llvm/lib/Transforms/IPO/Attributor.cpp
Johannes Doerfert 2cf3cb29ab [Attributor] Use structured deduction for AADereferenceable
Summary:
This is analogous to D66128 but for AADereferenceable. We have the logic
concentrated in the floating value updateImpl and we use the combiner
helper classes for arguments and return values.

The regressions will go away with "on-demand" attribute creation.
Improvements are already visible in the existing tests.

Reviewers: uenoku, sstefan1

Subscribers: hiraditya, bollu, jfb, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D66272

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@369329 91177308-0d34-0410-b5e6-96231b3b80d8
2019-08-20 06:08:35 +00:00

2857 lines
101 KiB
C++

//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an inter procedural pass that deduces and/or propagating
// attributes. This is done in an abstract interpretation style fixpoint
// iteration. See the Attributor.h file comment and the class descriptions in
// that file for more information.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
using namespace llvm;
#define DEBUG_TYPE "attributor"
STATISTIC(NumFnWithExactDefinition,
"Number of function with exact definitions");
STATISTIC(NumFnWithoutExactDefinition,
"Number of function without exact definitions");
STATISTIC(NumAttributesTimedOut,
"Number of abstract attributes timed out before fixpoint");
STATISTIC(NumAttributesValidFixpoint,
"Number of abstract attributes in a valid fixpoint state");
STATISTIC(NumAttributesManifested,
"Number of abstract attributes manifested in IR");
// Some helper macros to deal with statistics tracking.
//
// Usage:
// For simple IR attribute tracking overload trackStatistics in the abstract
// attribute and choose the right STATS_DECLTRACK_********* macro,
// e.g.,:
// void trackStatistics() const override {
// STATS_DECLTRACK_ARG_ATTR(returned)
// }
// If there is a single "increment" side one can use the macro
// STATS_DECLTRACK with a custom message. If there are multiple increment
// sides, STATS_DECL and STATS_TRACK can also be used separatly.
//
#define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
("Number of " #TYPE " marked '" #NAME "'")
#define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
#define STATS_DECL(NAME, TYPE, MSG) STATISTIC(BUILD_STAT_NAME(NAME, TYPE), MSG);
#define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
#define STATS_DECLTRACK(NAME, TYPE, MSG) \
STATS_DECL(NAME, TYPE, MSG) \
STATS_TRACK(NAME, TYPE)
#define STATS_DECLTRACK_ARG_ATTR(NAME) \
STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
#define STATS_DECLTRACK_CSARG_ATTR(NAME) \
STATS_DECLTRACK(NAME, CSArguments, \
BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
#define STATS_DECLTRACK_FN_ATTR(NAME) \
STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
#define STATS_DECLTRACK_CS_ATTR(NAME) \
STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
#define STATS_DECLTRACK_FNRET_ATTR(NAME) \
STATS_DECLTRACK(NAME, FunctionReturn, \
BUILD_STAT_MSG_IR_ATTR(function returns, NAME));
#define STATS_DECLTRACK_CSRET_ATTR(NAME) \
STATS_DECLTRACK(NAME, CSReturn, \
BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
#define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
STATS_DECLTRACK(NAME, Floating, \
("Number of floating values known to be '" #NAME "'"))
// TODO: Determine a good default value.
//
// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
// (when run with the first 5 abstract attributes). The results also indicate
// that we never reach 32 iterations but always find a fixpoint sooner.
//
// This will become more evolved once we perform two interleaved fixpoint
// iterations: bottom-up and top-down.
static cl::opt<unsigned>
MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
cl::desc("Maximal number of fixpoint iterations."),
cl::init(32));
static cl::opt<bool> DisableAttributor(
"attributor-disable", cl::Hidden,
cl::desc("Disable the attributor inter-procedural deduction pass."),
cl::init(true));
static cl::opt<bool> VerifyAttributor(
"attributor-verify", cl::Hidden,
cl::desc("Verify the Attributor deduction and "
"manifestation of attributes -- may issue false-positive errors"),
cl::init(false));
/// Logic operators for the change status enum class.
///
///{
ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::CHANGED ? l : r;
}
ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
return l == ChangeStatus::UNCHANGED ? l : r;
}
///}
/// Recursively visit all values that might become \p IRP at some point. This
/// will be done by looking through cast instructions, selects, phis, and calls
/// with the "returned" attribute. Once we cannot look through the value any
/// further, the callback \p VisitValueCB is invoked and passed the current
/// value, the \p State, and a flag to indicate if we stripped anything. To
/// limit how much effort is invested, we will never visit more values than
/// specified by \p MaxValues.
template <typename AAType, typename StateTy>
bool genericValueTraversal(
Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
const function_ref<bool(Value &, StateTy &, bool)> &VisitValueCB,
int MaxValues = 8) {
const AAIsDead *LivenessAA = nullptr;
if (IRP.getAnchorScope())
LivenessAA = A.getAAFor<AAIsDead>(
QueryingAA, IRPosition::function(*IRP.getAnchorScope()));
// TODO: Use Positions here to allow context sensitivity in VisitValueCB
SmallPtrSet<Value *, 16> Visited;
SmallVector<Value *, 16> Worklist;
Worklist.push_back(&IRP.getAssociatedValue());
int Iteration = 0;
do {
Value *V = Worklist.pop_back_val();
// Check if we should process the current value. To prevent endless
// recursion keep a record of the values we followed!
if (!Visited.insert(V).second)
continue;
// Make sure we limit the compile time for complex expressions.
if (Iteration++ >= MaxValues)
return false;
// Explicitly look through calls with a "returned" attribute if we do
// not have a pointer as stripPointerCasts only works on them.
Value *NewV = nullptr;
if (V->getType()->isPointerTy()) {
NewV = V->stripPointerCasts();
} else {
CallSite CS(V);
if (CS && CS.getCalledFunction()) {
for (Argument &Arg : CS.getCalledFunction()->args())
if (Arg.hasReturnedAttr()) {
NewV = CS.getArgOperand(Arg.getArgNo());
break;
}
}
}
if (NewV && NewV != V) {
Worklist.push_back(NewV);
continue;
}
// Look through select instructions, visit both potential values.
if (auto *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// Look through phi nodes, visit all live operands.
if (auto *PHI = dyn_cast<PHINode>(V)) {
for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
const BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
if (!LivenessAA ||
!LivenessAA->isAssumedDead(IncomingBB->getTerminator()))
Worklist.push_back(PHI->getIncomingValue(u));
}
continue;
}
// Once a leaf is reached we inform the user through the callback.
if (!VisitValueCB(*V, State, Iteration > 1))
return false;
} while (!Worklist.empty());
// All values have been visited.
return true;
}
/// Return true if \p New is equal or worse than \p Old.
static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
if (!Old.isIntAttribute())
return true;
return Old.getValueAsInt() >= New.getValueAsInt();
}
/// Return true if the information provided by \p Attr was added to the
/// attribute list \p Attrs. This is only the case if it was not already present
/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
AttributeList &Attrs, int AttrIdx) {
if (Attr.isEnumAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isStringAttribute()) {
StringRef Kind = Attr.getKindAsString();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
if (Attr.isIntAttribute()) {
Attribute::AttrKind Kind = Attr.getKindAsEnum();
if (Attrs.hasAttribute(AttrIdx, Kind))
if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
return false;
Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
return true;
}
llvm_unreachable("Expected enum or string attribute!");
}
ChangeStatus AbstractAttribute::update(Attributor &A) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
if (getState().isAtFixpoint())
return HasChanged;
LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
HasChanged = updateImpl(A);
LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
<< "\n");
return HasChanged;
}
ChangeStatus
IRAttributeManifest::manifestAttrs(Attributor &A, IRPosition &IRP,
const ArrayRef<Attribute> &DeducedAttrs) {
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
Function *ScopeFn = IRP.getAssociatedFunction();
IRPosition::Kind PK = IRP.getPositionKind();
// In the following some generic code that will manifest attributes in
// DeducedAttrs if they improve the current IR. Due to the different
// annotation positions we use the underlying AttributeList interface.
AttributeList Attrs;
switch (PK) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
llvm_unreachable("Cannot manifest at a floating or invalid position!");
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
Attrs = ScopeFn->getAttributes();
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes();
break;
}
LLVMContext &Ctx = IRP.getAnchorValue().getContext();
for (const Attribute &Attr : DeducedAttrs) {
if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
continue;
HasChanged = ChangeStatus::CHANGED;
}
if (HasChanged == ChangeStatus::UNCHANGED)
return HasChanged;
switch (PK) {
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_FUNCTION:
case IRPosition::IRP_RETURNED:
ScopeFn->setAttributes(Attrs);
break;
case IRPosition::IRP_CALL_SITE:
case IRPosition::IRP_CALL_SITE_RETURNED:
case IRPosition::IRP_CALL_SITE_ARGUMENT:
CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
break;
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
break;
}
return HasChanged;
}
const IRPosition IRPosition::EmptyKey(255);
const IRPosition IRPosition::TombstoneKey(256);
SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
IRPositions.emplace_back(IRP);
ImmutableCallSite ICS(&IRP.getAnchorValue());
switch (IRP.getPositionKind()) {
case IRPosition::IRP_INVALID:
case IRPosition::IRP_FLOAT:
case IRPosition::IRP_FUNCTION:
return;
case IRPosition::IRP_ARGUMENT:
case IRPosition::IRP_RETURNED:
IRPositions.emplace_back(
IRPosition::function(*IRP.getAssociatedFunction()));
return;
case IRPosition::IRP_CALL_SITE:
assert(ICS && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!ICS.hasOperandBundles())
if (const Function *Callee = ICS.getCalledFunction())
IRPositions.emplace_back(IRPosition::function(*Callee));
return;
case IRPosition::IRP_CALL_SITE_RETURNED:
assert(ICS && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!ICS.hasOperandBundles()) {
if (const Function *Callee = ICS.getCalledFunction()) {
IRPositions.emplace_back(IRPosition::returned(*Callee));
IRPositions.emplace_back(IRPosition::function(*Callee));
}
}
IRPositions.emplace_back(
IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
return;
case IRPosition::IRP_CALL_SITE_ARGUMENT: {
int ArgNo = IRP.getArgNo();
assert(ICS && ArgNo >= 0 && "Expected call site!");
// TODO: We need to look at the operand bundles similar to the redirection
// in CallBase.
if (!ICS.hasOperandBundles()) {
const Function *Callee = ICS.getCalledFunction();
if (Callee && Callee->arg_size() > unsigned(ArgNo))
IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
if (Callee)
IRPositions.emplace_back(IRPosition::function(*Callee));
}
IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
return;
}
}
}
bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs) const {
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
for (Attribute::AttrKind AK : AKs)
if (EquivIRP.getAttr(AK).getKindAsEnum() == AK)
return true;
return false;
}
void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
SmallVectorImpl<Attribute> &Attrs) const {
for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
for (Attribute::AttrKind AK : AKs) {
const Attribute &Attr = EquivIRP.getAttr(AK);
if (Attr.getKindAsEnum() == AK)
Attrs.push_back(Attr);
}
}
void IRPosition::verify() {
switch (KindOrArgNo) {
default:
assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
"Expected call base or argument for positive attribute index!");
if (auto *Arg = dyn_cast<Argument>(AnchorVal)) {
assert(Arg->getArgNo() == unsigned(getArgNo()) &&
"Argument number mismatch!");
assert(Arg == &getAssociatedValue() && "Associated value mismatch!");
} else {
auto &CB = cast<CallBase>(*AnchorVal);
(void)CB;
assert(CB.arg_size() > unsigned(getArgNo()) &&
"Call site argument number mismatch!");
assert(CB.getArgOperand(getArgNo()) == &getAssociatedValue() &&
"Associated value mismatch!");
}
break;
case IRP_INVALID:
assert(!AnchorVal && "Expected no value for an invalid position!");
break;
case IRP_FLOAT:
assert((!isa<CallBase>(&getAssociatedValue()) &&
!isa<Argument>(&getAssociatedValue())) &&
"Expected specialized kind for call base and argument values!");
break;
case IRP_RETURNED:
assert(isa<Function>(AnchorVal) &&
"Expected function for a 'returned' position!");
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
break;
case IRP_CALL_SITE_RETURNED:
assert((isa<CallBase>(AnchorVal)) &&
"Expected call base for 'call site returned' position!");
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
break;
case IRP_CALL_SITE:
assert((isa<CallBase>(AnchorVal)) &&
"Expected call base for 'call site function' position!");
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
break;
case IRP_FUNCTION:
assert(isa<Function>(AnchorVal) &&
"Expected function for a 'function' position!");
assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
break;
}
}
/// Helper functions to clamp a state \p S of type \p StateType with the
/// information in \p R and indicate/return if \p S did change (as-in update is
/// required to be run again).
///
///{
template <typename StateType>
ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R);
template <>
ChangeStatus clampStateAndIndicateChange<IntegerState>(IntegerState &S,
const IntegerState &R) {
auto Assumed = S.getAssumed();
S ^= R;
return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
: ChangeStatus::CHANGED;
}
template <>
ChangeStatus clampStateAndIndicateChange<BooleanState>(BooleanState &S,
const BooleanState &R) {
return clampStateAndIndicateChange<IntegerState>(S, R);
}
///}
/// Clamp the information known for all returned values of a function
/// (identified by \p QueryingAA) into \p S.
template <typename AAType, typename StateType = typename AAType::StateType>
static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
StateType &S) {
LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
<< static_cast<const AbstractAttribute &>(QueryingAA)
<< " into " << S << "\n");
assert((QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_RETURNED ||
QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_CALL_SITE_RETURNED) &&
"Can only clamp returned value states for a function returned or call "
"site returned position!");
// Use an optional state as there might not be any return values and we want
// to join (IntegerState::operator&) the state of all there are.
Optional<StateType> T;
// Callback for each possibly returned value.
auto CheckReturnValue = [&](Value &RV) -> bool {
const IRPosition &RVPos = IRPosition::value(RV);
const AAType *AA = A.getAAFor<AAType>(QueryingAA, RVPos);
LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV
<< " AA: " << (AA ? AA->getAsStr() : "n/a") << " @ "
<< RVPos << "\n");
// TODO: We should create abstract attributes on-demand, patches are already
// prepared, pending approval.
if (!AA || AA->getIRPosition() != RVPos)
return false;
const StateType &AAS = static_cast<const StateType &>(AA->getState());
if (T.hasValue())
*T &= AAS;
else
T = AAS;
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
<< "\n");
return T->isValidState();
};
if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
S.indicatePessimisticFixpoint();
else if (T.hasValue())
S ^= *T;
}
/// Helper class for generic deduction: return value -> returned position.
template <typename AAType, typename StateType = typename AAType::StateType>
struct AAReturnedFromReturnedValues : public AAType {
AAReturnedFromReturnedValues(const IRPosition &IRP) : AAType(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
StateType S;
clampReturnedValueStates<AAType, StateType>(A, *this, S);
// TODO: If we know we visited all returned values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange<StateType>(this->getState(), S);
}
};
/// Clamp the information known at all call sites for a given argument
/// (identified by \p QueryingAA) into \p S.
template <typename AAType, typename StateType = typename AAType::StateType>
static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
StateType &S) {
LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
<< static_cast<const AbstractAttribute &>(QueryingAA)
<< " into " << S << "\n");
assert(QueryingAA.getIRPosition().getPositionKind() ==
IRPosition::IRP_ARGUMENT &&
"Can only clamp call site argument states for an argument position!");
// Use an optional state as there might not be any return values and we want
// to join (IntegerState::operator&) the state of all there are.
Optional<StateType> T;
// The argument number which is also the call site argument number.
unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
auto CallSiteCheck = [&](CallSite CS) {
const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
const AAType *AA = A.getAAFor<AAType>(QueryingAA, CSArgPos);
LLVM_DEBUG(dbgs() << "[Attributor] CS: " << *CS.getInstruction()
<< " AA: " << (AA ? AA->getAsStr() : "n/a") << " @"
<< CSArgPos << "\n");
// TODO: We should create abstract attributes on-demand, patches are already
// prepared, pending approval.
if (!AA || AA->getIRPosition() != CSArgPos)
return false;
const StateType &AAS = static_cast<const StateType &>(AA->getState());
if (T.hasValue())
*T &= AAS;
else
T = AAS;
LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
<< "\n");
return T->isValidState();
};
if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true))
S.indicatePessimisticFixpoint();
else if (T.hasValue())
S ^= *T;
}
/// Helper class for generic deduction: call site argument -> argument position.
template <typename AAType, typename StateType = typename AAType::StateType>
struct AAArgumentFromCallSiteArguments : public AAType {
AAArgumentFromCallSiteArguments(const IRPosition &IRP) : AAType(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
StateType S;
clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
// TODO: If we know we visited all incoming values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange<StateType>(this->getState(), S);
}
};
/// Helper class for generic replication: function returned -> cs returned.
template <typename AAType>
struct AACallSiteReturnedFromReturned : public AAType {
AACallSiteReturnedFromReturned(const IRPosition &IRP) : AAType(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
assert(this->getIRPosition().getPositionKind() ==
IRPosition::IRP_CALL_SITE_RETURNED &&
"Can only wrap function returned positions for call site returned "
"positions!");
auto &S = this->getState();
const Function *AssociatedFunction =
this->getIRPosition().getAssociatedFunction();
if (!AssociatedFunction)
return S.indicatePessimisticFixpoint();
IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
// TODO: We should create abstract attributes on-demand, patches are already
// prepared, pending approval.
const AAType *AA = A.getAAFor<AAType>(*this, FnPos);
if (!AA)
return S.indicatePessimisticFixpoint();
return clampStateAndIndicateChange(
S, static_cast<const typename AAType::StateType &>(AA->getState()));
}
};
/// -----------------------NoUnwind Function Attribute--------------------------
struct AANoUnwindImpl : AANoUnwind {
AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::NoUnwind}))
indicateOptimisticFixpoint();
}
const std::string getAsStr() const override {
return getAssumed() ? "nounwind" : "may-unwind";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto Opcodes = {
(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
(unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
(unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
auto CheckForNoUnwind = [&](Instruction &I) {
if (!I.mayThrow())
return true;
auto *NoUnwindAA = A.getAAFor<AANoUnwind>(*this, IRPosition::value(I));
return NoUnwindAA && NoUnwindAA->isAssumedNoUnwind();
};
if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
};
struct AANoUnwindFunction final : public AANoUnwindImpl {
AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
};
/// NoUnwind attribute deduction for a call sites.
using AANoUnwindCallSite = AANoUnwindFunction;
/// --------------------- Function Return Values -------------------------------
/// "Attribute" that collects all potential returned values and the return
/// instructions that they arise from.
///
/// If there is a unique returned value R, the manifest method will:
/// - mark R with the "returned" attribute, if R is an argument.
class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
/// Mapping of values potentially returned by the associated function to the
/// return instructions that might return them.
DenseMap<Value *, SmallPtrSet<ReturnInst *, 2>> ReturnedValues;
SmallPtrSet<CallBase *, 8> UnresolvedCalls;
/// State flags
///
///{
bool IsFixed;
bool IsValidState;
///}
public:
AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
// Reset the state.
IsFixed = false;
IsValidState = true;
ReturnedValues.clear();
Function *F = getAssociatedFunction();
if (!F || !F->hasExactDefinition()) {
indicatePessimisticFixpoint();
return;
}
// The map from instruction opcodes to those instructions in the function.
auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
// Look through all arguments, if one is marked as returned we are done.
for (Argument &Arg : F->args()) {
if (Arg.hasReturnedAttr()) {
auto &ReturnInstSet = ReturnedValues[&Arg];
for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
ReturnInstSet.insert(cast<ReturnInst>(RI));
indicateOptimisticFixpoint();
return;
}
}
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override;
/// See AbstractAttribute::getState(...).
AbstractState &getState() override { return *this; }
/// See AbstractAttribute::getState(...).
const AbstractState &getState() const override { return *this; }
/// See AbstractAttribute::updateImpl(Attributor &A).
ChangeStatus updateImpl(Attributor &A) override;
llvm::iterator_range<iterator> returned_values() override {
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
}
llvm::iterator_range<const_iterator> returned_values() const override {
return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
}
const SmallPtrSetImpl<CallBase *> &getUnresolvedCalls() const override {
return UnresolvedCalls;
}
/// Return the number of potential return values, -1 if unknown.
size_t getNumReturnValues() const override {
return isValidState() ? ReturnedValues.size() : -1;
}
/// Return an assumed unique return value if a single candidate is found. If
/// there cannot be one, return a nullptr. If it is not clear yet, return the
/// Optional::NoneType.
Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
/// See AbstractState::checkForAllReturnedValues(...).
bool checkForAllReturnedValuesAndReturnInsts(
const function_ref<bool(Value &, const SmallPtrSetImpl<ReturnInst *> &)>
&Pred) const override;
/// Pretty print the attribute similar to the IR representation.
const std::string getAsStr() const override;
/// See AbstractState::isAtFixpoint().
bool isAtFixpoint() const override { return IsFixed; }
/// See AbstractState::isValidState().
bool isValidState() const override { return IsValidState; }
/// See AbstractState::indicateOptimisticFixpoint(...).
ChangeStatus indicateOptimisticFixpoint() override {
IsFixed = true;
IsValidState &= true;
return ChangeStatus::UNCHANGED;
}
ChangeStatus indicatePessimisticFixpoint() override {
IsFixed = true;
IsValidState = false;
return ChangeStatus::CHANGED;
}
};
ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
ChangeStatus Changed = ChangeStatus::UNCHANGED;
// Bookkeeping.
assert(isValidState());
STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
"Number of function with known return values");
// Check if we have an assumed unique return value that we could manifest.
Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
if (!UniqueRV.hasValue() || !UniqueRV.getValue())
return Changed;
// Bookkeeping.
STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
"Number of function with unique return");
// If the assumed unique return value is an argument, annotate it.
if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
getIRPosition() = IRPosition::argument(*UniqueRVArg);
Changed = IRAttribute::manifest(A) | Changed;
}
return Changed;
}
const std::string AAReturnedValuesImpl::getAsStr() const {
return (isAtFixpoint() ? "returns(#" : "may-return(#") +
(isValidState() ? std::to_string(getNumReturnValues()) : "?") +
")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
}
Optional<Value *>
AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
// If checkForAllReturnedValues provides a unique value, ignoring potential
// undef values that can also be present, it is assumed to be the actual
// return value and forwarded to the caller of this method. If there are
// multiple, a nullptr is returned indicating there cannot be a unique
// returned value.
Optional<Value *> UniqueRV;
auto Pred = [&](Value &RV) -> bool {
// If we found a second returned value and neither the current nor the saved
// one is an undef, there is no unique returned value. Undefs are special
// since we can pretend they have any value.
if (UniqueRV.hasValue() && UniqueRV != &RV &&
!(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
UniqueRV = nullptr;
return false;
}
// Do not overwrite a value with an undef.
if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
UniqueRV = &RV;
return true;
};
if (!A.checkForAllReturnedValues(Pred, *this))
UniqueRV = nullptr;
return UniqueRV;
}
bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
const function_ref<bool(Value &, const SmallPtrSetImpl<ReturnInst *> &)>
&Pred) const {
if (!isValidState())
return false;
// Check all returned values but ignore call sites as long as we have not
// encountered an overdefined one during an update.
for (auto &It : ReturnedValues) {
Value *RV = It.first;
const SmallPtrSetImpl<ReturnInst *> &RetInsts = It.second;
CallBase *CB = dyn_cast<CallBase>(RV);
if (CB && !UnresolvedCalls.count(CB))
continue;
if (!Pred(*RV, RetInsts))
return false;
}
return true;
}
ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
size_t NumUnresolvedCalls = UnresolvedCalls.size();
bool Changed = false;
// State used in the value traversals starting in returned values.
struct RVState {
// The map in which we collect return values -> return instrs.
decltype(ReturnedValues) &RetValsMap;
// The flag to indicate a change.
bool &Changed;
// The return instrs we come from.
SmallPtrSet<ReturnInst *, 2> RetInsts;
};
// Callback for a leaf value returned by the associated function.
auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool {
auto Size = RVS.RetValsMap[&Val].size();
RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
bool Inserted = RVS.RetValsMap[&Val].size() != Size;
RVS.Changed |= Inserted;
LLVM_DEBUG({
if (Inserted)
dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
<< " => " << RVS.RetInsts.size() << "\n";
});
return true;
};
// Helper method to invoke the generic value traversal.
auto VisitReturnedValue = [&](Value &RV, RVState &RVS) {
IRPosition RetValPos = IRPosition::value(RV);
return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this,
RVS, VisitValueCB);
};
// Callback for all "return intructions" live in the associated function.
auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
ReturnInst &Ret = cast<ReturnInst>(I);
RVState RVS({ReturnedValues, Changed, {}});
RVS.RetInsts.insert(&Ret);
return VisitReturnedValue(*Ret.getReturnValue(), RVS);
};
// Start by discovering returned values from all live returned instructions in
// the associated function.
if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
return indicatePessimisticFixpoint();
// Once returned values "directly" present in the code are handled we try to
// resolve returned calls.
decltype(ReturnedValues) NewRVsMap;
for (auto &It : ReturnedValues) {
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
<< " by #" << It.second.size() << " RIs\n");
CallBase *CB = dyn_cast<CallBase>(It.first);
if (!CB || UnresolvedCalls.count(CB))
continue;
const auto *RetValAAPtr =
A.getAAFor<AAReturnedValues>(*this, IRPosition::callsite_function(*CB));
// Skip dead ends, thus if we do not know anything about the returned
// call we mark it as unresolved and it will stay that way.
if (!RetValAAPtr || !RetValAAPtr->getState().isValidState()) {
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
<< "\n");
UnresolvedCalls.insert(CB);
continue;
}
const auto &RetValAA = *RetValAAPtr;
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
<< static_cast<const AbstractAttribute &>(RetValAA)
<< "\n");
// Do not try to learn partial information. If the callee has unresolved
// return values we will treat the call as unresolved/opaque.
auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
if (!RetValAAUnresolvedCalls.empty()) {
UnresolvedCalls.insert(CB);
continue;
}
// Now check if we can track transitively returned values. If possible, thus
// if all return value can be represented in the current scope, do so.
bool Unresolved = false;
for (auto &RetValAAIt : RetValAA.returned_values()) {
Value *RetVal = RetValAAIt.first;
if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
isa<Constant>(RetVal))
continue;
// Anything that did not fit in the above categories cannot be resolved,
// mark the call as unresolved.
LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
"cannot be translated: "
<< *RetVal << "\n");
UnresolvedCalls.insert(CB);
Unresolved = true;
break;
}
if (Unresolved)
continue;
for (auto &RetValAAIt : RetValAA.returned_values()) {
Value *RetVal = RetValAAIt.first;
if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
// Arguments are mapped to call site operands and we begin the traversal
// again.
bool Unused = false;
RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS);
continue;
} else if (isa<CallBase>(RetVal)) {
// Call sites are resolved by the callee attribute over time, no need to
// do anything for us.
continue;
} else if (isa<Constant>(RetVal)) {
// Constants are valid everywhere, we can simply take them.
NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
continue;
}
}
}
// To avoid modifications to the ReturnedValues map while we iterate over it
// we kept record of potential new entries in a copy map, NewRVsMap.
for (auto &It : NewRVsMap) {
assert(!It.second.empty() && "Entry does not add anything.");
auto &ReturnInsts = ReturnedValues[It.first];
for (ReturnInst *RI : It.second)
if (ReturnInsts.insert(RI).second) {
LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
<< *It.first << " => " << *RI << "\n");
Changed = true;
}
}
Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
}
struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
};
/// Returned values information for a call sites.
using AAReturnedValuesCallSite = AAReturnedValuesFunction;
/// ------------------------ NoSync Function Attribute -------------------------
struct AANoSyncImpl : AANoSync {
AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::NoSync}))
indicateOptimisticFixpoint();
}
const std::string getAsStr() const override {
return getAssumed() ? "nosync" : "may-sync";
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// Helper function used to determine whether an instruction is non-relaxed
/// atomic. In other words, if an atomic instruction does not have unordered
/// or monotonic ordering
static bool isNonRelaxedAtomic(Instruction *I);
/// Helper function used to determine whether an instruction is volatile.
static bool isVolatile(Instruction *I);
/// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
/// memset).
static bool isNoSyncIntrinsic(Instruction *I);
};
bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
if (!I->isAtomic())
return false;
AtomicOrdering Ordering;
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
Ordering = cast<AtomicRMWInst>(I)->getOrdering();
break;
case Instruction::Store:
Ordering = cast<StoreInst>(I)->getOrdering();
break;
case Instruction::Load:
Ordering = cast<LoadInst>(I)->getOrdering();
break;
case Instruction::Fence: {
auto *FI = cast<FenceInst>(I);
if (FI->getSyncScopeID() == SyncScope::SingleThread)
return false;
Ordering = FI->getOrdering();
break;
}
case Instruction::AtomicCmpXchg: {
AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
// Only if both are relaxed, than it can be treated as relaxed.
// Otherwise it is non-relaxed.
if (Success != AtomicOrdering::Unordered &&
Success != AtomicOrdering::Monotonic)
return true;
if (Failure != AtomicOrdering::Unordered &&
Failure != AtomicOrdering::Monotonic)
return true;
return false;
}
default:
llvm_unreachable(
"New atomic operations need to be known in the attributor.");
}
// Relaxed.
if (Ordering == AtomicOrdering::Unordered ||
Ordering == AtomicOrdering::Monotonic)
return false;
return true;
}
/// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
/// FIXME: We should ipmrove the handling of intrinsics.
bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
/// Element wise atomic memory intrinsics are can only be unordered,
/// therefore nosync.
case Intrinsic::memset_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memcpy_element_unordered_atomic:
return true;
case Intrinsic::memset:
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (!cast<MemIntrinsic>(II)->isVolatile())
return true;
return false;
default:
return false;
}
}
return false;
}
bool AANoSyncImpl::isVolatile(Instruction *I) {
assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
"Calls should not be checked here");
switch (I->getOpcode()) {
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(I)->isVolatile();
case Instruction::Store:
return cast<StoreInst>(I)->isVolatile();
case Instruction::Load:
return cast<LoadInst>(I)->isVolatile();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(I)->isVolatile();
default:
return false;
}
}
ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
auto CheckRWInstForNoSync = [&](Instruction &I) {
/// We are looking for volatile instructions or Non-Relaxed atomics.
/// FIXME: We should ipmrove the handling of intrinsics.
if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
return true;
if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
if (ICS.hasFnAttr(Attribute::NoSync))
return true;
auto *NoSyncAA =
A.getAAFor<AANoSyncImpl>(*this, IRPosition::callsite_function(ICS));
if (NoSyncAA && NoSyncAA->isAssumedNoSync())
return true;
return false;
}
if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
return true;
return false;
};
auto CheckForNoSync = [&](Instruction &I) {
// At this point we handled all read/write effects and they are all
// nosync, so they can be skipped.
if (I.mayReadOrWriteMemory())
return true;
// non-convergent and readnone imply nosync.
return !ImmutableCallSite(&I).isConvergent();
};
if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
!A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
struct AANoSyncFunction final : public AANoSyncImpl {
AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
};
/// NoSync attribute deduction for a call sites.
using AANoSyncCallSite = AANoSyncFunction;
/// ------------------------ No-Free Attributes ----------------------------
struct AANoFreeImpl : public AANoFree {
AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::NoFree}))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto CheckForNoFree = [&](Instruction &I) {
ImmutableCallSite ICS(&I);
if (ICS.hasFnAttr(Attribute::NoFree))
return true;
auto *NoFreeAA =
A.getAAFor<AANoFreeImpl>(*this, IRPosition::callsite_function(ICS));
return NoFreeAA && NoFreeAA->isAssumedNoFree();
};
if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nofree" : "may-free";
}
};
struct AANoFreeFunction final : public AANoFreeImpl {
AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
};
/// NoFree attribute deduction for a call sites.
using AANoFreeCallSite = AANoFreeFunction;
/// ------------------------ NonNull Argument Attribute ------------------------
struct AANonNullImpl : AANonNull {
AANonNullImpl(const IRPosition &IRP) : AANonNull(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::NonNull, Attribute::Dereferenceable}))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "nonnull" : "may-null";
}
};
/// NonNull attribute for a floating value.
struct AANonNullFloating : AANonNullImpl {
AANonNullFloating(const IRPosition &IRP) : AANonNullImpl(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
AANonNullImpl::initialize(A);
if (isAtFixpoint())
return;
const IRPosition &IRP = getIRPosition();
const Value &V = IRP.getAssociatedValue();
const DataLayout &DL = A.getDataLayout();
// TODO: This context sensitive query should be removed once we can do
// context sensitive queries in the genericValueTraversal below.
if (isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr, IRP.getCtxI(),
/* TODO: DT */ nullptr))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const DataLayout &DL = A.getDataLayout();
auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
bool Stripped) -> bool {
if (isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr,
/* TODO: CtxI */ nullptr,
/* TODO: DT */ nullptr)) {
// Known non-zero, all good.
} else if (const auto *AA =
A.getAAFor<AANonNull>(*this, IRPosition::value(V))) {
// Try to use abstract attribute information.
if (!AA->isAssumedNonNull())
T.indicatePessimisticFixpoint();
} else {
// IR information was not sufficient and we did not find an abstract
// attribute to use. TODO: on-demand attribute creation!
T.indicatePessimisticFixpoint();
}
return T.isValidState();
};
StateType T;
if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this,
T, VisitValueCB))
return indicatePessimisticFixpoint();
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
};
/// NonNull attribute for function return value.
struct AANonNullReturned final : AAReturnedFromReturnedValues<AANonNullImpl> {
AANonNullReturned(const IRPosition &IRP)
: AAReturnedFromReturnedValues<AANonNullImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
};
/// NonNull attribute for function argument.
struct AANonNullArgument final
: AAArgumentFromCallSiteArguments<AANonNullImpl> {
AANonNullArgument(const IRPosition &IRP)
: AAArgumentFromCallSiteArguments<AANonNullImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
};
struct AANonNullCallSiteArgument final : AANonNullFloating {
AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
};
/// NonNull attribute for a call site return position.
struct AANonNullCallSiteReturned final
: AACallSiteReturnedFromReturned<AANonNullImpl> {
AANonNullCallSiteReturned(const IRPosition &IRP)
: AACallSiteReturnedFromReturned<AANonNullImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
};
/// ------------------------ No-Recurse Attributes ----------------------------
struct AANoRecurseImpl : public AANoRecurse {
AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({getAttrKind()})) {
indicateOptimisticFixpoint();
return;
}
}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "norecurse" : "may-recurse";
}
};
struct AANoRecurseFunction final : AANoRecurseImpl {
AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Implement this.
return indicatePessimisticFixpoint();
}
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
};
using AANoRecurseCallSite = AANoRecurseFunction;
/// ------------------------ Will-Return Attributes ----------------------------
// Helper function that checks whether a function has any cycle.
// TODO: Replace with more efficent code
static bool containsCycle(Function &F) {
SmallPtrSet<BasicBlock *, 32> Visited;
// Traverse BB by dfs and check whether successor is already visited.
for (BasicBlock *BB : depth_first(&F)) {
Visited.insert(BB);
for (auto *SuccBB : successors(BB)) {
if (Visited.count(SuccBB))
return true;
}
}
return false;
}
// Helper function that checks the function have a loop which might become an
// endless loop
// FIXME: Any cycle is regarded as endless loop for now.
// We have to allow some patterns.
static bool containsPossiblyEndlessLoop(Function *F) {
return !F || !F->hasExactDefinition() || containsCycle(*F);
}
struct AAWillReturnImpl : public AAWillReturn {
AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::WillReturn})) {
indicateOptimisticFixpoint();
return;
}
Function *F = getAssociatedFunction();
if (containsPossiblyEndlessLoop(F))
indicatePessimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
auto CheckForWillReturn = [&](Instruction &I) {
ImmutableCallSite ICS(&I);
if (ICS.hasFnAttr(Attribute::WillReturn))
return true;
IRPosition IPos = IRPosition::callsite_function(ICS);
auto *WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
if (!WillReturnAA || !WillReturnAA->isAssumedWillReturn())
return false;
// FIXME: Prohibit any recursion for now.
if (ICS.hasFnAttr(Attribute::NoRecurse))
return true;
auto *NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
return NoRecurseAA && NoRecurseAA->isAssumedNoRecurse();
};
if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::getAsStr()
const std::string getAsStr() const override {
return getAssumed() ? "willreturn" : "may-noreturn";
}
};
struct AAWillReturnFunction final : AAWillReturnImpl {
AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
};
/// WillReturn attribute deduction for a call sites.
using AAWillReturnCallSite = AAWillReturnFunction;
/// ------------------------ NoAlias Argument Attribute ------------------------
struct AANoAliasImpl : AANoAlias {
AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({Attribute::NoAlias}))
indicateOptimisticFixpoint();
}
const std::string getAsStr() const override {
return getAssumed() ? "noalias" : "may-alias";
}
};
/// NoAlias attribute for a floating value.
struct AANoAliasFloating final : AANoAliasImpl {
AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Implement this.
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(noalias)
}
};
/// NoAlias attribute for an argument.
struct AANoAliasArgument final : AANoAliasImpl {
AANoAliasArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Implement this.
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
};
struct AANoAliasCallSiteArgument final : AANoAliasImpl {
AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
// TODO: Implement this.
return indicatePessimisticFixpoint();
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
};
/// NoAlias attribute for function return value.
struct AANoAliasReturned final : AANoAliasImpl {
AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
virtual ChangeStatus updateImpl(Attributor &A) override {
auto CheckReturnValue = [&](Value &RV) -> bool {
if (Constant *C = dyn_cast<Constant>(&RV))
if (C->isNullValue() || isa<UndefValue>(C))
return true;
/// For now, we can only deduce noalias if we have call sites.
/// FIXME: add more support.
ImmutableCallSite ICS(&RV);
if (!ICS)
return false;
if (!ICS.returnDoesNotAlias()) {
auto *NoAliasAA =
A.getAAFor<AANoAlias>(*this, IRPosition::callsite_returned(ICS));
if (!NoAliasAA || !NoAliasAA->isAssumedNoAlias())
return false;
}
/// FIXME: We can improve capture check in two ways:
/// 1. Use the AANoCapture facilities.
/// 2. Use the location of return insts for escape queries.
if (PointerMayBeCaptured(&RV, /* ReturnCaptures */ false,
/* StoreCaptures */ true))
return false;
return true;
};
if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
};
/// NoAlias attribute deduction for a call site return value.
using AANoAliasCallSiteReturned = AANoAliasReturned;
/// -------------------AAIsDead Function Attribute-----------------------
struct AAIsDeadImpl : public AAIsDead {
AAIsDeadImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
void initialize(Attributor &A) override {
const Function *F = getAssociatedFunction();
if (!F || !F->hasExactDefinition()) {
indicatePessimisticFixpoint();
return;
}
ToBeExploredPaths.insert(&(F->getEntryBlock().front()));
AssumedLiveBlocks.insert(&(F->getEntryBlock()));
for (size_t i = 0; i < ToBeExploredPaths.size(); ++i)
if (const Instruction *NextNoReturnI =
findNextNoReturn(A, ToBeExploredPaths[i]))
NoReturnCalls.insert(NextNoReturnI);
}
/// Find the next assumed noreturn instruction in the block of \p I starting
/// from, thus including, \p I.
///
/// The caller is responsible to monitor the ToBeExploredPaths set as new
/// instructions discovered in other basic block will be placed in there.
///
/// \returns The next assumed noreturn instructions in the block of \p I
/// starting from, thus including, \p I.
const Instruction *findNextNoReturn(Attributor &A, const Instruction *I);
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
std::to_string(getAssociatedFunction()->size()) + "][#NRI " +
std::to_string(NoReturnCalls.size()) + "]";
}
/// See AbstractAttribute::manifest(...).
ChangeStatus manifest(Attributor &A) override {
assert(getState().isValidState() &&
"Attempted to manifest an invalid state!");
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
const Function &F = *getAssociatedFunction();
// Flag to determine if we can change an invoke to a call assuming the
// callee is nounwind. This is not possible if the personality of the
// function allows to catch asynchronous exceptions.
bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
for (const Instruction *NRC : NoReturnCalls) {
Instruction *I = const_cast<Instruction *>(NRC);
BasicBlock *BB = I->getParent();
Instruction *SplitPos = I->getNextNode();
if (auto *II = dyn_cast<InvokeInst>(I)) {
// If we keep the invoke the split position is at the beginning of the
// normal desitination block (it invokes a noreturn function after all).
BasicBlock *NormalDestBB = II->getNormalDest();
SplitPos = &NormalDestBB->front();
/// Invoke is replaced with a call and unreachable is placed after it if
/// the callee is nounwind and noreturn. Otherwise, we keep the invoke
/// and only place an unreachable in the normal successor.
if (Invoke2CallAllowed) {
if (Function *Callee = II->getCalledFunction()) {
auto *AANoUnw =
A.getAAFor<AANoUnwind>(*this, IRPosition::function(*Callee));
if (Callee->hasFnAttribute(Attribute::NoUnwind) ||
(AANoUnw && AANoUnw->isAssumedNoUnwind())) {
LLVM_DEBUG(dbgs()
<< "[AAIsDead] Replace invoke with call inst\n");
// We do not need an invoke (II) but instead want a call followed
// by an unreachable. However, we do not remove II as other
// abstract attributes might have it cached as part of their
// results. Given that we modify the CFG anyway, we simply keep II
// around but in a new dead block. To avoid II being live through
// a different edge we have to ensure the block we place it in is
// only reached from the current block of II and then not reached
// at all when we insert the unreachable.
SplitBlockPredecessors(NormalDestBB, {BB}, ".i2c");
CallInst *CI = createCallMatchingInvoke(II);
CI->insertBefore(II);
CI->takeName(II);
II->replaceAllUsesWith(CI);
SplitPos = CI->getNextNode();
}
}
}
}
BB = SplitPos->getParent();
SplitBlock(BB, SplitPos);
changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false);
HasChanged = ChangeStatus::CHANGED;
}
return HasChanged;
}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override;
/// See AAIsDead::isAssumedDead(BasicBlock *).
bool isAssumedDead(const BasicBlock *BB) const override {
assert(BB->getParent() == getAssociatedFunction() &&
"BB must be in the same anchor scope function.");
if (!getAssumed())
return false;
return !AssumedLiveBlocks.count(BB);
}
/// See AAIsDead::isKnownDead(BasicBlock *).
bool isKnownDead(const BasicBlock *BB) const override {
return getKnown() && isAssumedDead(BB);
}
/// See AAIsDead::isAssumed(Instruction *I).
bool isAssumedDead(const Instruction *I) const override {
assert(I->getParent()->getParent() == getAssociatedFunction() &&
"Instruction must be in the same anchor scope function.");
if (!getAssumed())
return false;
// If it is not in AssumedLiveBlocks then it for sure dead.
// Otherwise, it can still be after noreturn call in a live block.
if (!AssumedLiveBlocks.count(I->getParent()))
return true;
// If it is not after a noreturn call, than it is live.
return isAfterNoReturn(I);
}
/// See AAIsDead::isKnownDead(Instruction *I).
bool isKnownDead(const Instruction *I) const override {
return getKnown() && isAssumedDead(I);
}
/// Check if instruction is after noreturn call, in other words, assumed dead.
bool isAfterNoReturn(const Instruction *I) const;
/// Determine if \p F might catch asynchronous exceptions.
static bool mayCatchAsynchronousExceptions(const Function &F) {
return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
}
/// Collection of to be explored paths.
SmallSetVector<const Instruction *, 8> ToBeExploredPaths;
/// Collection of all assumed live BasicBlocks.
DenseSet<const BasicBlock *> AssumedLiveBlocks;
/// Collection of calls with noreturn attribute, assumed or knwon.
SmallSetVector<const Instruction *, 4> NoReturnCalls;
};
struct AAIsDeadFunction final : public AAIsDeadImpl {
AAIsDeadFunction(const IRPosition &IRP) : AAIsDeadImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECL(DeadBlocks, Function,
"Number of basic blocks classified as dead");
BUILD_STAT_NAME(DeadBlocks, Function) +=
getAssociatedFunction()->size() - AssumedLiveBlocks.size();
STATS_DECL(PartiallyDeadBlocks, Function,
"Number of basic blocks classified as partially dead");
BUILD_STAT_NAME(PartiallyDeadBlocks, Function) += NoReturnCalls.size();
}
};
bool AAIsDeadImpl::isAfterNoReturn(const Instruction *I) const {
const Instruction *PrevI = I->getPrevNode();
while (PrevI) {
if (NoReturnCalls.count(PrevI))
return true;
PrevI = PrevI->getPrevNode();
}
return false;
}
const Instruction *AAIsDeadImpl::findNextNoReturn(Attributor &A,
const Instruction *I) {
const BasicBlock *BB = I->getParent();
const Function &F = *BB->getParent();
// Flag to determine if we can change an invoke to a call assuming the callee
// is nounwind. This is not possible if the personality of the function allows
// to catch asynchronous exceptions.
bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
// TODO: We should have a function that determines if an "edge" is dead.
// Edges could be from an instruction to the next or from a terminator
// to the successor. For now, we need to special case the unwind block
// of InvokeInst below.
while (I) {
ImmutableCallSite ICS(I);
if (ICS) {
const IRPosition &IPos = IRPosition::callsite_function(ICS);
// Regarless of the no-return property of an invoke instruction we only
// learn that the regular successor is not reachable through this
// instruction but the unwind block might still be.
if (auto *Invoke = dyn_cast<InvokeInst>(I)) {
// Use nounwind to justify the unwind block is dead as well.
auto *AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos);
if (!Invoke2CallAllowed ||
(!AANoUnw || !AANoUnw->isAssumedNoUnwind())) {
AssumedLiveBlocks.insert(Invoke->getUnwindDest());
ToBeExploredPaths.insert(&Invoke->getUnwindDest()->front());
}
}
auto *NoReturnAA = A.getAAFor<AANoReturn>(*this, IPos);
if (ICS.hasFnAttr(Attribute::NoReturn) ||
(NoReturnAA && NoReturnAA->isAssumedNoReturn()))
return I;
}
I = I->getNextNode();
}
// get new paths (reachable blocks).
for (const BasicBlock *SuccBB : successors(BB)) {
AssumedLiveBlocks.insert(SuccBB);
ToBeExploredPaths.insert(&SuccBB->front());
}
// No noreturn instruction found.
return nullptr;
}
ChangeStatus AAIsDeadImpl::updateImpl(Attributor &A) {
// Temporary collection to iterate over existing noreturn instructions. This
// will alow easier modification of NoReturnCalls collection
SmallVector<const Instruction *, 8> NoReturnChanged;
ChangeStatus Status = ChangeStatus::UNCHANGED;
for (const Instruction *I : NoReturnCalls)
NoReturnChanged.push_back(I);
for (const Instruction *I : NoReturnChanged) {
size_t Size = ToBeExploredPaths.size();
const Instruction *NextNoReturnI = findNextNoReturn(A, I);
if (NextNoReturnI != I) {
Status = ChangeStatus::CHANGED;
NoReturnCalls.remove(I);
if (NextNoReturnI)
NoReturnCalls.insert(NextNoReturnI);
}
// Explore new paths.
while (Size != ToBeExploredPaths.size()) {
Status = ChangeStatus::CHANGED;
if (const Instruction *NextNoReturnI =
findNextNoReturn(A, ToBeExploredPaths[Size++]))
NoReturnCalls.insert(NextNoReturnI);
}
}
LLVM_DEBUG(dbgs() << "[AAIsDead] AssumedLiveBlocks: "
<< AssumedLiveBlocks.size() << " Total number of blocks: "
<< getAssociatedFunction()->size() << "\n");
// If we know everything is live there is no need to query for liveness.
if (NoReturnCalls.empty() &&
getAssociatedFunction()->size() == AssumedLiveBlocks.size()) {
// Indicating a pessimistic fixpoint will cause the state to be "invalid"
// which will cause the Attributor to not return the AAIsDead on request,
// which will prevent us from querying isAssumedDead().
indicatePessimisticFixpoint();
assert(!isValidState() && "Expected an invalid state!");
}
return Status;
}
/// Liveness information for a call sites.
//
// TODO: Once we have call site specific value information we can provide call
// site specific liveness liveness information and then it makes sense to
// specialize attributes for call sites instead of redirecting requests to
// the callee.
using AAIsDeadCallSite = AAIsDeadFunction;
/// -------------------- Dereferenceable Argument Attribute --------------------
struct DerefState : AbstractState {
/// State representing for dereferenceable bytes.
IntegerState DerefBytesState;
/// State representing that whether the value is globaly dereferenceable.
BooleanState GlobalState;
/// See AbstractState::isValidState()
bool isValidState() const override { return DerefBytesState.isValidState(); }
/// See AbstractState::isAtFixpoint()
bool isAtFixpoint() const override {
return !isValidState() ||
(DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint());
}
/// See AbstractState::indicateOptimisticFixpoint(...)
ChangeStatus indicateOptimisticFixpoint() override {
DerefBytesState.indicateOptimisticFixpoint();
GlobalState.indicateOptimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
/// See AbstractState::indicatePessimisticFixpoint(...)
ChangeStatus indicatePessimisticFixpoint() override {
DerefBytesState.indicatePessimisticFixpoint();
GlobalState.indicatePessimisticFixpoint();
return ChangeStatus::CHANGED;
}
/// Update known dereferenceable bytes.
void takeKnownDerefBytesMaximum(uint64_t Bytes) {
DerefBytesState.takeKnownMaximum(Bytes);
}
/// Update assumed dereferenceable bytes.
void takeAssumedDerefBytesMinimum(uint64_t Bytes) {
DerefBytesState.takeAssumedMinimum(Bytes);
}
/// Equality for DerefState.
bool operator==(const DerefState &R) {
return this->DerefBytesState == R.DerefBytesState &&
this->GlobalState == R.GlobalState;
}
/// Inequality for IntegerState.
bool operator!=(const DerefState &R) { return !(*this == R); }
/// See IntegerState::operator^=
DerefState operator^=(const DerefState &R) {
DerefBytesState ^= R.DerefBytesState;
GlobalState ^= R.GlobalState;
return *this;
}
/// See IntegerState::operator&=
DerefState operator&=(const DerefState &R) {
DerefBytesState &= R.DerefBytesState;
GlobalState &= R.GlobalState;
return *this;
}
/// See IntegerState::operator|=
DerefState operator|=(const DerefState &R) {
DerefBytesState |= R.DerefBytesState;
GlobalState |= R.GlobalState;
return *this;
}
};
template <>
ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
const DerefState &R) {
ChangeStatus CS0 = clampStateAndIndicateChange<IntegerState>(
S.DerefBytesState, R.DerefBytesState);
ChangeStatus CS1 =
clampStateAndIndicateChange<IntegerState>(S.GlobalState, R.GlobalState);
return CS0 | CS1;
}
struct AADereferenceableImpl : AADereferenceable, DerefState {
AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
using StateType = DerefState;
void initialize(Attributor &A) override {
SmallVector<Attribute, 4> Attrs;
getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
Attrs);
for (const Attribute &Attr : Attrs)
takeKnownDerefBytesMaximum(Attr.getValueAsInt());
NonNullAA = A.getAAFor<AANonNull>(*this, getIRPosition());
}
/// See AbstractAttribute::getState()
/// {
StateType &getState() override { return *this; }
const StateType &getState() const override { return *this; }
/// }
/// See AADereferenceable::getAssumedDereferenceableBytes().
uint32_t getAssumedDereferenceableBytes() const override {
return DerefBytesState.getAssumed();
}
/// See AADereferenceable::getKnownDereferenceableBytes().
uint32_t getKnownDereferenceableBytes() const override {
return DerefBytesState.getKnown();
}
/// See AADereferenceable::isAssumedGlobal().
bool isAssumedGlobal() const override { return GlobalState.getAssumed(); }
/// See AADereferenceable::isKnownGlobal().
bool isKnownGlobal() const override { return GlobalState.getKnown(); }
bool isAssumedNonNull() const override {
return NonNullAA && NonNullAA->isAssumedNonNull();
}
void getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
// TODO: Add *_globally support
if (isAssumedNonNull())
Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
Ctx, getAssumedDereferenceableBytes()));
else
Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
Ctx, getAssumedDereferenceableBytes()));
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
if (!getAssumedDereferenceableBytes())
return "unknown-dereferenceable";
return std::string("dereferenceable") +
(isAssumedNonNull() ? "" : "_or_null") +
(isAssumedGlobal() ? "_globally" : "") + "<" +
std::to_string(getKnownDereferenceableBytes()) + "-" +
std::to_string(getAssumedDereferenceableBytes()) + ">";
}
private:
const AANonNull *NonNullAA = nullptr;
};
/// Dereferenceable attribute for a floating value.
struct AADereferenceableFloating : AADereferenceableImpl {
AADereferenceableFloating(const IRPosition &IRP)
: AADereferenceableImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const DataLayout &DL = A.getDataLayout();
auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool {
unsigned IdxWidth =
DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
APInt Offset(IdxWidth, 0);
const Value *Base =
V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
const auto *AA =
A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
int64_t DerefBytes = 0;
if (!AA || (!Stripped &&
getIRPosition().getPositionKind() == IRPosition::IRP_FLOAT)) {
// Use IR information if we did not strip anything.
// TODO: track globally.
bool CanBeNull;
DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
T.GlobalState.indicatePessimisticFixpoint();
} else {
const DerefState &DS = static_cast<const DerefState &>(AA->getState());
DerefBytes = DS.DerefBytesState.getAssumed();
T.GlobalState &= DS.GlobalState;
}
T.takeAssumedDerefBytesMinimum(
std::max(int64_t(0), DerefBytes - Offset.getSExtValue()));
if (!Stripped &&
getIRPosition().getPositionKind() == IRPosition::IRP_FLOAT) {
T.takeKnownDerefBytesMaximum(
std::max(int64_t(0), DerefBytes - Offset.getSExtValue()));
T.indicatePessimisticFixpoint();
}
return T.isValidState();
};
DerefState T;
if (!genericValueTraversal<AADereferenceable, DerefState>(
A, getIRPosition(), *this, T, VisitValueCB))
return indicatePessimisticFixpoint();
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute for a return value.
struct AADereferenceableReturned final
: AAReturnedFromReturnedValues<AADereferenceableImpl> {
AADereferenceableReturned(const IRPosition &IRP)
: AAReturnedFromReturnedValues<AADereferenceableImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute for an argument
struct AADereferenceableArgument final
: AAArgumentFromCallSiteArguments<AADereferenceableImpl> {
AADereferenceableArgument(const IRPosition &IRP)
: AAArgumentFromCallSiteArguments<AADereferenceableImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override{
STATS_DECLTRACK_ARG_ATTR(dereferenceable)};
};
/// Dereferenceable attribute for a call site argument.
struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
AADereferenceableCallSiteArgument(const IRPosition &IRP)
: AADereferenceableFloating(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override {
STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
}
};
/// Dereferenceable attribute deduction for a call site return value.
using AADereferenceableCallSiteReturned = AADereferenceableReturned;
// ------------------------ Align Argument Attribute ------------------------
struct AAAlignImpl : AAAlign {
AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
// Max alignemnt value allowed in IR
static const unsigned MAX_ALIGN = 1U << 29;
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
takeAssumedMinimum(MAX_ALIGN);
SmallVector<Attribute, 4> Attrs;
getAttrs({Attribute::Alignment}, Attrs);
for (const Attribute &Attr : Attrs)
takeKnownMaximum(Attr.getValueAsInt());
}
/// See AbstractAttribute::getDeducedAttributes
virtual void
getDeducedAttributes(LLVMContext &Ctx,
SmallVectorImpl<Attribute> &Attrs) const override {
if (getAssumedAlign() > 1)
Attrs.emplace_back(Attribute::getWithAlignment(Ctx, getAssumedAlign()));
}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
"-" + std::to_string(getAssumedAlign()) + ">")
: "unknown-align";
}
};
/// Align attribute for a floating value.
struct AAAlignFloating : AAAlignImpl {
AAAlignFloating(const IRPosition &IRP) : AAAlignImpl(IRP) {}
/// See AbstractAttribute::updateImpl(...).
ChangeStatus updateImpl(Attributor &A) override {
const DataLayout &DL = A.getDataLayout();
auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
bool Stripped) -> bool {
if (!Stripped &&
getIRPosition().getPositionKind() == IRPosition::IRP_FLOAT) {
// Use only IR information if we did not strip anything.
T.takeKnownMaximum(V.getPointerAlignment(DL));
T.indicatePessimisticFixpoint();
} else if (const auto *AA =
A.getAAFor<AAAlign>(*this, IRPosition::value(V))) {
// Try to use abstract attribute information.
const AAAlign::StateType &DS =
static_cast<const AAAlign::StateType &>(AA->getState());
T.takeAssumedMinimum(DS.getAssumed());
} else {
// Last resort, look into the IR.
T.takeKnownMaximum(V.getPointerAlignment(DL));
T.indicatePessimisticFixpoint();
}
return T.isValidState();
};
StateType T;
if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
VisitValueCB))
return indicatePessimisticFixpoint();
// TODO: If we know we visited all incoming values, thus no are assumed
// dead, we can take the known information from the state T.
return clampStateAndIndicateChange(getState(), T);
}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
};
/// Align attribute for function return value.
struct AAAlignReturned final : AAReturnedFromReturnedValues<AAAlignImpl> {
AAAlignReturned(const IRPosition &IRP)
: AAReturnedFromReturnedValues<AAAlignImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
};
/// Align attribute for function argument.
struct AAAlignArgument final : AAArgumentFromCallSiteArguments<AAAlignImpl> {
AAAlignArgument(const IRPosition &IRP)
: AAArgumentFromCallSiteArguments<AAAlignImpl>(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override{STATS_DECLTRACK_ARG_ATTR(aligned)};
};
struct AAAlignCallSiteArgument final : AAAlignFloating {
AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
};
/// Align attribute deduction for a call site return value.
using AAAlignCallSiteReturned = AAAlignReturned;
/// ------------------ Function No-Return Attribute ----------------------------
struct AANoReturnImpl : public AANoReturn {
AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
/// See AbstractAttribute::getAsStr().
const std::string getAsStr() const override {
return getAssumed() ? "noreturn" : "may-return";
}
/// See AbstractAttribute::initialize(...).
void initialize(Attributor &A) override {
if (hasAttr({getAttrKind()}))
indicateOptimisticFixpoint();
}
/// See AbstractAttribute::updateImpl(Attributor &A).
virtual ChangeStatus updateImpl(Attributor &A) override {
auto CheckForNoReturn = [](Instruction &) { return false; };
if (!A.checkForAllInstructions(CheckForNoReturn, *this,
{(unsigned)Instruction::Ret}))
return indicatePessimisticFixpoint();
return ChangeStatus::UNCHANGED;
}
};
struct AANoReturnFunction final : AANoReturnImpl {
AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
/// See AbstractAttribute::trackStatistics()
void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
};
/// NoReturn attribute deduction for a call sites.
using AANoReturnCallSite = AANoReturnFunction;
/// ----------------------------------------------------------------------------
/// Attributor
/// ----------------------------------------------------------------------------
bool Attributor::isAssumedDead(const AbstractAttribute &AA,
const AAIsDead *LivenessAA) {
const Instruction *CtxI = AA.getIRPosition().getCtxI();
if (!CtxI)
return false;
if (!LivenessAA)
LivenessAA =
getAAFor<AAIsDead>(AA, IRPosition::function(*CtxI->getFunction()));
if (!LivenessAA || !LivenessAA->isAssumedDead(CtxI))
return false;
// TODO: Do not track dependences automatically but add it here as only a
// "is-assumed-dead" result causes a dependence.
return true;
}
bool Attributor::checkForAllCallSites(const function_ref<bool(CallSite)> &Pred,
const AbstractAttribute &QueryingAA,
bool RequireAllCallSites) {
// We can try to determine information from
// the call sites. However, this is only possible all call sites are known,
// hence the function has internal linkage.
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction)
return false;
if (RequireAllCallSites && !AssociatedFunction->hasInternalLinkage()) {
LLVM_DEBUG(
dbgs()
<< "[Attributor] Function " << AssociatedFunction->getName()
<< " has no internal linkage, hence not all call sites are known\n");
return false;
}
for (const Use &U : AssociatedFunction->uses()) {
Instruction *I = cast<Instruction>(U.getUser());
Function *Caller = I->getFunction();
auto *LivenessAA =
getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*Caller));
// Skip dead calls.
if (LivenessAA && LivenessAA->isAssumedDead(I))
continue;
CallSite CS(U.getUser());
if (!CS || !CS.isCallee(&U) || !CS.getCaller()->hasExactDefinition()) {
if (!RequireAllCallSites)
continue;
LLVM_DEBUG(dbgs() << "[Attributor] User " << *U.getUser()
<< " is an invalid use of "
<< AssociatedFunction->getName() << "\n");
return false;
}
if (Pred(CS))
continue;
LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
<< *CS.getInstruction() << "\n");
return false;
}
return true;
}
bool Attributor::checkForAllReturnedValuesAndReturnInsts(
const function_ref<bool(Value &, const SmallPtrSetImpl<ReturnInst *> &)>
&Pred,
const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
// Since we need to provide return instructions we have to have an exact
// definition.
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction || !AssociatedFunction->hasExactDefinition())
return false;
// If this is a call site query we use the call site specific return values
// and liveness information.
const IRPosition &QueryIRP = IRPosition::function_scope(IRP);
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
if (!AARetVal || !AARetVal->getState().isValidState())
return false;
return AARetVal->checkForAllReturnedValuesAndReturnInsts(Pred);
}
bool Attributor::checkForAllReturnedValues(
const function_ref<bool(Value &)> &Pred,
const AbstractAttribute &QueryingAA) {
const IRPosition &IRP = QueryingAA.getIRPosition();
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction || !AssociatedFunction->hasExactDefinition())
return false;
const IRPosition &QueryIRP = IRPosition::function_scope(IRP);
const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
if (!AARetVal || !AARetVal->getState().isValidState())
return false;
return AARetVal->checkForAllReturnedValuesAndReturnInsts(
[&](Value &RV, const SmallPtrSetImpl<ReturnInst *> &) {
return Pred(RV);
});
}
bool Attributor::checkForAllInstructions(
const llvm::function_ref<bool(Instruction &)> &Pred,
const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes) {
const IRPosition &IRP = QueryingAA.getIRPosition();
// Since we need to provide instructions we have to have an exact definition.
const Function *AssociatedFunction = IRP.getAssociatedFunction();
if (!AssociatedFunction || !AssociatedFunction->hasExactDefinition())
return false;
const IRPosition &QueryIRP = IRPosition::function_scope(IRP);
const auto &LivenessAA = getAAFor<AAIsDead>(QueryingAA, QueryIRP);
auto &OpcodeInstMap =
InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
for (unsigned Opcode : Opcodes) {
for (Instruction *I : OpcodeInstMap[Opcode]) {
// Skip dead instructions.
if (LivenessAA && LivenessAA->isAssumedDead(I))
continue;
if (!Pred(*I))
return false;
}
}
return true;
}
bool Attributor::checkForAllReadWriteInstructions(
const llvm::function_ref<bool(Instruction &)> &Pred,
AbstractAttribute &QueryingAA) {
const Function *AssociatedFunction =
QueryingAA.getIRPosition().getAssociatedFunction();
if (!AssociatedFunction)
return false;
const auto &LivenessAA =
getAAFor<AAIsDead>(QueryingAA, QueryingAA.getIRPosition());
for (Instruction *I :
InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
// Skip dead instructions.
if (LivenessAA && LivenessAA->isAssumedDead(I))
continue;
if (!Pred(*I))
return false;
}
return true;
}
ChangeStatus Attributor::run() {
// Initialize all abstract attributes.
for (AbstractAttribute *AA : AllAbstractAttributes)
AA->initialize(*this);
LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
<< AllAbstractAttributes.size()
<< " abstract attributes.\n");
// Now that all abstract attributes are collected and initialized we start
// the abstract analysis.
unsigned IterationCounter = 1;
SmallVector<AbstractAttribute *, 64> ChangedAAs;
SetVector<AbstractAttribute *> Worklist;
Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
do {
LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
<< ", Worklist size: " << Worklist.size() << "\n");
// Add all abstract attributes that are potentially dependent on one that
// changed to the work list.
for (AbstractAttribute *ChangedAA : ChangedAAs) {
auto &QuerriedAAs = QueryMap[ChangedAA];
Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
}
// Reset the changed set.
ChangedAAs.clear();
// Update all abstract attribute in the work list and record the ones that
// changed.
for (AbstractAttribute *AA : Worklist)
if (!isAssumedDead(*AA, nullptr))
if (AA->update(*this) == ChangeStatus::CHANGED)
ChangedAAs.push_back(AA);
// Reset the work list and repopulate with the changed abstract attributes.
// Note that dependent ones are added above.
Worklist.clear();
Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
} while (!Worklist.empty() && ++IterationCounter < MaxFixpointIterations);
LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
<< IterationCounter << "/" << MaxFixpointIterations
<< " iterations\n");
bool FinishedAtFixpoint = Worklist.empty();
// Reset abstract arguments not settled in a sound fixpoint by now. This
// happens when we stopped the fixpoint iteration early. Note that only the
// ones marked as "changed" *and* the ones transitively depending on them
// need to be reverted to a pessimistic state. Others might not be in a
// fixpoint state but we can use the optimistic results for them anyway.
SmallPtrSet<AbstractAttribute *, 32> Visited;
for (unsigned u = 0; u < ChangedAAs.size(); u++) {
AbstractAttribute *ChangedAA = ChangedAAs[u];
if (!Visited.insert(ChangedAA).second)
continue;
AbstractState &State = ChangedAA->getState();
if (!State.isAtFixpoint()) {
State.indicatePessimisticFixpoint();
NumAttributesTimedOut++;
}
auto &QuerriedAAs = QueryMap[ChangedAA];
ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
}
LLVM_DEBUG({
if (!Visited.empty())
dbgs() << "\n[Attributor] Finalized " << Visited.size()
<< " abstract attributes.\n";
});
unsigned NumManifested = 0;
unsigned NumAtFixpoint = 0;
ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
for (AbstractAttribute *AA : AllAbstractAttributes) {
AbstractState &State = AA->getState();
// If there is not already a fixpoint reached, we can now take the
// optimistic state. This is correct because we enforced a pessimistic one
// on abstract attributes that were transitively dependent on a changed one
// already above.
if (!State.isAtFixpoint())
State.indicateOptimisticFixpoint();
// If the state is invalid, we do not try to manifest it.
if (!State.isValidState())
continue;
// Skip dead code.
if (isAssumedDead(*AA, nullptr))
continue;
// Manifest the state and record if we changed the IR.
ChangeStatus LocalChange = AA->manifest(*this);
if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
AA->trackStatistics();
ManifestChange = ManifestChange | LocalChange;
NumAtFixpoint++;
NumManifested += (LocalChange == ChangeStatus::CHANGED);
}
(void)NumManifested;
(void)NumAtFixpoint;
LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
<< " arguments while " << NumAtFixpoint
<< " were in a valid fixpoint state\n");
// If verification is requested, we finished this run at a fixpoint, and the
// IR was changed, we re-run the whole fixpoint analysis, starting at
// re-initialization of the arguments. This re-run should not result in an IR
// change. Though, the (virtual) state of attributes at the end of the re-run
// might be more optimistic than the known state or the IR state if the better
// state cannot be manifested.
if (VerifyAttributor && FinishedAtFixpoint &&
ManifestChange == ChangeStatus::CHANGED) {
VerifyAttributor = false;
ChangeStatus VerifyStatus = run();
if (VerifyStatus != ChangeStatus::UNCHANGED)
llvm_unreachable(
"Attributor verification failed, re-run did result in an IR change "
"even after a fixpoint was reached in the original run. (False "
"positives possible!)");
VerifyAttributor = true;
}
NumAttributesManifested += NumManifested;
NumAttributesValidFixpoint += NumAtFixpoint;
return ManifestChange;
}
/// Helper function that checks if an abstract attribute of type \p AAType
/// should be created for IR position \p IRP and if so creates and registers it
/// with the Attributor \p A.
///
/// This method will look at the provided whitelist. If one is given and the
/// kind \p AAType::ID is not contained, no abstract attribute is created.
///
/// \returns The created abstract argument, or nullptr if none was created.
template <typename AAType>
static AAType *checkAndRegisterAA(const IRPosition &IRP, Attributor &A,
DenseSet<const char *> *Whitelist) {
if (Whitelist && !Whitelist->count(&AAType::ID))
return nullptr;
return &A.registerAA<AAType>(*new AAType(IRP));
}
void Attributor::identifyDefaultAbstractAttributes(
Function &F, DenseSet<const char *> *Whitelist) {
IRPosition FPos = IRPosition::function(F);
// Check for dead BasicBlocks in every function.
// We need dead instruction detection because we do not want to deal with
// broken IR in which SSA rules do not apply.
checkAndRegisterAA<AAIsDeadFunction>(FPos, *this, /* Whitelist */ nullptr);
// Every function might be "will-return".
checkAndRegisterAA<AAWillReturnFunction>(FPos, *this, Whitelist);
// Every function can be nounwind.
checkAndRegisterAA<AANoUnwindFunction>(FPos, *this, Whitelist);
// Every function might be marked "nosync"
checkAndRegisterAA<AANoSyncFunction>(FPos, *this, Whitelist);
// Every function might be "no-free".
checkAndRegisterAA<AANoFreeFunction>(FPos, *this, Whitelist);
// Every function might be "no-return".
checkAndRegisterAA<AANoReturnFunction>(FPos, *this, Whitelist);
// Return attributes are only appropriate if the return type is non void.
Type *ReturnType = F.getReturnType();
if (!ReturnType->isVoidTy()) {
// Argument attribute "returned" --- Create only one per function even
// though it is an argument attribute.
checkAndRegisterAA<AAReturnedValuesFunction>(FPos, *this, Whitelist);
if (ReturnType->isPointerTy()) {
IRPosition RetPos = IRPosition::returned(F);
// Every function with pointer return type might be marked align.
checkAndRegisterAA<AAAlignReturned>(RetPos, *this, Whitelist);
// Every function with pointer return type might be marked nonnull.
checkAndRegisterAA<AANonNullReturned>(RetPos, *this, Whitelist);
// Every function with pointer return type might be marked noalias.
checkAndRegisterAA<AANoAliasReturned>(RetPos, *this, Whitelist);
// Every function with pointer return type might be marked
// dereferenceable.
checkAndRegisterAA<AADereferenceableReturned>(RetPos, *this, Whitelist);
}
}
for (Argument &Arg : F.args()) {
if (Arg.getType()->isPointerTy()) {
IRPosition ArgPos = IRPosition::argument(Arg);
// Every argument with pointer type might be marked nonnull.
checkAndRegisterAA<AANonNullArgument>(ArgPos, *this, Whitelist);
// Every argument with pointer type might be marked dereferenceable.
checkAndRegisterAA<AADereferenceableArgument>(ArgPos, *this, Whitelist);
// Every argument with pointer type might be marked align.
checkAndRegisterAA<AAAlignArgument>(ArgPos, *this, Whitelist);
}
}
// Walk all instructions to find more attribute opportunities and also
// interesting instructions that might be queried by abstract attributes
// during their initialization or update.
auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
for (Instruction &I : instructions(&F)) {
bool IsInterestingOpcode = false;
// To allow easy access to all instructions in a function with a given
// opcode we store them in the InfoCache. As not all opcodes are interesting
// to concrete attributes we only cache the ones that are as identified in
// the following switch.
// Note: There are no concrete attributes now so this is initially empty.
switch (I.getOpcode()) {
default:
assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
"New call site/base instruction type needs to be known int the "
"attributor.");
break;
case Instruction::Call:
case Instruction::CallBr:
case Instruction::Invoke:
case Instruction::CleanupRet:
case Instruction::CatchSwitch:
case Instruction::Resume:
case Instruction::Ret:
IsInterestingOpcode = true;
}
if (IsInterestingOpcode)
InstOpcodeMap[I.getOpcode()].push_back(&I);
if (I.mayReadOrWriteMemory())
ReadOrWriteInsts.push_back(&I);
CallSite CS(&I);
if (CS && CS.getCalledFunction()) {
for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) {
if (!CS.getArgument(i)->getType()->isPointerTy())
continue;
IRPosition CSArgPos = IRPosition::callsite_argument(CS, i);
// Call site argument attribute "non-null".
checkAndRegisterAA<AANonNullCallSiteArgument>(CSArgPos, *this,
Whitelist);
// Call site argument attribute "dereferenceable".
checkAndRegisterAA<AADereferenceableCallSiteArgument>(CSArgPos, *this,
Whitelist);
// Call site argument attribute "align".
checkAndRegisterAA<AAAlignCallSiteArgument>(CSArgPos, *this, Whitelist);
}
}
}
}
/// Helpers to ease debugging through output streams and print calls.
///
///{
raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
switch (AP) {
case IRPosition::IRP_INVALID:
return OS << "inv";
case IRPosition::IRP_FLOAT:
return OS << "flt";
case IRPosition::IRP_RETURNED:
return OS << "fn_ret";
case IRPosition::IRP_CALL_SITE_RETURNED:
return OS << "cs_ret";
case IRPosition::IRP_FUNCTION:
return OS << "fn";
case IRPosition::IRP_CALL_SITE:
return OS << "cs";
case IRPosition::IRP_ARGUMENT:
return OS << "arg";
case IRPosition::IRP_CALL_SITE_ARGUMENT:
return OS << "cs_arg";
}
llvm_unreachable("Unknown attribute position!");
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
const Value &AV = Pos.getAssociatedValue();
return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
<< Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerState &S) {
return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
<< static_cast<const AbstractState &>(S);
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
}
raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
AA.print(OS);
return OS;
}
void AbstractAttribute::print(raw_ostream &OS) const {
OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState()
<< "]";
}
///}
/// ----------------------------------------------------------------------------
/// Pass (Manager) Boilerplate
/// ----------------------------------------------------------------------------
static bool runAttributorOnModule(Module &M) {
if (DisableAttributor)
return false;
LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
<< " functions.\n");
// Create an Attributor and initially empty information cache that is filled
// while we identify default attribute opportunities.
InformationCache InfoCache(M.getDataLayout());
Attributor A(InfoCache);
for (Function &F : M) {
// TODO: Not all attributes require an exact definition. Find a way to
// enable deduction for some but not all attributes in case the
// definition might be changed at runtime, see also
// http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html.
// TODO: We could always determine abstract attributes and if sufficient
// information was found we could duplicate the functions that do not
// have an exact definition.
if (!F.hasExactDefinition()) {
NumFnWithoutExactDefinition++;
continue;
}
// For now we ignore naked and optnone functions.
if (F.hasFnAttribute(Attribute::Naked) ||
F.hasFnAttribute(Attribute::OptimizeNone))
continue;
NumFnWithExactDefinition++;
// Populate the Attributor with abstract attribute opportunities in the
// function and the information cache with IR information.
A.identifyDefaultAbstractAttributes(F);
}
return A.run() == ChangeStatus::CHANGED;
}
PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
if (runAttributorOnModule(M)) {
// FIXME: Think about passes we will preserve and add them here.
return PreservedAnalyses::none();
}
return PreservedAnalyses::all();
}
namespace {
struct AttributorLegacyPass : public ModulePass {
static char ID;
AttributorLegacyPass() : ModulePass(ID) {
initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
if (skipModule(M))
return false;
return runAttributorOnModule(M);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
// FIXME: Think about passes we will preserve and add them here.
AU.setPreservesCFG();
}
};
} // end anonymous namespace
Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
char AttributorLegacyPass::ID = 0;
const char AAReturnedValues::ID = 0;
const char AANoUnwind::ID = 0;
const char AANoSync::ID = 0;
const char AANoFree::ID = 0;
const char AANonNull::ID = 0;
const char AANoRecurse::ID = 0;
const char AAWillReturn::ID = 0;
const char AANoAlias::ID = 0;
const char AANoReturn::ID = 0;
const char AAIsDead::ID = 0;
const char AADereferenceable::ID = 0;
const char AAAlign::ID = 0;
INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)
INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
"Deduce and propagate attributes", false, false)