mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-29 16:04:33 +00:00
28c3cff825
the section or the visibility from one global value to another: copyAttributesFrom. This is particularly useful for duplicating functions: previously this was done by explicitly copying each attribute in turn at each place where a new function was created out of an old one, with the result that obscure attributes were regularly forgotten (like the collector or the section). Hopefully now everything is uniform and nothing is forgotten. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@51567 91177308-0d34-0410-b5e6-96231b3b80d8
503 lines
21 KiB
C++
503 lines
21 KiB
C++
//===- CloneFunction.cpp - Clone a function into another function ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CloneFunctionInto interface, which is used as the
|
|
// low-level function cloner. This is used by the CloneFunction and function
|
|
// inliner to do the dirty work of copying the body of a function around.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
// CloneBasicBlock - See comments in Cloning.h
|
|
BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
|
|
DenseMap<const Value*, Value*> &ValueMap,
|
|
const char *NameSuffix, Function *F,
|
|
ClonedCodeInfo *CodeInfo) {
|
|
BasicBlock *NewBB = BasicBlock::Create("", F);
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
|
|
|
// Loop over all instructions, and copy them over.
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
|
|
II != IE; ++II) {
|
|
Instruction *NewInst = II->clone();
|
|
if (II->hasName())
|
|
NewInst->setName(II->getName()+NameSuffix);
|
|
NewBB->getInstList().push_back(NewInst);
|
|
ValueMap[II] = NewInst; // Add instruction map to value.
|
|
|
|
hasCalls |= isa<CallInst>(II);
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
hasStaticAllocas = true;
|
|
else
|
|
hasDynamicAllocas = true;
|
|
}
|
|
}
|
|
|
|
if (CodeInfo) {
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
CodeInfo->ContainsUnwinds |= isa<UnwindInst>(BB->getTerminator());
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
|
BB != &BB->getParent()->getEntryBlock();
|
|
}
|
|
return NewBB;
|
|
}
|
|
|
|
// Clone OldFunc into NewFunc, transforming the old arguments into references to
|
|
// ArgMap values.
|
|
//
|
|
void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|
DenseMap<const Value*, Value*> &ValueMap,
|
|
std::vector<ReturnInst*> &Returns,
|
|
const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
|
|
|
#ifndef NDEBUG
|
|
for (Function::const_arg_iterator I = OldFunc->arg_begin(),
|
|
E = OldFunc->arg_end(); I != E; ++I)
|
|
assert(ValueMap.count(I) && "No mapping from source argument specified!");
|
|
#endif
|
|
|
|
// Clone any attributes.
|
|
NewFunc->copyAttributesFrom(OldFunc);
|
|
|
|
// Loop over all of the basic blocks in the function, cloning them as
|
|
// appropriate. Note that we save BE this way in order to handle cloning of
|
|
// recursive functions into themselves.
|
|
//
|
|
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
|
BI != BE; ++BI) {
|
|
const BasicBlock &BB = *BI;
|
|
|
|
// Create a new basic block and copy instructions into it!
|
|
BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
|
|
CodeInfo);
|
|
ValueMap[&BB] = CBB; // Add basic block mapping.
|
|
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
|
|
Returns.push_back(RI);
|
|
}
|
|
|
|
// Loop over all of the instructions in the function, fixing up operand
|
|
// references as we go. This uses ValueMap to do all the hard work.
|
|
//
|
|
for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
|
|
BE = NewFunc->end(); BB != BE; ++BB)
|
|
// Loop over all instructions, fixing each one as we find it...
|
|
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
|
|
RemapInstruction(II, ValueMap);
|
|
}
|
|
|
|
/// CloneFunction - Return a copy of the specified function, but without
|
|
/// embedding the function into another module. Also, any references specified
|
|
/// in the ValueMap are changed to refer to their mapped value instead of the
|
|
/// original one. If any of the arguments to the function are in the ValueMap,
|
|
/// the arguments are deleted from the resultant function. The ValueMap is
|
|
/// updated to include mappings from all of the instructions and basicblocks in
|
|
/// the function from their old to new values.
|
|
///
|
|
Function *llvm::CloneFunction(const Function *F,
|
|
DenseMap<const Value*, Value*> &ValueMap,
|
|
ClonedCodeInfo *CodeInfo) {
|
|
std::vector<const Type*> ArgTypes;
|
|
|
|
// The user might be deleting arguments to the function by specifying them in
|
|
// the ValueMap. If so, we need to not add the arguments to the arg ty vector
|
|
//
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
if (ValueMap.count(I) == 0) // Haven't mapped the argument to anything yet?
|
|
ArgTypes.push_back(I->getType());
|
|
|
|
// Create a new function type...
|
|
FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
|
|
ArgTypes, F->getFunctionType()->isVarArg());
|
|
|
|
// Create the new function...
|
|
Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
|
|
|
|
// Loop over the arguments, copying the names of the mapped arguments over...
|
|
Function::arg_iterator DestI = NewF->arg_begin();
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I)
|
|
if (ValueMap.count(I) == 0) { // Is this argument preserved?
|
|
DestI->setName(I->getName()); // Copy the name over...
|
|
ValueMap[I] = DestI++; // Add mapping to ValueMap
|
|
}
|
|
|
|
std::vector<ReturnInst*> Returns; // Ignore returns cloned...
|
|
CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
|
|
return NewF;
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
/// PruningFunctionCloner - This class is a private class used to implement
|
|
/// the CloneAndPruneFunctionInto method.
|
|
struct VISIBILITY_HIDDEN PruningFunctionCloner {
|
|
Function *NewFunc;
|
|
const Function *OldFunc;
|
|
DenseMap<const Value*, Value*> &ValueMap;
|
|
std::vector<ReturnInst*> &Returns;
|
|
const char *NameSuffix;
|
|
ClonedCodeInfo *CodeInfo;
|
|
const TargetData *TD;
|
|
|
|
public:
|
|
PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
|
|
DenseMap<const Value*, Value*> &valueMap,
|
|
std::vector<ReturnInst*> &returns,
|
|
const char *nameSuffix,
|
|
ClonedCodeInfo *codeInfo,
|
|
const TargetData *td)
|
|
: NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
|
|
NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
|
|
}
|
|
|
|
/// CloneBlock - The specified block is found to be reachable, clone it and
|
|
/// anything that it can reach.
|
|
void CloneBlock(const BasicBlock *BB,
|
|
std::vector<const BasicBlock*> &ToClone);
|
|
|
|
public:
|
|
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
|
|
/// mapping its operands through ValueMap if they are available.
|
|
Constant *ConstantFoldMappedInstruction(const Instruction *I);
|
|
};
|
|
}
|
|
|
|
/// CloneBlock - The specified block is found to be reachable, clone it and
|
|
/// anything that it can reach.
|
|
void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
|
|
std::vector<const BasicBlock*> &ToClone){
|
|
Value *&BBEntry = ValueMap[BB];
|
|
|
|
// Have we already cloned this block?
|
|
if (BBEntry) return;
|
|
|
|
// Nope, clone it now.
|
|
BasicBlock *NewBB;
|
|
BBEntry = NewBB = BasicBlock::Create();
|
|
if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
|
|
|
|
bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
|
|
|
|
// Loop over all instructions, and copy them over, DCE'ing as we go. This
|
|
// loop doesn't include the terminator.
|
|
for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
|
|
II != IE; ++II) {
|
|
// If this instruction constant folds, don't bother cloning the instruction,
|
|
// instead, just add the constant to the value map.
|
|
if (Constant *C = ConstantFoldMappedInstruction(II)) {
|
|
ValueMap[II] = C;
|
|
continue;
|
|
}
|
|
|
|
Instruction *NewInst = II->clone();
|
|
if (II->hasName())
|
|
NewInst->setName(II->getName()+NameSuffix);
|
|
NewBB->getInstList().push_back(NewInst);
|
|
ValueMap[II] = NewInst; // Add instruction map to value.
|
|
|
|
hasCalls |= isa<CallInst>(II);
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
|
|
if (isa<ConstantInt>(AI->getArraySize()))
|
|
hasStaticAllocas = true;
|
|
else
|
|
hasDynamicAllocas = true;
|
|
}
|
|
}
|
|
|
|
// Finally, clone over the terminator.
|
|
const TerminatorInst *OldTI = BB->getTerminator();
|
|
bool TerminatorDone = false;
|
|
if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
|
|
if (BI->isConditional()) {
|
|
// If the condition was a known constant in the callee...
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
|
|
// Or is a known constant in the caller...
|
|
if (Cond == 0)
|
|
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
|
|
|
|
// Constant fold to uncond branch!
|
|
if (Cond) {
|
|
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
|
|
ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
|
ToClone.push_back(Dest);
|
|
TerminatorDone = true;
|
|
}
|
|
}
|
|
} else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
|
|
// If switching on a value known constant in the caller.
|
|
ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
|
|
if (Cond == 0) // Or known constant after constant prop in the callee...
|
|
Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
|
|
if (Cond) { // Constant fold to uncond branch!
|
|
BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
|
|
ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
|
|
ToClone.push_back(Dest);
|
|
TerminatorDone = true;
|
|
}
|
|
}
|
|
|
|
if (!TerminatorDone) {
|
|
Instruction *NewInst = OldTI->clone();
|
|
if (OldTI->hasName())
|
|
NewInst->setName(OldTI->getName()+NameSuffix);
|
|
NewBB->getInstList().push_back(NewInst);
|
|
ValueMap[OldTI] = NewInst; // Add instruction map to value.
|
|
|
|
// Recursively clone any reachable successor blocks.
|
|
const TerminatorInst *TI = BB->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
ToClone.push_back(TI->getSuccessor(i));
|
|
}
|
|
|
|
if (CodeInfo) {
|
|
CodeInfo->ContainsCalls |= hasCalls;
|
|
CodeInfo->ContainsUnwinds |= isa<UnwindInst>(OldTI);
|
|
CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
|
|
CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
|
|
BB != &BB->getParent()->front();
|
|
}
|
|
|
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
|
|
Returns.push_back(RI);
|
|
}
|
|
|
|
/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
|
|
/// mapping its operands through ValueMap if they are available.
|
|
Constant *PruningFunctionCloner::
|
|
ConstantFoldMappedInstruction(const Instruction *I) {
|
|
SmallVector<Constant*, 8> Ops;
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
|
|
ValueMap)))
|
|
Ops.push_back(Op);
|
|
else
|
|
return 0; // All operands not constant!
|
|
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
|
|
return ConstantFoldCompareInstOperands(CI->getPredicate(),
|
|
&Ops[0], Ops.size(), TD);
|
|
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
|
|
if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
|
|
if (GV->isConstant() && !GV->isDeclaration())
|
|
return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
|
|
CE);
|
|
|
|
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
|
|
Ops.size(), TD);
|
|
}
|
|
|
|
/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
|
|
/// except that it does some simple constant prop and DCE on the fly. The
|
|
/// effect of this is to copy significantly less code in cases where (for
|
|
/// example) a function call with constant arguments is inlined, and those
|
|
/// constant arguments cause a significant amount of code in the callee to be
|
|
/// dead. Since this doesn't produce an exact copy of the input, it can't be
|
|
/// used for things like CloneFunction or CloneModule.
|
|
void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
|
|
DenseMap<const Value*, Value*> &ValueMap,
|
|
std::vector<ReturnInst*> &Returns,
|
|
const char *NameSuffix,
|
|
ClonedCodeInfo *CodeInfo,
|
|
const TargetData *TD) {
|
|
assert(NameSuffix && "NameSuffix cannot be null!");
|
|
|
|
#ifndef NDEBUG
|
|
for (Function::const_arg_iterator II = OldFunc->arg_begin(),
|
|
E = OldFunc->arg_end(); II != E; ++II)
|
|
assert(ValueMap.count(II) && "No mapping from source argument specified!");
|
|
#endif
|
|
|
|
PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
|
|
NameSuffix, CodeInfo, TD);
|
|
|
|
// Clone the entry block, and anything recursively reachable from it.
|
|
std::vector<const BasicBlock*> CloneWorklist;
|
|
CloneWorklist.push_back(&OldFunc->getEntryBlock());
|
|
while (!CloneWorklist.empty()) {
|
|
const BasicBlock *BB = CloneWorklist.back();
|
|
CloneWorklist.pop_back();
|
|
PFC.CloneBlock(BB, CloneWorklist);
|
|
}
|
|
|
|
// Loop over all of the basic blocks in the old function. If the block was
|
|
// reachable, we have cloned it and the old block is now in the value map:
|
|
// insert it into the new function in the right order. If not, ignore it.
|
|
//
|
|
// Defer PHI resolution until rest of function is resolved.
|
|
std::vector<const PHINode*> PHIToResolve;
|
|
for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
|
|
BI != BE; ++BI) {
|
|
BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
|
|
if (NewBB == 0) continue; // Dead block.
|
|
|
|
// Add the new block to the new function.
|
|
NewFunc->getBasicBlockList().push_back(NewBB);
|
|
|
|
// Loop over all of the instructions in the block, fixing up operand
|
|
// references as we go. This uses ValueMap to do all the hard work.
|
|
//
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
|
|
// Handle PHI nodes specially, as we have to remove references to dead
|
|
// blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
// Skip over all PHI nodes, remembering them for later.
|
|
BasicBlock::const_iterator OldI = BI->begin();
|
|
for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
|
|
PHIToResolve.push_back(cast<PHINode>(OldI));
|
|
}
|
|
|
|
// Otherwise, remap the rest of the instructions normally.
|
|
for (; I != NewBB->end(); ++I)
|
|
RemapInstruction(I, ValueMap);
|
|
}
|
|
|
|
// Defer PHI resolution until rest of function is resolved, PHI resolution
|
|
// requires the CFG to be up-to-date.
|
|
for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
|
|
const PHINode *OPN = PHIToResolve[phino];
|
|
unsigned NumPreds = OPN->getNumIncomingValues();
|
|
const BasicBlock *OldBB = OPN->getParent();
|
|
BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
|
|
|
|
// Map operands for blocks that are live and remove operands for blocks
|
|
// that are dead.
|
|
for (; phino != PHIToResolve.size() &&
|
|
PHIToResolve[phino]->getParent() == OldBB; ++phino) {
|
|
OPN = PHIToResolve[phino];
|
|
PHINode *PN = cast<PHINode>(ValueMap[OPN]);
|
|
for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
|
|
if (BasicBlock *MappedBlock =
|
|
cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
|
|
Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
|
|
assert(InVal && "Unknown input value?");
|
|
PN->setIncomingValue(pred, InVal);
|
|
PN->setIncomingBlock(pred, MappedBlock);
|
|
} else {
|
|
PN->removeIncomingValue(pred, false);
|
|
--pred, --e; // Revisit the next entry.
|
|
}
|
|
}
|
|
}
|
|
|
|
// The loop above has removed PHI entries for those blocks that are dead
|
|
// and has updated others. However, if a block is live (i.e. copied over)
|
|
// but its terminator has been changed to not go to this block, then our
|
|
// phi nodes will have invalid entries. Update the PHI nodes in this
|
|
// case.
|
|
PHINode *PN = cast<PHINode>(NewBB->begin());
|
|
NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
|
|
if (NumPreds != PN->getNumIncomingValues()) {
|
|
assert(NumPreds < PN->getNumIncomingValues());
|
|
// Count how many times each predecessor comes to this block.
|
|
std::map<BasicBlock*, unsigned> PredCount;
|
|
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
|
|
PI != E; ++PI)
|
|
--PredCount[*PI];
|
|
|
|
// Figure out how many entries to remove from each PHI.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
++PredCount[PN->getIncomingBlock(i)];
|
|
|
|
// At this point, the excess predecessor entries are positive in the
|
|
// map. Loop over all of the PHIs and remove excess predecessor
|
|
// entries.
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
for (; (PN = dyn_cast<PHINode>(I)); ++I) {
|
|
for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
|
|
E = PredCount.end(); PCI != E; ++PCI) {
|
|
BasicBlock *Pred = PCI->first;
|
|
for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
|
|
PN->removeIncomingValue(Pred, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the loops above have made these phi nodes have 0 or 1 operand,
|
|
// replace them with undef or the input value. We must do this for
|
|
// correctness, because 0-operand phis are not valid.
|
|
PN = cast<PHINode>(NewBB->begin());
|
|
if (PN->getNumIncomingValues() == 0) {
|
|
BasicBlock::iterator I = NewBB->begin();
|
|
BasicBlock::const_iterator OldI = OldBB->begin();
|
|
while ((PN = dyn_cast<PHINode>(I++))) {
|
|
Value *NV = UndefValue::get(PN->getType());
|
|
PN->replaceAllUsesWith(NV);
|
|
assert(ValueMap[OldI] == PN && "ValueMap mismatch");
|
|
ValueMap[OldI] = NV;
|
|
PN->eraseFromParent();
|
|
++OldI;
|
|
}
|
|
}
|
|
// NOTE: We cannot eliminate single entry phi nodes here, because of
|
|
// ValueMap. Single entry phi nodes can have multiple ValueMap entries
|
|
// pointing at them. Thus, deleting one would require scanning the ValueMap
|
|
// to update any entries in it that would require that. This would be
|
|
// really slow.
|
|
}
|
|
|
|
// Now that the inlined function body has been fully constructed, go through
|
|
// and zap unconditional fall-through branches. This happen all the time when
|
|
// specializing code: code specialization turns conditional branches into
|
|
// uncond branches, and this code folds them.
|
|
Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
|
|
while (I != NewFunc->end()) {
|
|
BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
|
|
if (!BI || BI->isConditional()) { ++I; continue; }
|
|
|
|
// Note that we can't eliminate uncond branches if the destination has
|
|
// single-entry PHI nodes. Eliminating the single-entry phi nodes would
|
|
// require scanning the ValueMap to update any entries that point to the phi
|
|
// node.
|
|
BasicBlock *Dest = BI->getSuccessor(0);
|
|
if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
|
|
++I; continue;
|
|
}
|
|
|
|
// We know all single-entry PHI nodes in the inlined function have been
|
|
// removed, so we just need to splice the blocks.
|
|
BI->eraseFromParent();
|
|
|
|
// Move all the instructions in the succ to the pred.
|
|
I->getInstList().splice(I->end(), Dest->getInstList());
|
|
|
|
// Make all PHI nodes that referred to Dest now refer to I as their source.
|
|
Dest->replaceAllUsesWith(I);
|
|
|
|
// Remove the dest block.
|
|
Dest->eraseFromParent();
|
|
|
|
// Do not increment I, iteratively merge all things this block branches to.
|
|
}
|
|
}
|