llvm/test/Transforms/LoopUnroll/full-unroll-heuristics-cast.ll
Michael Zolotukhin 72d14a0792 Tidy-up test case from r242257.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@242268 91177308-0d34-0410-b5e6-96231b3b80d8
2015-07-15 01:51:51 +00:00

98 lines
4.0 KiB
LLVM

; RUN: opt < %s -S -loop-unroll -unroll-max-iteration-count-to-analyze=100 -unroll-dynamic-cost-savings-discount=1000 -unroll-threshold=10 -unroll-percent-dynamic-cost-saved-threshold=50 | FileCheck %s
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
@known_constant = internal unnamed_addr constant [10 x i32] [i32 0, i32 1, i32 0, i32 1, i32 0, i32 1, i32 0, i32 1, i32 0, i32 1], align 16
; We should be able to propagate constant data through different types of
; casts. For example, in this test we have a load, which becomes constant after
; unrolling, which then is truncated to i8. Obviously, truncated value is also a
; constant, which can be used in the further simplifications.
;
; We expect this loop to be unrolled, because in this case load would become
; constant, which is 0 in many cases, and which, in its turn, helps to simplify
; following multiplication and addition. In total, unrolling should help to
; optimize ~60% of all instructions in this case.
;
; CHECK-LABEL: @const_load_trunc
; CHECK-NOT: br i1
; CHECK: ret i8 %
define i8 @const_load_trunc(i32* noalias nocapture readonly %src) {
entry:
br label %loop
loop: ; preds = %loop, %entry
%iv = phi i64 [ 0, %entry ], [ %inc, %loop ]
%r = phi i8 [ 0, %entry ], [ %add, %loop ]
%arrayidx = getelementptr inbounds i32, i32* %src, i64 %iv
%src_element = load i32, i32* %arrayidx, align 4
%array_const_idx = getelementptr inbounds [10 x i32], [10 x i32]* @known_constant, i64 0, i64 %iv
%const_array_element = load i32, i32* %array_const_idx, align 4
%x = trunc i32 %src_element to i8
%y = trunc i32 %const_array_element to i8
%mul = mul nsw i8 %x, %y
%add = add nsw i8 %mul, %r
%inc = add nuw nsw i64 %iv, 1
%exitcond86.i = icmp eq i64 %inc, 10
br i1 %exitcond86.i, label %loop.end, label %loop
loop.end: ; preds = %loop
%r.lcssa = phi i8 [ %r, %loop ]
ret i8 %r.lcssa
}
; The same test as before, but with ZEXT instead of TRUNC.
; CHECK-LABEL: @const_load_zext
; CHECK-NOT: br i1
; CHECK: ret i64 %
define i64 @const_load_zext(i32* noalias nocapture readonly %src) {
entry:
br label %loop
loop: ; preds = %loop, %entry
%iv = phi i64 [ 0, %entry ], [ %inc, %loop ]
%r = phi i64 [ 0, %entry ], [ %add, %loop ]
%arrayidx = getelementptr inbounds i32, i32* %src, i64 %iv
%src_element = load i32, i32* %arrayidx, align 4
%array_const_idx = getelementptr inbounds [10 x i32], [10 x i32]* @known_constant, i64 0, i64 %iv
%const_array_element = load i32, i32* %array_const_idx, align 4
%x = zext i32 %src_element to i64
%y = zext i32 %const_array_element to i64
%mul = mul nsw i64 %x, %y
%add = add nsw i64 %mul, %r
%inc = add nuw nsw i64 %iv, 1
%exitcond86.i = icmp eq i64 %inc, 10
br i1 %exitcond86.i, label %loop.end, label %loop
loop.end: ; preds = %loop
%r.lcssa = phi i64 [ %r, %loop ]
ret i64 %r.lcssa
}
; The same test as the first one, but with SEXT instead of TRUNC.
; CHECK-LABEL: @const_load_sext
; CHECK-NOT: br i1
; CHECK: ret i64 %
define i64 @const_load_sext(i32* noalias nocapture readonly %src) {
entry:
br label %loop
loop: ; preds = %loop, %entry
%iv = phi i64 [ 0, %entry ], [ %inc, %loop ]
%r = phi i64 [ 0, %entry ], [ %add, %loop ]
%arrayidx = getelementptr inbounds i32, i32* %src, i64 %iv
%src_element = load i32, i32* %arrayidx, align 4
%array_const_idx = getelementptr inbounds [10 x i32], [10 x i32]* @known_constant, i64 0, i64 %iv
%const_array_element = load i32, i32* %array_const_idx, align 4
%x = sext i32 %src_element to i64
%y = sext i32 %const_array_element to i64
%mul = mul nsw i64 %x, %y
%add = add nsw i64 %mul, %r
%inc = add nuw nsw i64 %iv, 1
%exitcond86.i = icmp eq i64 %inc, 10
br i1 %exitcond86.i, label %loop.end, label %loop
loop.end: ; preds = %loop
%r.lcssa = phi i64 [ %r, %loop ]
ret i64 %r.lcssa
}