llvm/lib/CodeGen/SelectionDAG/ScheduleDAGVLIW.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

279 lines
9.2 KiB
C++

//===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a top-down list scheduler, using standard algorithms.
// The basic approach uses a priority queue of available nodes to schedule.
// One at a time, nodes are taken from the priority queue (thus in priority
// order), checked for legality to schedule, and emitted if legal.
//
// Nodes may not be legal to schedule either due to structural hazards (e.g.
// pipeline or resource constraints) or because an input to the instruction has
// not completed execution.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-RA-sched"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "ScheduleDAGSDNodes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LatencyPriorityQueue.h"
#include "llvm/CodeGen/ResourcePriorityQueue.h"
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <climits>
using namespace llvm;
STATISTIC(NumNoops , "Number of noops inserted");
STATISTIC(NumStalls, "Number of pipeline stalls");
static RegisterScheduler
VLIWScheduler("vliw-td", "VLIW scheduler",
createVLIWDAGScheduler);
namespace {
//===----------------------------------------------------------------------===//
/// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
/// supports / top-down scheduling.
///
class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
private:
/// AvailableQueue - The priority queue to use for the available SUnits.
///
SchedulingPriorityQueue *AvailableQueue;
/// PendingQueue - This contains all of the instructions whose operands have
/// been issued, but their results are not ready yet (due to the latency of
/// the operation). Once the operands become available, the instruction is
/// added to the AvailableQueue.
std::vector<SUnit*> PendingQueue;
/// HazardRec - The hazard recognizer to use.
ScheduleHazardRecognizer *HazardRec;
/// AA - AliasAnalysis for making memory reference queries.
AliasAnalysis *AA;
public:
ScheduleDAGVLIW(MachineFunction &mf,
AliasAnalysis *aa,
SchedulingPriorityQueue *availqueue)
: ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
const TargetMachine &tm = mf.getTarget();
HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
}
~ScheduleDAGVLIW() {
delete HazardRec;
delete AvailableQueue;
}
void Schedule();
private:
void releaseSucc(SUnit *SU, const SDep &D);
void releaseSuccessors(SUnit *SU);
void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
void listScheduleTopDown();
};
} // end anonymous namespace
/// Schedule - Schedule the DAG using list scheduling.
void ScheduleDAGVLIW::Schedule() {
DEBUG(dbgs()
<< "********** List Scheduling BB#" << BB->getNumber()
<< " '" << BB->getName() << "' **********\n");
// Build the scheduling graph.
BuildSchedGraph(AA);
AvailableQueue->initNodes(SUnits);
listScheduleTopDown();
AvailableQueue->releaseState();
}
//===----------------------------------------------------------------------===//
// Top-Down Scheduling
//===----------------------------------------------------------------------===//
/// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
SUnit *SuccSU = D.getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
assert(!D.isWeak() && "unexpected artificial DAG edge");
--SuccSU->NumPredsLeft;
SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
// If all the node's predecessors are scheduled, this node is ready
// to be scheduled. Ignore the special ExitSU node.
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
PendingQueue.push_back(SuccSU);
}
}
void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
// Top down: release successors.
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
assert(!I->isAssignedRegDep() &&
"The list-td scheduler doesn't yet support physreg dependencies!");
releaseSucc(SU, *I);
}
}
/// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
/// count of its successors. If a successor pending count is zero, add it to
/// the Available queue.
void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
DEBUG(SU->dump(this));
Sequence.push_back(SU);
assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
SU->setDepthToAtLeast(CurCycle);
releaseSuccessors(SU);
SU->isScheduled = true;
AvailableQueue->scheduledNode(SU);
}
/// listScheduleTopDown - The main loop of list scheduling for top-down
/// schedulers.
void ScheduleDAGVLIW::listScheduleTopDown() {
unsigned CurCycle = 0;
// Release any successors of the special Entry node.
releaseSuccessors(&EntrySU);
// All leaves to AvailableQueue.
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
// It is available if it has no predecessors.
if (SUnits[i].Preds.empty()) {
AvailableQueue->push(&SUnits[i]);
SUnits[i].isAvailable = true;
}
}
// While AvailableQueue is not empty, grab the node with the highest
// priority. If it is not ready put it back. Schedule the node.
std::vector<SUnit*> NotReady;
Sequence.reserve(SUnits.size());
while (!AvailableQueue->empty() || !PendingQueue.empty()) {
// Check to see if any of the pending instructions are ready to issue. If
// so, add them to the available queue.
for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
if (PendingQueue[i]->getDepth() == CurCycle) {
AvailableQueue->push(PendingQueue[i]);
PendingQueue[i]->isAvailable = true;
PendingQueue[i] = PendingQueue.back();
PendingQueue.pop_back();
--i; --e;
}
else {
assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
}
}
// If there are no instructions available, don't try to issue anything, and
// don't advance the hazard recognizer.
if (AvailableQueue->empty()) {
// Reset DFA state.
AvailableQueue->scheduledNode(0);
++CurCycle;
continue;
}
SUnit *FoundSUnit = 0;
bool HasNoopHazards = false;
while (!AvailableQueue->empty()) {
SUnit *CurSUnit = AvailableQueue->pop();
ScheduleHazardRecognizer::HazardType HT =
HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
if (HT == ScheduleHazardRecognizer::NoHazard) {
FoundSUnit = CurSUnit;
break;
}
// Remember if this is a noop hazard.
HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
NotReady.push_back(CurSUnit);
}
// Add the nodes that aren't ready back onto the available list.
if (!NotReady.empty()) {
AvailableQueue->push_all(NotReady);
NotReady.clear();
}
// If we found a node to schedule, do it now.
if (FoundSUnit) {
scheduleNodeTopDown(FoundSUnit, CurCycle);
HazardRec->EmitInstruction(FoundSUnit);
// If this is a pseudo-op node, we don't want to increment the current
// cycle.
if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
++CurCycle;
} else if (!HasNoopHazards) {
// Otherwise, we have a pipeline stall, but no other problem, just advance
// the current cycle and try again.
DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
HazardRec->AdvanceCycle();
++NumStalls;
++CurCycle;
} else {
// Otherwise, we have no instructions to issue and we have instructions
// that will fault if we don't do this right. This is the case for
// processors without pipeline interlocks and other cases.
DEBUG(dbgs() << "*** Emitting noop\n");
HazardRec->EmitNoop();
Sequence.push_back(0); // NULL here means noop
++NumNoops;
++CurCycle;
}
}
#ifndef NDEBUG
VerifyScheduledSequence(/*isBottomUp=*/false);
#endif
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
/// createVLIWDAGScheduler - This creates a top-down list scheduler.
ScheduleDAGSDNodes *
llvm::createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
}