mdnodes (in value handles)
/// for an index. The ValueHandle ensures that ScopeINlinedAtIdx stays up
/// to date.
std::vector<std::pair<DebugRecVH, DebugRecVH> > ScopeInlinedAtRecords;
/// DiscriminatorTable - This table maps file:line locations to an
/// integer representing the next DWARF path discriminator to assign to
/// instructions in different blocks at the same location.
DenseMap<std::pair<const char *, unsigned>, unsigned> DiscriminatorTable;
/// IntrinsicIDCache - Cache of intrinsic name (string) to numeric ID mappings
/// requested in this context
typedef DenseMap<const Function*, unsigned> IntrinsicIDCacheTy;
IntrinsicIDCacheTy IntrinsicIDCache;
/// \brief Mapping from a function to its prefix data, which is stored as the
/// operand of an unparented ReturnInst so that the prefix data has a Use.
typedef DenseMap<const Function *, ReturnInst *> PrefixDataMapTy;
PrefixDataMapTy PrefixDataMap;
int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx);
int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx);
LLVMContextImpl(LLVMContext &C);
~LLVMContextImpl();
};
}
#endif