llvm/lib/Transforms/Scalar/ADCE.cpp
2002-05-06 17:27:57 +00:00

310 lines
11 KiB
C++

//===- ADCE.cpp - Code to perform agressive dead code elimination ---------===//
//
// This file implements "agressive" dead code elimination. ADCE is DCe where
// values are assumed to be dead until proven otherwise. This is similar to
// SCCP, except applied to the liveness of values.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/Writer.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/Support/CFG.h"
#include "Support/STLExtras.h"
#include "Support/DepthFirstIterator.h"
#include <algorithm>
#include <iostream>
using std::cerr;
#define DEBUG_ADCE 1
namespace {
//===----------------------------------------------------------------------===//
// ADCE Class
//
// This class does all of the work of Agressive Dead Code Elimination.
// It's public interface consists of a constructor and a doADCE() method.
//
class ADCE : public FunctionPass {
Function *Func; // The function that we are working on
std::vector<Instruction*> WorkList; // Instructions that just became live
std::set<Instruction*> LiveSet; // The set of live instructions
bool MadeChanges;
//===--------------------------------------------------------------------===//
// The public interface for this class
//
public:
const char *getPassName() const { return "Aggressive Dead Code Elimination"; }
// doADCE - Execute the Agressive Dead Code Elimination Algorithm
//
virtual bool runOnFunction(Function *F) {
Func = F; MadeChanges = false;
doADCE(getAnalysis<DominanceFrontier>(DominanceFrontier::PostDomID));
assert(WorkList.empty());
LiveSet.clear();
return MadeChanges;
}
// getAnalysisUsage - We require post dominance frontiers (aka Control
// Dependence Graph)
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired(DominanceFrontier::PostDomID);
}
//===--------------------------------------------------------------------===//
// The implementation of this class
//
private:
// doADCE() - Run the Agressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
void doADCE(DominanceFrontier &CDG);
inline void markInstructionLive(Instruction *I) {
if (LiveSet.count(I)) return;
#ifdef DEBUG_ADCE
cerr << "Insn Live: " << I;
#endif
LiveSet.insert(I);
WorkList.push_back(I);
}
inline void markTerminatorLive(const BasicBlock *BB) {
#ifdef DEBUG_ADCE
cerr << "Terminat Live: " << BB->getTerminator();
#endif
markInstructionLive((Instruction*)BB->getTerminator());
}
// fixupCFG - Walk the CFG in depth first order, eliminating references to
// dead blocks.
//
BasicBlock *fixupCFG(BasicBlock *Head, std::set<BasicBlock*> &VisitedBlocks,
const std::set<BasicBlock*> &AliveBlocks);
};
} // End of anonymous namespace
Pass *createAgressiveDCEPass() {
return new ADCE();
}
// doADCE() - Run the Agressive Dead Code Elimination algorithm, returning
// true if the function was modified.
//
void ADCE::doADCE(DominanceFrontier &CDG) {
#ifdef DEBUG_ADCE
cerr << "Function: " << Func;
#endif
// Iterate over all of the instructions in the function, eliminating trivially
// dead instructions, and marking instructions live that are known to be
// needed. Perform the walk in depth first order so that we avoid marking any
// instructions live in basic blocks that are unreachable. These blocks will
// be eliminated later, along with the instructions inside.
//
for (df_iterator<Function*> BBI = df_begin(Func), BBE = df_end(Func);
BBI != BBE; ++BBI) {
BasicBlock *BB = *BBI;
for (BasicBlock::iterator II = BB->begin(), EI = BB->end(); II != EI; ) {
Instruction *I = *II;
if (I->hasSideEffects() || I->getOpcode() == Instruction::Ret) {
markInstructionLive(I);
} else {
// Check to see if anything is trivially dead
if (I->use_size() == 0 && I->getType() != Type::VoidTy) {
// Remove the instruction from it's basic block...
delete BB->getInstList().remove(II);
MadeChanges = true;
continue; // Don't increment the iterator past the current slot
}
}
++II; // Increment the inst iterator if the inst wasn't deleted
}
}
#ifdef DEBUG_ADCE
cerr << "Processing work list\n";
#endif
// AliveBlocks - Set of basic blocks that we know have instructions that are
// alive in them...
//
std::set<BasicBlock*> AliveBlocks;
// Process the work list of instructions that just became live... if they
// became live, then that means that all of their operands are neccesary as
// well... make them live as well.
//
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction that became live...
WorkList.pop_back();
BasicBlock *BB = I->getParent();
if (AliveBlocks.count(BB) == 0) { // Basic block not alive yet...
// Mark the basic block as being newly ALIVE... and mark all branches that
// this block is control dependant on as being alive also...
//
AliveBlocks.insert(BB); // Block is now ALIVE!
DominanceFrontier::const_iterator It = CDG.find(BB);
if (It != CDG.end()) {
// Get the blocks that this node is control dependant on...
const DominanceFrontier::DomSetType &CDB = It->second;
for_each(CDB.begin(), CDB.end(), // Mark all their terminators as live
bind_obj(this, &ADCE::markTerminatorLive));
}
// If this basic block is live, then the terminator must be as well!
markTerminatorLive(BB);
}
// Loop over all of the operands of the live instruction, making sure that
// they are known to be alive as well...
//
for (unsigned op = 0, End = I->getNumOperands(); op != End; ++op) {
if (Instruction *Operand = dyn_cast<Instruction>(I->getOperand(op)))
markInstructionLive(Operand);
}
}
#ifdef DEBUG_ADCE
cerr << "Current Function: X = Live\n";
for (Function::iterator I = Func->begin(), E = Func->end(); I != E; ++I)
for (BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end();
BI != BE; ++BI) {
if (LiveSet.count(*BI)) cerr << "X ";
cerr << *BI;
}
#endif
// After the worklist is processed, recursively walk the CFG in depth first
// order, patching up references to dead blocks...
//
std::set<BasicBlock*> VisitedBlocks;
BasicBlock *EntryBlock = fixupCFG(Func->front(), VisitedBlocks, AliveBlocks);
if (EntryBlock && EntryBlock != Func->front()) {
if (isa<PHINode>(EntryBlock->front())) {
// Cannot make the first block be a block with a PHI node in it! Instead,
// strip the first basic block of the function to contain no instructions,
// then add a simple branch to the "real" entry node...
//
BasicBlock *E = Func->front();
if (!isa<TerminatorInst>(E->front()) || // Check for an actual change...
cast<TerminatorInst>(E->front())->getNumSuccessors() != 1 ||
cast<TerminatorInst>(E->front())->getSuccessor(0) != EntryBlock) {
E->getInstList().delete_all(); // Delete all instructions in block
E->getInstList().push_back(new BranchInst(EntryBlock));
MadeChanges = true;
}
AliveBlocks.insert(E);
// Next we need to change any PHI nodes in the entry block to refer to the
// new predecessor node...
} else {
// We need to move the new entry block to be the first bb of the function
Function::iterator EBI = find(Func->begin(), Func->end(), EntryBlock);
std::swap(*EBI, *Func->begin()); // Exchange old location with start of fn
MadeChanges = true;
}
}
// Now go through and tell dead blocks to drop all of their references so they
// can be safely deleted.
//
for (Function::iterator BI = Func->begin(), BE = Func->end(); BI != BE; ++BI){
BasicBlock *BB = *BI;
if (!AliveBlocks.count(BB)) {
BB->dropAllReferences();
}
}
// Now loop through all of the blocks and delete them. We can safely do this
// now because we know that there are no references to dead blocks (because
// they have dropped all of their references...
//
for (Function::iterator BI = Func->begin(); BI != Func->end();) {
if (!AliveBlocks.count(*BI)) {
delete Func->getBasicBlocks().remove(BI);
MadeChanges = true;
continue; // Don't increment iterator
}
++BI; // Increment iterator...
}
}
// fixupCFG - Walk the CFG in depth first order, eliminating references to
// dead blocks:
// If the BB is alive (in AliveBlocks):
// 1. Eliminate all dead instructions in the BB
// 2. Recursively traverse all of the successors of the BB:
// - If the returned successor is non-null, update our terminator to
// reference the returned BB
// 3. Return 0 (no update needed)
//
// If the BB is dead (not in AliveBlocks):
// 1. Add the BB to the dead set
// 2. Recursively traverse all of the successors of the block:
// - Only one shall return a nonnull value (or else this block should have
// been in the alive set).
// 3. Return the nonnull child, or 0 if no non-null children.
//
BasicBlock *ADCE::fixupCFG(BasicBlock *BB, std::set<BasicBlock*> &VisitedBlocks,
const std::set<BasicBlock*> &AliveBlocks) {
if (VisitedBlocks.count(BB)) return 0; // Revisiting a node? No update.
VisitedBlocks.insert(BB); // We have now visited this node!
#ifdef DEBUG_ADCE
cerr << "Fixing up BB: " << BB;
#endif
if (AliveBlocks.count(BB)) { // Is the block alive?
// Yes it's alive: loop through and eliminate all dead instructions in block
for (BasicBlock::iterator II = BB->begin(); II != BB->end()-1; ) {
Instruction *I = *II;
if (!LiveSet.count(I)) { // Is this instruction alive?
// Nope... remove the instruction from it's basic block...
delete BB->getInstList().remove(II);
MadeChanges = true;
continue; // Don't increment II
}
++II;
}
// Recursively traverse successors of this basic block.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
BasicBlock *Succ = *SI;
BasicBlock *Repl = fixupCFG(Succ, VisitedBlocks, AliveBlocks);
if (Repl && Repl != Succ) { // We have to replace the successor
Succ->replaceAllUsesWith(Repl);
MadeChanges = true;
}
}
return BB;
} else { // Otherwise the block is dead...
BasicBlock *ReturnBB = 0; // Default to nothing live down here
// Recursively traverse successors of this basic block.
for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) {
BasicBlock *RetBB = fixupCFG(*SI, VisitedBlocks, AliveBlocks);
if (RetBB) {
assert(ReturnBB == 0 && "One one live child allowed!");
ReturnBB = RetBB;
}
}
return ReturnBB; // Return the result of traversal
}
}