llvm/lib/CodeGen/ExecutionDepsFix.cpp
Jakob Stoklund Olesen 35e932483a Handle reference counts in one function: release().
This new function will decrement the reference count, and collapse a
domain value when the last reference is gone.

This simplifies DomainValue reference counting, and decouples it from
the LiveRegs array.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144131 91177308-0d34-0410-b5e6-96231b3b80d8
2011-11-08 21:57:44 +00:00

546 lines
17 KiB
C++

//===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the execution dependency fix pass.
//
// Some X86 SSE instructions like mov, and, or, xor are available in different
// variants for different operand types. These variant instructions are
// equivalent, but on Nehalem and newer cpus there is extra latency
// transferring data between integer and floating point domains. ARM cores
// have similar issues when they are configured with both VFP and NEON
// pipelines.
//
// This pass changes the variant instructions to minimize domain crossings.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "execution-fix"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
/// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
/// of execution domains.
///
/// An open DomainValue represents a set of instructions that can still switch
/// execution domain. Multiple registers may refer to the same open
/// DomainValue - they will eventually be collapsed to the same execution
/// domain.
///
/// A collapsed DomainValue represents a single register that has been forced
/// into one of more execution domains. There is a separate collapsed
/// DomainValue for each register, but it may contain multiple execution
/// domains. A register value is initially created in a single execution
/// domain, but if we were forced to pay the penalty of a domain crossing, we
/// keep track of the fact the the register is now available in multiple
/// domains.
namespace {
struct DomainValue {
// Basic reference counting.
unsigned Refs;
// Bitmask of available domains. For an open DomainValue, it is the still
// possible domains for collapsing. For a collapsed DomainValue it is the
// domains where the register is available for free.
unsigned AvailableDomains;
// Position of the last defining instruction.
unsigned Dist;
// Twiddleable instructions using or defining these registers.
SmallVector<MachineInstr*, 8> Instrs;
// A collapsed DomainValue has no instructions to twiddle - it simply keeps
// track of the domains where the registers are already available.
bool isCollapsed() const { return Instrs.empty(); }
// Is domain available?
bool hasDomain(unsigned domain) const {
return AvailableDomains & (1u << domain);
}
// Mark domain as available.
void addDomain(unsigned domain) {
AvailableDomains |= 1u << domain;
}
// Restrict to a single domain available.
void setSingleDomain(unsigned domain) {
AvailableDomains = 1u << domain;
}
// Return bitmask of domains that are available and in mask.
unsigned getCommonDomains(unsigned mask) const {
return AvailableDomains & mask;
}
// First domain available.
unsigned getFirstDomain() const {
return CountTrailingZeros_32(AvailableDomains);
}
DomainValue() { clear(); }
void clear() {
Refs = AvailableDomains = Dist = 0;
Instrs.clear();
}
};
}
namespace {
class ExeDepsFix : public MachineFunctionPass {
static char ID;
SpecificBumpPtrAllocator<DomainValue> Allocator;
SmallVector<DomainValue*,16> Avail;
const TargetRegisterClass *const RC;
MachineFunction *MF;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
std::vector<int> AliasMap;
const unsigned NumRegs;
DomainValue **LiveRegs;
typedef DenseMap<MachineBasicBlock*,DomainValue**> LiveOutMap;
LiveOutMap LiveOuts;
unsigned Distance;
public:
ExeDepsFix(const TargetRegisterClass *rc)
: MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "Execution dependency fix";
}
private:
// Register mapping.
int RegIndex(unsigned Reg);
// DomainValue allocation.
DomainValue *Alloc(int domain = -1);
void release(DomainValue*);
// LiveRegs manipulations.
void SetLiveReg(int rx, DomainValue *DV);
void Kill(int rx);
void Force(int rx, unsigned domain);
void Collapse(DomainValue *dv, unsigned domain);
bool Merge(DomainValue *A, DomainValue *B);
void enterBasicBlock(MachineBasicBlock*);
void leaveBasicBlock(MachineBasicBlock*);
void visitInstr(MachineInstr*);
void visitGenericInstr(MachineInstr*);
void visitSoftInstr(MachineInstr*, unsigned mask);
void visitHardInstr(MachineInstr*, unsigned domain);
};
}
char ExeDepsFix::ID = 0;
/// Translate TRI register number to an index into our smaller tables of
/// interesting registers. Return -1 for boring registers.
int ExeDepsFix::RegIndex(unsigned Reg) {
assert(Reg < AliasMap.size() && "Invalid register");
return AliasMap[Reg];
}
DomainValue *ExeDepsFix::Alloc(int domain) {
DomainValue *dv = Avail.empty() ?
new(Allocator.Allocate()) DomainValue :
Avail.pop_back_val();
dv->Dist = Distance;
if (domain >= 0)
dv->addDomain(domain);
return dv;
}
/// release - Release a reference to DV. When the last reference is released,
/// collapse if needed.
void ExeDepsFix::release(DomainValue *DV) {
assert(DV && DV->Refs && "Bad DomainValue");
if (--DV->Refs)
return;
// There are no more DV references. Collapse any contained instructions.
if (DV->AvailableDomains && !DV->isCollapsed())
Collapse(DV, DV->getFirstDomain());
DV->clear();
Avail.push_back(DV);
}
/// Set LiveRegs[rx] = dv, updating reference counts.
void ExeDepsFix::SetLiveReg(int rx, DomainValue *dv) {
assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs) {
LiveRegs = new DomainValue*[NumRegs];
std::fill(LiveRegs, LiveRegs+NumRegs, (DomainValue*)0);
}
if (LiveRegs[rx] == dv)
return;
if (LiveRegs[rx])
release(LiveRegs[rx]);
LiveRegs[rx] = dv;
if (dv) ++dv->Refs;
}
// Kill register rx, recycle or collapse any DomainValue.
void ExeDepsFix::Kill(int rx) {
assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs || !LiveRegs[rx]) return;
release(LiveRegs[rx]);
LiveRegs[rx] = 0;
}
/// Force register rx into domain.
void ExeDepsFix::Force(int rx, unsigned domain) {
assert(unsigned(rx) < NumRegs && "Invalid index");
DomainValue *dv;
if (LiveRegs && (dv = LiveRegs[rx])) {
if (dv->isCollapsed())
dv->addDomain(domain);
else if (dv->hasDomain(domain))
Collapse(dv, domain);
else {
// This is an incompatible open DomainValue. Collapse it to whatever and
// force the new value into domain. This costs a domain crossing.
Collapse(dv, dv->getFirstDomain());
assert(LiveRegs[rx] && "Not live after collapse?");
LiveRegs[rx]->addDomain(domain);
}
} else {
// Set up basic collapsed DomainValue.
SetLiveReg(rx, Alloc(domain));
}
}
/// Collapse open DomainValue into given domain. If there are multiple
/// registers using dv, they each get a unique collapsed DomainValue.
void ExeDepsFix::Collapse(DomainValue *dv, unsigned domain) {
assert(dv->hasDomain(domain) && "Cannot collapse");
// Collapse all the instructions.
while (!dv->Instrs.empty())
TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
dv->setSingleDomain(domain);
// If there are multiple users, give them new, unique DomainValues.
if (LiveRegs && dv->Refs > 1)
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == dv)
SetLiveReg(rx, Alloc(domain));
}
/// Merge - All instructions and registers in B are moved to A, and B is
/// released.
bool ExeDepsFix::Merge(DomainValue *A, DomainValue *B) {
assert(!A->isCollapsed() && "Cannot merge into collapsed");
assert(!B->isCollapsed() && "Cannot merge from collapsed");
if (A == B)
return true;
// Restrict to the domains that A and B have in common.
unsigned common = A->getCommonDomains(B->AvailableDomains);
if (!common)
return false;
A->AvailableDomains = common;
A->Dist = std::max(A->Dist, B->Dist);
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
// Clear the old DomainValue so we won't try to swizzle instructions twice.
B->Instrs.clear();
B->AvailableDomains = 0;
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == B)
SetLiveReg(rx, A);
return true;
}
void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
e = MBB->livein_end(); i != e; ++i) {
int rx = RegIndex(*i);
if (rx < 0) continue;
for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
pe = MBB->pred_end(); pi != pe; ++pi) {
LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
if (fi == LiveOuts.end()) continue;
DomainValue *pdv = fi->second[rx];
if (!pdv || !pdv->AvailableDomains) continue;
if (!LiveRegs || !LiveRegs[rx]) {
SetLiveReg(rx, pdv);
continue;
}
// We have a live DomainValue from more than one predecessor.
if (LiveRegs[rx]->isCollapsed()) {
// We are already collapsed, but predecessor is not. Force him.
unsigned domain = LiveRegs[rx]->getFirstDomain();
if (!pdv->isCollapsed() && pdv->hasDomain(domain))
Collapse(pdv, domain);
continue;
}
// Currently open, merge in predecessor.
if (!pdv->isCollapsed())
Merge(LiveRegs[rx], pdv);
else
Force(rx, pdv->getFirstDomain());
}
}
}
void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
// Save live registers at end of MBB - used by enterBasicBlock().
if (LiveRegs)
LiveOuts.insert(std::make_pair(MBB, LiveRegs));
LiveRegs = 0;
}
void ExeDepsFix::visitInstr(MachineInstr *MI) {
if (MI->isDebugValue())
return;
++Distance;
std::pair<uint16_t, uint16_t> domp = TII->getExecutionDomain(MI);
if (domp.first)
if (domp.second)
visitSoftInstr(MI, domp.second);
else
visitHardInstr(MI, domp.first);
else if (LiveRegs)
visitGenericInstr(MI);
}
// A hard instruction only works in one domain. All input registers will be
// forced into that domain.
void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
// Collapse all uses.
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Force(rx, domain);
}
// Kill all defs and force them.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Kill(rx);
Force(rx, domain);
}
}
// A soft instruction can be changed to work in other domains given by mask.
void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Bitmask of available domains for this instruction after taking collapsed
// operands into account.
unsigned available = mask;
// Scan the explicit use operands for incoming domains.
SmallVector<int, 4> used;
if (LiveRegs)
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
if (DomainValue *dv = LiveRegs[rx]) {
// Bitmask of domains that dv and available have in common.
unsigned common = dv->getCommonDomains(available);
// Is it possible to use this collapsed register for free?
if (dv->isCollapsed()) {
// Restrict available domains to the ones in common with the operand.
// If there are no common domains, we must pay the cross-domain
// penalty for this operand.
if (common) available = common;
} else if (common)
// Open DomainValue is compatible, save it for merging.
used.push_back(rx);
else
// Open DomainValue is not compatible with instruction. It is useless
// now.
Kill(rx);
}
}
// If the collapsed operands force a single domain, propagate the collapse.
if (isPowerOf2_32(available)) {
unsigned domain = CountTrailingZeros_32(available);
TII->setExecutionDomain(mi, domain);
visitHardInstr(mi, domain);
return;
}
// Kill off any remaining uses that don't match available, and build a list of
// incoming DomainValues that we want to merge.
SmallVector<DomainValue*,4> doms;
for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
int rx = *i;
DomainValue *dv = LiveRegs[rx];
// This useless DomainValue could have been missed above.
if (!dv->getCommonDomains(available)) {
Kill(*i);
continue;
}
// sorted, uniqued insert.
bool inserted = false;
for (SmallVector<DomainValue*,4>::iterator i = doms.begin(), e = doms.end();
i != e && !inserted; ++i) {
if (dv == *i)
inserted = true;
else if (dv->Dist < (*i)->Dist) {
inserted = true;
doms.insert(i, dv);
}
}
if (!inserted)
doms.push_back(dv);
}
// doms are now sorted in order of appearance. Try to merge them all, giving
// priority to the latest ones.
DomainValue *dv = 0;
while (!doms.empty()) {
if (!dv) {
dv = doms.pop_back_val();
continue;
}
DomainValue *latest = doms.pop_back_val();
if (Merge(dv, latest)) continue;
// If latest didn't merge, it is useless now. Kill all registers using it.
for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i != e; ++i)
if (LiveRegs[*i] == latest)
Kill(*i);
}
// dv is the DomainValue we are going to use for this instruction.
if (!dv)
dv = Alloc();
dv->Dist = Distance;
dv->AvailableDomains = available;
dv->Instrs.push_back(mi);
// Finally set all defs and non-collapsed uses to dv.
for (unsigned i = 0, e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
if (!LiveRegs || !LiveRegs[rx] || (mo.isDef() && LiveRegs[rx]!=dv)) {
Kill(rx);
SetLiveReg(rx, dv);
}
}
}
void ExeDepsFix::visitGenericInstr(MachineInstr *mi) {
// Process explicit defs, kill any relevant registers redefined.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Kill(rx);
}
}
bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TII = MF->getTarget().getInstrInfo();
TRI = MF->getTarget().getRegisterInfo();
LiveRegs = 0;
Distance = 0;
assert(NumRegs == RC->getNumRegs() && "Bad regclass");
// If no relevant registers are used in the function, we can skip it
// completely.
bool anyregs = false;
for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end();
I != E; ++I)
if (MF->getRegInfo().isPhysRegUsed(*I)) {
anyregs = true;
break;
}
if (!anyregs) return false;
// Initialize the AliasMap on the first use.
if (AliasMap.empty()) {
// Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
// or -1.
AliasMap.resize(TRI->getNumRegs(), -1);
for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
for (const unsigned *AI = TRI->getOverlaps(RC->getRegister(i)); *AI; ++AI)
AliasMap[*AI] = i;
}
MachineBasicBlock *Entry = MF->begin();
ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
MachineBasicBlock *MBB = *MBBI;
enterBasicBlock(MBB);
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I)
visitInstr(I);
leaveBasicBlock(MBB);
}
// Clear the LiveOuts vectors and collapse any remaining DomainValues.
for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
if (FI == LiveOuts.end())
continue;
assert(FI->second && "Null entry");
// The DomainValue is collapsed when the last reference is killed.
LiveRegs = FI->second;
for (unsigned i = 0, e = NumRegs; i != e; ++i)
if (LiveRegs[i])
Kill(i);
delete[] LiveRegs;
}
LiveOuts.clear();
Avail.clear();
Allocator.DestroyAll();
return false;
}
FunctionPass *
llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
return new ExeDepsFix(RC);
}