llvm/lib/Transforms/Coroutines/CoroFrame.cpp
Gor Nishanov 1e95aaa810 [coroutines] CoroBegin from inner coroutines should be considered for spills
Summary:
If a coroutine outer calls another coroutine inner and the inner coroutine body is inlined into the outer, coro.begin from the inner coroutine should be considered for spilling if accessed across suspends.

Prior to this change, coroutine frame building code was not considering any coro.begins for spilling.
With this change, we only ignore coro.begin for the current coroutine, but, any coro.begins that were inlined into the current coroutine are eligible for spills.

Fixes PR34267

Reviewers: GorNishanov

Subscribers: qcolombet, llvm-commits, EricWF

Differential Revision: https://reviews.llvm.org/D37062

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@311556 91177308-0d34-0410-b5e6-96231b3b80d8
2017-08-23 14:47:52 +00:00

863 lines
30 KiB
C++

//===- CoroFrame.cpp - Builds and manipulates coroutine frame -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file contains classes used to discover if for a particular value
// there from sue to definition that crosses a suspend block.
//
// Using the information discovered we form a Coroutine Frame structure to
// contain those values. All uses of those values are replaced with appropriate
// GEP + load from the coroutine frame. At the point of the definition we spill
// the value into the coroutine frame.
//
// TODO: pack values tightly using liveness info.
//===----------------------------------------------------------------------===//
#include "CoroInternal.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/circular_raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
// The "coro-suspend-crossing" flag is very noisy. There is another debug type,
// "coro-frame", which results in leaner debug spew.
#define DEBUG_TYPE "coro-suspend-crossing"
enum { SmallVectorThreshold = 32 };
// Provides two way mapping between the blocks and numbers.
namespace {
class BlockToIndexMapping {
SmallVector<BasicBlock *, SmallVectorThreshold> V;
public:
size_t size() const { return V.size(); }
BlockToIndexMapping(Function &F) {
for (BasicBlock &BB : F)
V.push_back(&BB);
std::sort(V.begin(), V.end());
}
size_t blockToIndex(BasicBlock *BB) const {
auto *I = std::lower_bound(V.begin(), V.end(), BB);
assert(I != V.end() && *I == BB && "BasicBlockNumberng: Unknown block");
return I - V.begin();
}
BasicBlock *indexToBlock(unsigned Index) const { return V[Index]; }
};
} // end anonymous namespace
// The SuspendCrossingInfo maintains data that allows to answer a question
// whether given two BasicBlocks A and B there is a path from A to B that
// passes through a suspend point.
//
// For every basic block 'i' it maintains a BlockData that consists of:
// Consumes: a bit vector which contains a set of indices of blocks that can
// reach block 'i'
// Kills: a bit vector which contains a set of indices of blocks that can
// reach block 'i', but one of the path will cross a suspend point
// Suspend: a boolean indicating whether block 'i' contains a suspend point.
// End: a boolean indicating whether block 'i' contains a coro.end intrinsic.
//
namespace {
struct SuspendCrossingInfo {
BlockToIndexMapping Mapping;
struct BlockData {
BitVector Consumes;
BitVector Kills;
bool Suspend = false;
bool End = false;
};
SmallVector<BlockData, SmallVectorThreshold> Block;
iterator_range<succ_iterator> successors(BlockData const &BD) const {
BasicBlock *BB = Mapping.indexToBlock(&BD - &Block[0]);
return llvm::successors(BB);
}
BlockData &getBlockData(BasicBlock *BB) {
return Block[Mapping.blockToIndex(BB)];
}
void dump() const;
void dump(StringRef Label, BitVector const &BV) const;
SuspendCrossingInfo(Function &F, coro::Shape &Shape);
bool hasPathCrossingSuspendPoint(BasicBlock *DefBB, BasicBlock *UseBB) const {
size_t const DefIndex = Mapping.blockToIndex(DefBB);
size_t const UseIndex = Mapping.blockToIndex(UseBB);
assert(Block[UseIndex].Consumes[DefIndex] && "use must consume def");
bool const Result = Block[UseIndex].Kills[DefIndex];
DEBUG(dbgs() << UseBB->getName() << " => " << DefBB->getName()
<< " answer is " << Result << "\n");
return Result;
}
bool isDefinitionAcrossSuspend(BasicBlock *DefBB, User *U) const {
auto *I = cast<Instruction>(U);
// We rewrote PHINodes, so that only the ones with exactly one incoming
// value need to be analyzed.
if (auto *PN = dyn_cast<PHINode>(I))
if (PN->getNumIncomingValues() > 1)
return false;
BasicBlock *UseBB = I->getParent();
return hasPathCrossingSuspendPoint(DefBB, UseBB);
}
bool isDefinitionAcrossSuspend(Argument &A, User *U) const {
return isDefinitionAcrossSuspend(&A.getParent()->getEntryBlock(), U);
}
bool isDefinitionAcrossSuspend(Instruction &I, User *U) const {
return isDefinitionAcrossSuspend(I.getParent(), U);
}
};
} // end anonymous namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump(StringRef Label,
BitVector const &BV) const {
dbgs() << Label << ":";
for (size_t I = 0, N = BV.size(); I < N; ++I)
if (BV[I])
dbgs() << " " << Mapping.indexToBlock(I)->getName();
dbgs() << "\n";
}
LLVM_DUMP_METHOD void SuspendCrossingInfo::dump() const {
for (size_t I = 0, N = Block.size(); I < N; ++I) {
BasicBlock *const B = Mapping.indexToBlock(I);
dbgs() << B->getName() << ":\n";
dump(" Consumes", Block[I].Consumes);
dump(" Kills", Block[I].Kills);
}
dbgs() << "\n";
}
#endif
SuspendCrossingInfo::SuspendCrossingInfo(Function &F, coro::Shape &Shape)
: Mapping(F) {
const size_t N = Mapping.size();
Block.resize(N);
// Initialize every block so that it consumes itself
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
B.Consumes.resize(N);
B.Kills.resize(N);
B.Consumes.set(I);
}
// Mark all CoroEnd Blocks. We do not propagate Kills beyond coro.ends as
// the code beyond coro.end is reachable during initial invocation of the
// coroutine.
for (auto *CE : Shape.CoroEnds)
getBlockData(CE->getParent()).End = true;
// Mark all suspend blocks and indicate that they kill everything they
// consume. Note, that crossing coro.save also requires a spill, as any code
// between coro.save and coro.suspend may resume the coroutine and all of the
// state needs to be saved by that time.
auto markSuspendBlock = [&](IntrinsicInst *BarrierInst) {
BasicBlock *SuspendBlock = BarrierInst->getParent();
auto &B = getBlockData(SuspendBlock);
B.Suspend = true;
B.Kills |= B.Consumes;
};
for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
markSuspendBlock(CSI);
markSuspendBlock(CSI->getCoroSave());
}
// Iterate propagating consumes and kills until they stop changing.
int Iteration = 0;
(void)Iteration;
bool Changed;
do {
DEBUG(dbgs() << "iteration " << ++Iteration);
DEBUG(dbgs() << "==============\n");
Changed = false;
for (size_t I = 0; I < N; ++I) {
auto &B = Block[I];
for (BasicBlock *SI : successors(B)) {
auto SuccNo = Mapping.blockToIndex(SI);
// Saved Consumes and Kills bitsets so that it is easy to see
// if anything changed after propagation.
auto &S = Block[SuccNo];
auto SavedConsumes = S.Consumes;
auto SavedKills = S.Kills;
// Propagate Kills and Consumes from block B into its successor S.
S.Consumes |= B.Consumes;
S.Kills |= B.Kills;
// If block B is a suspend block, it should propagate kills into the
// its successor for every block B consumes.
if (B.Suspend) {
S.Kills |= B.Consumes;
}
if (S.Suspend) {
// If block S is a suspend block, it should kill all of the blocks it
// consumes.
S.Kills |= S.Consumes;
} else if (S.End) {
// If block S is an end block, it should not propagate kills as the
// blocks following coro.end() are reached during initial invocation
// of the coroutine while all the data are still available on the
// stack or in the registers.
S.Kills.reset();
} else {
// This is reached when S block it not Suspend nor coro.end and it
// need to make sure that it is not in the kill set.
S.Kills.reset(SuccNo);
}
// See if anything changed.
Changed |= (S.Kills != SavedKills) || (S.Consumes != SavedConsumes);
if (S.Kills != SavedKills) {
DEBUG(dbgs() << "\nblock " << I << " follower " << SI->getName()
<< "\n");
DEBUG(dump("S.Kills", S.Kills));
DEBUG(dump("SavedKills", SavedKills));
}
if (S.Consumes != SavedConsumes) {
DEBUG(dbgs() << "\nblock " << I << " follower " << SI << "\n");
DEBUG(dump("S.Consume", S.Consumes));
DEBUG(dump("SavedCons", SavedConsumes));
}
}
}
} while (Changed);
DEBUG(dump());
}
#undef DEBUG_TYPE // "coro-suspend-crossing"
#define DEBUG_TYPE "coro-frame"
// We build up the list of spills for every case where a use is separated
// from the definition by a suspend point.
struct Spill : std::pair<Value *, Instruction *> {
using base = std::pair<Value *, Instruction *>;
Spill(Value *Def, User *U) : base(Def, cast<Instruction>(U)) {}
Value *def() const { return first; }
Instruction *user() const { return second; }
BasicBlock *userBlock() const { return second->getParent(); }
std::pair<Value *, BasicBlock *> getKey() const {
return {def(), userBlock()};
}
bool operator<(Spill const &rhs) const { return getKey() < rhs.getKey(); }
};
// Note that there may be more than one record with the same value of Def in
// the SpillInfo vector.
using SpillInfo = SmallVector<Spill, 8>;
#ifndef NDEBUG
static void dump(StringRef Title, SpillInfo const &Spills) {
dbgs() << "------------- " << Title << "--------------\n";
Value *CurrentValue = nullptr;
for (auto const &E : Spills) {
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentValue->dump();
}
dbgs() << " user: ";
E.user()->dump();
}
}
#endif
// Build a struct that will keep state for an active coroutine.
// struct f.frame {
// ResumeFnTy ResumeFnAddr;
// ResumeFnTy DestroyFnAddr;
// int ResumeIndex;
// ... promise (if present) ...
// ... spills ...
// };
static StructType *buildFrameType(Function &F, coro::Shape &Shape,
SpillInfo &Spills) {
LLVMContext &C = F.getContext();
SmallString<32> Name(F.getName());
Name.append(".Frame");
StructType *FrameTy = StructType::create(C, Name);
auto *FramePtrTy = FrameTy->getPointerTo();
auto *FnTy = FunctionType::get(Type::getVoidTy(C), FramePtrTy,
/*IsVarArgs=*/false);
auto *FnPtrTy = FnTy->getPointerTo();
// Figure out how wide should be an integer type storing the suspend index.
unsigned IndexBits = std::max(1U, Log2_64_Ceil(Shape.CoroSuspends.size()));
Type *PromiseType = Shape.PromiseAlloca
? Shape.PromiseAlloca->getType()->getElementType()
: Type::getInt1Ty(C);
SmallVector<Type *, 8> Types{FnPtrTy, FnPtrTy, PromiseType,
Type::getIntNTy(C, IndexBits)};
Value *CurrentDef = nullptr;
// Create an entry for every spilled value.
for (auto const &S : Spills) {
if (CurrentDef == S.def())
continue;
CurrentDef = S.def();
// PromiseAlloca was already added to Types array earlier.
if (CurrentDef == Shape.PromiseAlloca)
continue;
Type *Ty = nullptr;
if (auto *AI = dyn_cast<AllocaInst>(CurrentDef))
Ty = AI->getAllocatedType();
else
Ty = CurrentDef->getType();
Types.push_back(Ty);
}
FrameTy->setBody(Types);
return FrameTy;
}
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
// Replace all alloca and SSA values that are accessed across suspend points
// with GetElementPointer from coroutine frame + loads and stores. Create an
// AllocaSpillBB that will become the new entry block for the resume parts of
// the coroutine:
//
// %hdl = coro.begin(...)
// whatever
//
// becomes:
//
// %hdl = coro.begin(...)
// %FramePtr = bitcast i8* hdl to %f.frame*
// br label %AllocaSpillBB
//
// AllocaSpillBB:
// ; geps corresponding to allocas that were moved to coroutine frame
// br label PostSpill
//
// PostSpill:
// whatever
//
//
static Instruction *insertSpills(SpillInfo &Spills, coro::Shape &Shape) {
auto *CB = Shape.CoroBegin;
IRBuilder<> Builder(CB->getNextNode());
PointerType *FramePtrTy = Shape.FrameTy->getPointerTo();
auto *FramePtr =
cast<Instruction>(Builder.CreateBitCast(CB, FramePtrTy, "FramePtr"));
Type *FrameTy = FramePtrTy->getElementType();
Value *CurrentValue = nullptr;
BasicBlock *CurrentBlock = nullptr;
Value *CurrentReload = nullptr;
unsigned Index = coro::Shape::LastKnownField;
// We need to keep track of any allocas that need "spilling"
// since they will live in the coroutine frame now, all access to them
// need to be changed, not just the access across suspend points
// we remember allocas and their indices to be handled once we processed
// all the spills.
SmallVector<std::pair<AllocaInst *, unsigned>, 4> Allocas;
// Promise alloca (if present) has a fixed field number (Shape::PromiseField)
if (Shape.PromiseAlloca)
Allocas.emplace_back(Shape.PromiseAlloca, coro::Shape::PromiseField);
// Create a load instruction to reload the spilled value from the coroutine
// frame.
auto CreateReload = [&](Instruction *InsertBefore) {
Builder.SetInsertPoint(InsertBefore);
auto *G = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, Index,
CurrentValue->getName() +
Twine(".reload.addr"));
return isa<AllocaInst>(CurrentValue)
? G
: Builder.CreateLoad(G,
CurrentValue->getName() + Twine(".reload"));
};
for (auto const &E : Spills) {
// If we have not seen the value, generate a spill.
if (CurrentValue != E.def()) {
CurrentValue = E.def();
CurrentBlock = nullptr;
CurrentReload = nullptr;
++Index;
if (auto *AI = dyn_cast<AllocaInst>(CurrentValue)) {
// Spilled AllocaInst will be replaced with GEP from the coroutine frame
// there is no spill required.
Allocas.emplace_back(AI, Index);
if (!AI->isStaticAlloca())
report_fatal_error("Coroutines cannot handle non static allocas yet");
} else {
// Otherwise, create a store instruction storing the value into the
// coroutine frame.
Instruction *InsertPt = nullptr;
if (isa<Argument>(CurrentValue)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. bitcast of
// coro.begin from i8* to %f.frame*.
InsertPt = FramePtr->getNextNode();
} else if (auto *II = dyn_cast<InvokeInst>(CurrentValue)) {
// If we are spilling the result of the invoke instruction, split the
// normal edge and insert the spill in the new block.
auto NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator();
} else if (dyn_cast<PHINode>(CurrentValue)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = cast<Instruction>(E.def())->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI);
else
InsertPt = &*DefBlock->getFirstInsertionPt();
} else {
// For all other values, the spill is placed immediately after
// the definition.
assert(!isa<TerminatorInst>(E.def()) && "unexpected terminator");
InsertPt = cast<Instruction>(E.def())->getNextNode();
}
Builder.SetInsertPoint(InsertPt);
auto *G = Builder.CreateConstInBoundsGEP2_32(
FrameTy, FramePtr, 0, Index,
CurrentValue->getName() + Twine(".spill.addr"));
Builder.CreateStore(CurrentValue, G);
}
}
// If we have not seen the use block, generate a reload in it.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentReload = CreateReload(&*CurrentBlock->getFirstInsertionPt());
}
// If we have a single edge PHINode, remove it and replace it with a reload
// from the coroutine frame. (We already took care of multi edge PHINodes
// by rewriting them in the rewritePHIs function).
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentReload);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentValue in the current instruction with reload.
E.user()->replaceUsesOfWith(CurrentValue, CurrentReload);
}
BasicBlock *FramePtrBB = FramePtr->getParent();
Shape.AllocaSpillBlock =
FramePtrBB->splitBasicBlock(FramePtr->getNextNode(), "AllocaSpillBB");
Shape.AllocaSpillBlock->splitBasicBlock(&Shape.AllocaSpillBlock->front(),
"PostSpill");
Builder.SetInsertPoint(&Shape.AllocaSpillBlock->front());
// If we found any allocas, replace all of their remaining uses with Geps.
for (auto &P : Allocas) {
auto *G =
Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0, P.second);
// We are not using ReplaceInstWithInst(P.first, cast<Instruction>(G)) here,
// as we are changing location of the instruction.
G->takeName(P.first);
P.first->replaceAllUsesWith(G);
P.first->eraseFromParent();
}
return FramePtr;
}
// Sets the unwind edge of an instruction to a particular successor.
static void setUnwindEdgeTo(TerminatorInst *TI, BasicBlock *Succ) {
if (auto *II = dyn_cast<InvokeInst>(TI))
II->setUnwindDest(Succ);
else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
CS->setUnwindDest(Succ);
else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
CR->setUnwindDest(Succ);
else
llvm_unreachable("unexpected terminator instruction");
}
// Replaces all uses of OldPred with the NewPred block in all PHINodes in a
// block.
static void updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
BasicBlock *NewPred,
PHINode *LandingPadReplacement) {
unsigned BBIdx = 0;
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// We manually update the LandingPadReplacement PHINode and it is the last
// PHI Node. So, if we find it, we are done.
if (LandingPadReplacement == PN)
break;
// Reuse the previous value of BBIdx if it lines up. In cases where we
// have multiple phi nodes with *lots* of predecessors, this is a speed
// win because we don't have to scan the PHI looking for TIBB. This
// happens because the BB list of PHI nodes are usually in the same
// order.
if (PN->getIncomingBlock(BBIdx) != OldPred)
BBIdx = PN->getBasicBlockIndex(OldPred);
assert(BBIdx != (unsigned)-1 && "Invalid PHI Index!");
PN->setIncomingBlock(BBIdx, NewPred);
}
}
// Uses SplitEdge unless the successor block is an EHPad, in which case do EH
// specific handling.
static BasicBlock *ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
LandingPadInst *OriginalPad,
PHINode *LandingPadReplacement) {
auto *PadInst = Succ->getFirstNonPHI();
if (!LandingPadReplacement && !PadInst->isEHPad())
return SplitEdge(BB, Succ);
auto *NewBB = BasicBlock::Create(BB->getContext(), "", BB->getParent(), Succ);
setUnwindEdgeTo(BB->getTerminator(), NewBB);
updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
if (LandingPadReplacement) {
auto *NewLP = OriginalPad->clone();
auto *Terminator = BranchInst::Create(Succ, NewBB);
NewLP->insertBefore(Terminator);
LandingPadReplacement->addIncoming(NewLP, NewBB);
return NewBB;
}
Value *ParentPad = nullptr;
if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
ParentPad = FuncletPad->getParentPad();
else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
ParentPad = CatchSwitch->getParentPad();
else
llvm_unreachable("handling for other EHPads not implemented yet");
auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, "", NewBB);
CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
return NewBB;
}
static void rewritePHIs(BasicBlock &BB) {
// For every incoming edge we will create a block holding all
// incoming values in a single PHI nodes.
//
// loop:
// %n.val = phi i32[%n, %entry], [%inc, %loop]
//
// It will create:
//
// loop.from.entry:
// %n.loop.pre = phi i32 [%n, %entry]
// br %label loop
// loop.from.loop:
// %inc.loop.pre = phi i32 [%inc, %loop]
// br %label loop
//
// After this rewrite, further analysis will ignore any phi nodes with more
// than one incoming edge.
// TODO: Simplify PHINodes in the basic block to remove duplicate
// predecessors.
LandingPadInst *LandingPad = nullptr;
PHINode *ReplPHI = nullptr;
if ((LandingPad = dyn_cast_or_null<LandingPadInst>(BB.getFirstNonPHI()))) {
// ehAwareSplitEdge will clone the LandingPad in all the edge blocks.
// We replace the original landing pad with a PHINode that will collect the
// results from all of them.
ReplPHI = PHINode::Create(LandingPad->getType(), 1, "", LandingPad);
ReplPHI->takeName(LandingPad);
LandingPad->replaceAllUsesWith(ReplPHI);
// We will erase the original landing pad at the end of this function after
// ehAwareSplitEdge cloned it in the transition blocks.
}
SmallVector<BasicBlock *, 8> Preds(pred_begin(&BB), pred_end(&BB));
for (BasicBlock *Pred : Preds) {
auto *IncomingBB = ehAwareSplitEdge(Pred, &BB, LandingPad, ReplPHI);
IncomingBB->setName(BB.getName() + Twine(".from.") + Pred->getName());
auto *PN = cast<PHINode>(&BB.front());
do {
int Index = PN->getBasicBlockIndex(IncomingBB);
Value *V = PN->getIncomingValue(Index);
PHINode *InputV = PHINode::Create(
V->getType(), 1, V->getName() + Twine(".") + BB.getName(),
&IncomingBB->front());
InputV->addIncoming(V, Pred);
PN->setIncomingValue(Index, InputV);
PN = dyn_cast<PHINode>(PN->getNextNode());
} while (PN != ReplPHI); // ReplPHI is either null or the PHI that replaced
// the landing pad.
}
if (LandingPad) {
// Calls to ehAwareSplitEdge function cloned the original lading pad.
// No longer need it.
LandingPad->eraseFromParent();
}
}
static void rewritePHIs(Function &F) {
SmallVector<BasicBlock *, 8> WorkList;
for (BasicBlock &BB : F)
if (auto *PN = dyn_cast<PHINode>(&BB.front()))
if (PN->getNumIncomingValues() > 1)
WorkList.push_back(&BB);
for (BasicBlock *BB : WorkList)
rewritePHIs(*BB);
}
// Check for instructions that we can recreate on resume as opposed to spill
// the result into a coroutine frame.
static bool materializable(Instruction &V) {
return isa<CastInst>(&V) || isa<GetElementPtrInst>(&V) ||
isa<BinaryOperator>(&V) || isa<CmpInst>(&V) || isa<SelectInst>(&V);
}
// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
isa<CoroSuspendInst>(&I);
}
// For every use of the value that is across suspend point, recreate that value
// after a suspend point.
static void rewriteMaterializableInstructions(IRBuilder<> &IRB,
SpillInfo const &Spills) {
BasicBlock *CurrentBlock = nullptr;
Instruction *CurrentMaterialization = nullptr;
Instruction *CurrentDef = nullptr;
for (auto const &E : Spills) {
// If it is a new definition, update CurrentXXX variables.
if (CurrentDef != E.def()) {
CurrentDef = cast<Instruction>(E.def());
CurrentBlock = nullptr;
CurrentMaterialization = nullptr;
}
// If we have not seen this block, materialize the value.
if (CurrentBlock != E.userBlock()) {
CurrentBlock = E.userBlock();
CurrentMaterialization = cast<Instruction>(CurrentDef)->clone();
CurrentMaterialization->setName(CurrentDef->getName());
CurrentMaterialization->insertBefore(
&*CurrentBlock->getFirstInsertionPt());
}
if (auto *PN = dyn_cast<PHINode>(E.user())) {
assert(PN->getNumIncomingValues() == 1 && "unexpected number of incoming "
"values in the PHINode");
PN->replaceAllUsesWith(CurrentMaterialization);
PN->eraseFromParent();
continue;
}
// Replace all uses of CurrentDef in the current instruction with the
// CurrentMaterialization for the block.
E.user()->replaceUsesOfWith(CurrentDef, CurrentMaterialization);
}
}
// Move early uses of spilled variable after CoroBegin.
// For example, if a parameter had address taken, we may end up with the code
// like:
// define @f(i32 %n) {
// %n.addr = alloca i32
// store %n, %n.addr
// ...
// call @coro.begin
// we need to move the store after coro.begin
static void moveSpillUsesAfterCoroBegin(Function &F, SpillInfo const &Spills,
CoroBeginInst *CoroBegin) {
DominatorTree DT(F);
SmallVector<Instruction *, 8> NeedsMoving;
Value *CurrentValue = nullptr;
for (auto const &E : Spills) {
if (CurrentValue == E.def())
continue;
CurrentValue = E.def();
for (User *U : CurrentValue->users()) {
Instruction *I = cast<Instruction>(U);
if (!DT.dominates(CoroBegin, I)) {
// TODO: Make this more robust. Currently if we run into a situation
// where simple instruction move won't work we panic and
// report_fatal_error.
for (User *UI : I->users()) {
if (!DT.dominates(CoroBegin, cast<Instruction>(UI)))
report_fatal_error("cannot move instruction since its users are not"
" dominated by CoroBegin");
}
DEBUG(dbgs() << "will move: " << *I << "\n");
NeedsMoving.push_back(I);
}
}
}
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *I : NeedsMoving)
I->moveBefore(InsertPt);
}
// Splits the block at a particular instruction unless it is the first
// instruction in the block with a single predecessor.
static BasicBlock *splitBlockIfNotFirst(Instruction *I, const Twine &Name) {
auto *BB = I->getParent();
if (&BB->front() == I) {
if (BB->getSinglePredecessor()) {
BB->setName(Name);
return BB;
}
}
return BB->splitBasicBlock(I, Name);
}
// Split above and below a particular instruction so that it
// will be all alone by itself in a block.
static void splitAround(Instruction *I, const Twine &Name) {
splitBlockIfNotFirst(I, Name);
splitBlockIfNotFirst(I->getNextNode(), "After" + Name);
}
void coro::buildCoroutineFrame(Function &F, Shape &Shape) {
// Lower coro.dbg.declare to coro.dbg.value, since we are going to rewrite
// access to local variables.
LowerDbgDeclare(F);
Shape.PromiseAlloca = Shape.CoroBegin->getId()->getPromise();
if (Shape.PromiseAlloca) {
Shape.CoroBegin->getId()->clearPromise();
}
// Make sure that all coro.save, coro.suspend and the fallthrough coro.end
// intrinsics are in their own blocks to simplify the logic of building up
// SuspendCrossing data.
for (CoroSuspendInst *CSI : Shape.CoroSuspends) {
splitAround(CSI->getCoroSave(), "CoroSave");
splitAround(CSI, "CoroSuspend");
}
// Put CoroEnds into their own blocks.
for (CoroEndInst *CE : Shape.CoroEnds)
splitAround(CE, "CoroEnd");
// Transforms multi-edge PHI Nodes, so that any value feeding into a PHI will
// never has its definition separated from the PHI by the suspend point.
rewritePHIs(F);
// Build suspend crossing info.
SuspendCrossingInfo Checker(F, Shape);
IRBuilder<> Builder(F.getContext());
SpillInfo Spills;
for (int Repeat = 0; Repeat < 4; ++Repeat) {
// See if there are materializable instructions across suspend points.
for (Instruction &I : instructions(F))
if (materializable(I))
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U))
Spills.emplace_back(&I, U);
if (Spills.empty())
break;
// Rewrite materializable instructions to be materialized at the use point.
DEBUG(dump("Materializations", Spills));
rewriteMaterializableInstructions(Builder, Spills);
Spills.clear();
}
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
Spills.emplace_back(&A, U);
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// The Coroutine Promise always included into coroutine frame, no need to
// check for suspend crossing.
if (Shape.PromiseAlloca == &I)
continue;
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U)) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
Spills.emplace_back(&I, U);
}
}
DEBUG(dump("Spills", Spills));
moveSpillUsesAfterCoroBegin(F, Spills, Shape.CoroBegin);
Shape.FrameTy = buildFrameType(F, Shape, Spills);
Shape.FramePtr = insertSpills(Spills, Shape);
}