llvm/lib/Transforms/Utils/Local.cpp

674 lines
26 KiB
C++

//===-- Local.cpp - Functions to perform local transformations ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This family of functions perform various local transformations to the
// program.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/GlobalAlias.h"
#include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/ProfileInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Local analysis.
//
/// isSafeToLoadUnconditionally - Return true if we know that executing a load
/// from this value cannot trap. If it is not obviously safe to load from the
/// specified pointer, we do a quick local scan of the basic block containing
/// ScanFrom, to determine if the address is already accessed.
bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
// If it is an alloca it is always safe to load from.
if (isa<AllocaInst>(V)) return true;
// If it is a global variable it is mostly safe to load from.
if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
// Don't try to evaluate aliases. External weak GV can be null.
return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
// Otherwise, be a little bit agressive by scanning the local block where we
// want to check to see if the pointer is already being loaded or stored
// from/to. If so, the previous load or store would have already trapped,
// so there is no harm doing an extra load (also, CSE will later eliminate
// the load entirely).
BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
while (BBI != E) {
--BBI;
// If we see a free or a call which may write to memory (i.e. which might do
// a free) the pointer could be marked invalid.
if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
!isa<DbgInfoIntrinsic>(BBI))
return false;
if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
if (LI->getOperand(0) == V) return true;
} else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
if (SI->getOperand(1) == V) return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Local constant propagation.
//
// ConstantFoldTerminator - If a terminator instruction is predicated on a
// constant value, convert it into an unconditional branch to the constant
// destination.
//
bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
TerminatorInst *T = BB->getTerminator();
// Branch - See if we are conditional jumping on constant
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
if (BI->isUnconditional()) return false; // Can't optimize uncond branch
BasicBlock *Dest1 = BI->getSuccessor(0);
BasicBlock *Dest2 = BI->getSuccessor(1);
if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
// Are we branching on constant?
// YES. Change to unconditional branch...
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
//cerr << "Function: " << T->getParent()->getParent()
// << "\nRemoving branch from " << T->getParent()
// << "\n\nTo: " << OldDest << endl;
// Let the basic block know that we are letting go of it. Based on this,
// it will adjust it's PHI nodes.
assert(BI->getParent() && "Terminator not inserted in block!");
OldDest->removePredecessor(BI->getParent());
// Set the unconditional destination, and change the insn to be an
// unconditional branch.
BI->setUnconditionalDest(Destination);
return true;
}
if (Dest2 == Dest1) { // Conditional branch to same location?
// This branch matches something like this:
// br bool %cond, label %Dest, label %Dest
// and changes it into: br label %Dest
// Let the basic block know that we are letting go of one copy of it.
assert(BI->getParent() && "Terminator not inserted in block!");
Dest1->removePredecessor(BI->getParent());
// Change a conditional branch to unconditional.
BI->setUnconditionalDest(Dest1);
return true;
}
return false;
}
if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
// If we are switching on a constant, we can convert the switch into a
// single branch instruction!
ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
BasicBlock *TheOnlyDest = SI->getSuccessor(0); // The default dest
BasicBlock *DefaultDest = TheOnlyDest;
assert(TheOnlyDest == SI->getDefaultDest() &&
"Default destination is not successor #0?");
// Figure out which case it goes to.
for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) {
// Found case matching a constant operand?
if (SI->getSuccessorValue(i) == CI) {
TheOnlyDest = SI->getSuccessor(i);
break;
}
// Check to see if this branch is going to the same place as the default
// dest. If so, eliminate it as an explicit compare.
if (SI->getSuccessor(i) == DefaultDest) {
// Remove this entry.
DefaultDest->removePredecessor(SI->getParent());
SI->removeCase(i);
--i; --e; // Don't skip an entry...
continue;
}
// Otherwise, check to see if the switch only branches to one destination.
// We do this by reseting "TheOnlyDest" to null when we find two non-equal
// destinations.
if (SI->getSuccessor(i) != TheOnlyDest) TheOnlyDest = 0;
}
if (CI && !TheOnlyDest) {
// Branching on a constant, but not any of the cases, go to the default
// successor.
TheOnlyDest = SI->getDefaultDest();
}
// If we found a single destination that we can fold the switch into, do so
// now.
if (TheOnlyDest) {
// Insert the new branch.
BranchInst::Create(TheOnlyDest, SI);
BasicBlock *BB = SI->getParent();
// Remove entries from PHI nodes which we no longer branch to...
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
// Found case matching a constant operand?
BasicBlock *Succ = SI->getSuccessor(i);
if (Succ == TheOnlyDest)
TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
else
Succ->removePredecessor(BB);
}
// Delete the old switch.
BB->getInstList().erase(SI);
return true;
}
if (SI->getNumSuccessors() == 2) {
// Otherwise, we can fold this switch into a conditional branch
// instruction if it has only one non-default destination.
Value *Cond = new ICmpInst(SI, ICmpInst::ICMP_EQ, SI->getCondition(),
SI->getSuccessorValue(1), "cond");
// Insert the new branch.
BranchInst::Create(SI->getSuccessor(1), SI->getSuccessor(0), Cond, SI);
// Delete the old switch.
SI->eraseFromParent();
return true;
}
return false;
}
if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
// indirectbr blockaddress(@F, @BB) -> br label @BB
if (BlockAddress *BA =
dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
BasicBlock *TheOnlyDest = BA->getBasicBlock();
// Insert the new branch.
BranchInst::Create(TheOnlyDest, IBI);
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
if (IBI->getDestination(i) == TheOnlyDest)
TheOnlyDest = 0;
else
IBI->getDestination(i)->removePredecessor(IBI->getParent());
}
IBI->eraseFromParent();
// If we didn't find our destination in the IBI successor list, then we
// have undefined behavior. Replace the unconditional branch with an
// 'unreachable' instruction.
if (TheOnlyDest) {
BB->getTerminator()->eraseFromParent();
new UnreachableInst(BB->getContext(), BB);
}
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// Local dead code elimination.
//
/// isInstructionTriviallyDead - Return true if the result produced by the
/// instruction is not used, and the instruction has no side effects.
///
bool llvm::isInstructionTriviallyDead(Instruction *I) {
if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
// We don't want debug info removed by anything this general.
if (isa<DbgInfoIntrinsic>(I)) return false;
// Likewise for memory use markers.
if (isa<MemoryUseIntrinsic>(I)) return false;
if (!I->mayHaveSideEffects()) return true;
// Special case intrinsics that "may have side effects" but can be deleted
// when dead.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
// Safe to delete llvm.stacksave if dead.
if (II->getIntrinsicID() == Intrinsic::stacksave)
return true;
return false;
}
/// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
/// trivially dead instruction, delete it. If that makes any of its operands
/// trivially dead, delete them too, recursively. Return true if any
/// instructions were deleted.
bool llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I || !I->use_empty() || !isInstructionTriviallyDead(I))
return false;
SmallVector<Instruction*, 16> DeadInsts;
DeadInsts.push_back(I);
do {
I = DeadInsts.pop_back_val();
// Null out all of the instruction's operands to see if any operand becomes
// dead as we go.
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Value *OpV = I->getOperand(i);
I->setOperand(i, 0);
if (!OpV->use_empty()) continue;
// If the operand is an instruction that became dead as we nulled out the
// operand, and if it is 'trivially' dead, delete it in a future loop
// iteration.
if (Instruction *OpI = dyn_cast<Instruction>(OpV))
if (isInstructionTriviallyDead(OpI))
DeadInsts.push_back(OpI);
}
I->eraseFromParent();
} while (!DeadInsts.empty());
return true;
}
/// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
/// dead PHI node, due to being a def-use chain of single-use nodes that
/// either forms a cycle or is terminated by a trivially dead instruction,
/// delete it. If that makes any of its operands trivially dead, delete them
/// too, recursively. Return true if the PHI node is actually deleted.
bool
llvm::RecursivelyDeleteDeadPHINode(PHINode *PN) {
// We can remove a PHI if it is on a cycle in the def-use graph
// where each node in the cycle has degree one, i.e. only one use,
// and is an instruction with no side effects.
if (!PN->hasOneUse())
return false;
bool Changed = false;
SmallPtrSet<PHINode *, 4> PHIs;
PHIs.insert(PN);
for (Instruction *J = cast<Instruction>(*PN->use_begin());
J->hasOneUse() && !J->mayHaveSideEffects();
J = cast<Instruction>(*J->use_begin()))
// If we find a PHI more than once, we're on a cycle that
// won't prove fruitful.
if (PHINode *JP = dyn_cast<PHINode>(J))
if (!PHIs.insert(cast<PHINode>(JP))) {
// Break the cycle and delete the PHI and its operands.
JP->replaceAllUsesWith(UndefValue::get(JP->getType()));
(void)RecursivelyDeleteTriviallyDeadInstructions(JP);
Changed = true;
break;
}
return Changed;
}
/// SimplifyInstructionsInBlock - Scan the specified basic block and try to
/// simplify any instructions in it and recursively delete dead instructions.
///
/// This returns true if it changed the code, note that it can delete
/// instructions in other blocks as well in this block.
bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, const TargetData *TD) {
bool MadeChange = false;
for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
Instruction *Inst = BI++;
if (Value *V = SimplifyInstruction(Inst, TD)) {
WeakVH BIHandle(BI);
ReplaceAndSimplifyAllUses(Inst, V, TD);
MadeChange = true;
if (BIHandle == 0)
BI = BB->begin();
continue;
}
MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
return MadeChange;
}
//===----------------------------------------------------------------------===//
// Control Flow Graph Restructuring.
//
/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
/// method is called when we're about to delete Pred as a predecessor of BB. If
/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
///
/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
/// nodes that collapse into identity values. For example, if we have:
/// x = phi(1, 0, 0, 0)
/// y = and x, z
///
/// .. and delete the predecessor corresponding to the '1', this will attempt to
/// recursively fold the and to 0.
void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
TargetData *TD) {
// This only adjusts blocks with PHI nodes.
if (!isa<PHINode>(BB->begin()))
return;
// Remove the entries for Pred from the PHI nodes in BB, but do not simplify
// them down. This will leave us with single entry phi nodes and other phis
// that can be removed.
BB->removePredecessor(Pred, true);
WeakVH PhiIt = &BB->front();
while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
Value *PNV = PN->hasConstantValue();
if (PNV == 0) continue;
// If we're able to simplify the phi to a single value, substitute the new
// value into all of its uses.
assert(PNV != PN && "hasConstantValue broken");
ReplaceAndSimplifyAllUses(PN, PNV, TD);
// If recursive simplification ended up deleting the next PHI node we would
// iterate to, then our iterator is invalid, restart scanning from the top
// of the block.
if (PhiIt == 0) PhiIt = &BB->front();
}
}
/// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
/// predecessor is known to have one successor (DestBB!). Eliminate the edge
/// between them, moving the instructions in the predecessor into DestBB and
/// deleting the predecessor block.
///
void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, Pass *P) {
// If BB has single-entry PHI nodes, fold them.
while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
Value *NewVal = PN->getIncomingValue(0);
// Replace self referencing PHI with undef, it must be dead.
if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
PN->replaceAllUsesWith(NewVal);
PN->eraseFromParent();
}
BasicBlock *PredBB = DestBB->getSinglePredecessor();
assert(PredBB && "Block doesn't have a single predecessor!");
// Splice all the instructions from PredBB to DestBB.
PredBB->getTerminator()->eraseFromParent();
DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
// Anything that branched to PredBB now branches to DestBB.
PredBB->replaceAllUsesWith(DestBB);
if (P) {
ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
if (PI) {
PI->replaceAllUses(PredBB, DestBB);
PI->removeEdge(ProfileInfo::getEdge(PredBB, DestBB));
}
}
// Nuke BB.
PredBB->eraseFromParent();
}
/// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
/// almost-empty BB ending in an unconditional branch to Succ, into succ.
///
/// Assumption: Succ is the single successor for BB.
///
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
<< Succ->getName() << "\n");
// Shortcut, if there is only a single predecessor it must be BB and merging
// is always safe
if (Succ->getSinglePredecessor()) return true;
// Make a list of the predecessors of BB
typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
BlockSet BBPreds(pred_begin(BB), pred_end(BB));
// Use that list to make another list of common predecessors of BB and Succ
BlockSet CommonPreds;
for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
PI != PE; ++PI)
if (BBPreds.count(*PI))
CommonPreds.insert(*PI);
// Shortcut, if there are no common predecessors, merging is always safe
if (CommonPreds.empty())
return true;
// Look at all the phi nodes in Succ, to see if they present a conflict when
// merging these blocks
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
// If the incoming value from BB is again a PHINode in
// BB which has the same incoming value for *PI as PN does, we can
// merge the phi nodes and then the blocks can still be merged
PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
if (BBPN && BBPN->getParent() == BB) {
for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
PI != PE; PI++) {
if (BBPN->getIncomingValueForBlock(*PI)
!= PN->getIncomingValueForBlock(*PI)) {
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with "
<< BBPN->getName() << " with regard to common predecessor "
<< (*PI)->getName() << "\n");
return false;
}
}
} else {
Value* Val = PN->getIncomingValueForBlock(BB);
for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
PI != PE; PI++) {
// See if the incoming value for the common predecessor is equal to the
// one for BB, in which case this phi node will not prevent the merging
// of the block.
if (Val != PN->getIncomingValueForBlock(*PI)) {
DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
<< Succ->getName() << " is conflicting with regard to common "
<< "predecessor " << (*PI)->getName() << "\n");
return false;
}
}
}
}
return true;
}
/// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
/// unconditional branch, and contains no instructions other than PHI nodes,
/// potential debug intrinsics and the branch. If possible, eliminate BB by
/// rewriting all the predecessors to branch to the successor block and return
/// true. If we can't transform, return false.
bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
// We can't eliminate infinite loops.
BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
if (BB == Succ) return false;
// Check to see if merging these blocks would cause conflicts for any of the
// phi nodes in BB or Succ. If not, we can safely merge.
if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
// Check for cases where Succ has multiple predecessors and a PHI node in BB
// has uses which will not disappear when the PHI nodes are merged. It is
// possible to handle such cases, but difficult: it requires checking whether
// BB dominates Succ, which is non-trivial to calculate in the case where
// Succ has multiple predecessors. Also, it requires checking whether
// constructing the necessary self-referential PHI node doesn't intoduce any
// conflicts; this isn't too difficult, but the previous code for doing this
// was incorrect.
//
// Note that if this check finds a live use, BB dominates Succ, so BB is
// something like a loop pre-header (or rarely, a part of an irreducible CFG);
// folding the branch isn't profitable in that case anyway.
if (!Succ->getSinglePredecessor()) {
BasicBlock::iterator BBI = BB->begin();
while (isa<PHINode>(*BBI)) {
for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
UI != E; ++UI) {
if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
if (PN->getIncomingBlock(UI) != BB)
return false;
} else {
return false;
}
}
++BBI;
}
}
DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
if (isa<PHINode>(Succ->begin())) {
// If there is more than one pred of succ, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
// Loop over all of the PHI nodes in the successor of BB.
for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
Value *OldVal = PN->removeIncomingValue(BB, false);
assert(OldVal && "No entry in PHI for Pred BB!");
// If this incoming value is one of the PHI nodes in BB, the new entries
// in the PHI node are the entries from the old PHI.
if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
PHINode *OldValPN = cast<PHINode>(OldVal);
for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
// Note that, since we are merging phi nodes and BB and Succ might
// have common predecessors, we could end up with a phi node with
// identical incoming branches. This will be cleaned up later (and
// will trigger asserts if we try to clean it up now, without also
// simplifying the corresponding conditional branch).
PN->addIncoming(OldValPN->getIncomingValue(i),
OldValPN->getIncomingBlock(i));
} else {
// Add an incoming value for each of the new incoming values.
for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
PN->addIncoming(OldVal, BBPreds[i]);
}
}
}
while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
if (Succ->getSinglePredecessor()) {
// BB is the only predecessor of Succ, so Succ will end up with exactly
// the same predecessors BB had.
Succ->getInstList().splice(Succ->begin(),
BB->getInstList(), BB->begin());
} else {
// We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
assert(PN->use_empty() && "There shouldn't be any uses here!");
PN->eraseFromParent();
}
}
// Everything that jumped to BB now goes to Succ.
BB->replaceAllUsesWith(Succ);
if (!Succ->hasName()) Succ->takeName(BB);
BB->eraseFromParent(); // Delete the old basic block.
return true;
}
/// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
/// nodes in this block. This doesn't try to be clever about PHI nodes
/// which differ only in the order of the incoming values, but instcombine
/// orders them so it usually won't matter.
///
bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
bool Changed = false;
// This implementation doesn't currently consider undef operands
// specially. Theroetically, two phis which are identical except for
// one having an undef where the other doesn't could be collapsed.
// Map from PHI hash values to PHI nodes. If multiple PHIs have
// the same hash value, the element is the first PHI in the
// linked list in CollisionMap.
DenseMap<uintptr_t, PHINode *> HashMap;
// Maintain linked lists of PHI nodes with common hash values.
DenseMap<PHINode *, PHINode *> CollisionMap;
// Examine each PHI.
for (BasicBlock::iterator I = BB->begin();
PHINode *PN = dyn_cast<PHINode>(I++); ) {
// Compute a hash value on the operands. Instcombine will likely have sorted
// them, which helps expose duplicates, but we have to check all the
// operands to be safe in case instcombine hasn't run.
uintptr_t Hash = 0;
for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
// This hash algorithm is quite weak as hash functions go, but it seems
// to do a good enough job for this particular purpose, and is very quick.
Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
}
// If we've never seen this hash value before, it's a unique PHI.
std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
HashMap.insert(std::make_pair(Hash, PN));
if (Pair.second) continue;
// Otherwise it's either a duplicate or a hash collision.
for (PHINode *OtherPN = Pair.first->second; ; ) {
if (OtherPN->isIdenticalTo(PN)) {
// A duplicate. Replace this PHI with its duplicate.
PN->replaceAllUsesWith(OtherPN);
PN->eraseFromParent();
Changed = true;
break;
}
// A non-duplicate hash collision.
DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
if (I == CollisionMap.end()) {
// Set this PHI to be the head of the linked list of colliding PHIs.
PHINode *Old = Pair.first->second;
Pair.first->second = PN;
CollisionMap[PN] = Old;
break;
}
// Procede to the next PHI in the list.
OtherPN = I->second;
}
}
return Changed;
}