mirror of
https://github.com/RPCS3/llvm.git
synced 2025-05-15 01:46:46 +00:00

manager, including both plumbing and logic to handle function pass updates. There are three fundamentally tied changes here: 1) Plumbing *some* mechanism for updating the CGSCC pass manager as the CG changes while passes are running. 2) Changing the CGSCC pass manager infrastructure to have support for the underlying graph to mutate mid-pass run. 3) Actually updating the CG after function passes run. I can separate them if necessary, but I think its really useful to have them together as the needs of #3 drove #2, and that in turn drove #1. The plumbing technique is to extend the "run" method signature with extra arguments. We provide the call graph that intrinsically is available as it is the basis of the pass manager's IR units, and an output parameter that records the results of updating the call graph during an SCC passes's run. Note that "...UpdateResult" isn't a *great* name here... suggestions very welcome. I tried a pretty frustrating number of different data structures and such for the innards of the update result. Every other one failed for one reason or another. Sometimes I just couldn't keep the layers of complexity right in my head. The thing that really worked was to just directly provide access to the underlying structures used to walk the call graph so that their updates could be informed by the *particular* nature of the change to the graph. The technique for how to make the pass management infrastructure cope with mutating graphs was also something that took a really, really large number of iterations to get to a place where I was happy. Here are some of the considerations that drove the design: - We operate at three levels within the infrastructure: RefSCC, SCC, and Node. In each case, we are working bottom up and so we want to continue to iterate on the "lowest" node as the graph changes. Look at how we iterate over nodes in an SCC running function passes as those function passes mutate the CG. We continue to iterate on the "lowest" SCC, which is the one that continues to contain the function just processed. - The call graph structure re-uses SCCs (and RefSCCs) during mutation events for the *highest* entry in the resulting new subgraph, not the lowest. This means that it is necessary to continually update the current SCC or RefSCC as it shifts. This is really surprising and subtle, and took a long time for me to work out. I actually tried changing the call graph to provide the opposite behavior, and it breaks *EVERYTHING*. The graph update algorithms are really deeply tied to this particualr pattern. - When SCCs or RefSCCs are split apart and refined and we continually re-pin our processing to the bottom one in the subgraph, we need to enqueue the newly formed SCCs and RefSCCs for subsequent processing. Queuing them presents a few challenges: 1) SCCs and RefSCCs use wildly different iteration strategies at a high level. We end up needing to converge them on worklist approaches that can be extended in order to be able to handle the mutations. 2) The order of the enqueuing need to remain bottom-up post-order so that we don't get surprising order of visitation for things like the inliner. 3) We need the worklists to have set semantics so we don't duplicate things endlessly. We don't need a *persistent* set though because we always keep processing the bottom node!!!! This is super, super surprising to me and took a long time to convince myself this is correct, but I'm pretty sure it is... Once we sink down to the bottom node, we can't re-split out the same node in any way, and the postorder of the current queue is fixed and unchanging. 4) We need to make sure that the "current" SCC or RefSCC actually gets enqueued here such that we re-visit it because we continue processing a *new*, *bottom* SCC/RefSCC. - We also need the ability to *skip* SCCs and RefSCCs that get merged into a larger component. We even need the ability to skip *nodes* from an SCC that are no longer part of that SCC. This led to the design you see in the patch which uses SetVector-based worklists. The RefSCC worklist is always empty until an update occurs and is just used to handle those RefSCCs created by updates as the others don't even exist yet and are formed on-demand during the bottom-up walk. The SCC worklist is pre-populated from the RefSCC, and we push new SCCs onto it and blacklist existing SCCs on it to get the desired processing. We then *directly* update these when updating the call graph as I was never able to find a satisfactory abstraction around the update strategy. Finally, we need to compute the updates for function passes. This is mostly used as an initial customer of all the update mechanisms to drive their design to at least cover some real set of use cases. There are a bunch of interesting things that came out of doing this: - It is really nice to do this a function at a time because that function is likely hot in the cache. This means we want even the function pass adaptor to support online updates to the call graph! - To update the call graph after arbitrary function pass mutations is quite hard. We have to build a fairly comprehensive set of data structures and then process them. Fortunately, some of this code is related to the code for building the cal graph in the first place. Unfortunately, very little of it makes any sense to share because the nature of what we're doing is so very different. I've factored out the one part that made sense at least. - We need to transfer these updates into the various structures for the CGSCC pass manager. Once those were more sanely worked out, this became relatively easier. But some of those needs necessitated changes to the LazyCallGraph interface to make it significantly easier to extract the changed SCCs from an update operation. - We also need to update the CGSCC analysis manager as the shape of the graph changes. When an SCC is merged away we need to clear analyses associated with it from the analysis manager which we didn't have support for in the analysis manager infrsatructure. New SCCs are easy! But then we have the case that the original SCC has its shape changed but remains in the call graph. There we need to *invalidate* the analyses associated with it. - We also need to invalidate analyses after we *finish* processing an SCC. But the analyses we need to invalidate here are *only those for the newly updated SCC*!!! Because we only continue processing the bottom SCC, if we split SCCs apart the original one gets invalidated once when its shape changes and is not processed farther so its analyses will be correct. It is the bottom SCC which continues being processed and needs to have the "normal" invalidation done based on the preserved analyses set. All of this is mostly background and context for the changes here. Many thanks to all the reviewers who helped here. Especially Sanjoy who caught several interesting bugs in the graph algorithms, David, Sean, and others who all helped with feedback. Differential Revision: http://reviews.llvm.org/D21464 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@279618 91177308-0d34-0410-b5e6-96231b3b80d8
1285 lines
44 KiB
C++
1285 lines
44 KiB
C++
//===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements interprocedural passes which walk the
|
|
/// call-graph deducing and/or propagating function attributes.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/SCCIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CallGraphSCCPass.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "functionattrs"
|
|
|
|
STATISTIC(NumReadNone, "Number of functions marked readnone");
|
|
STATISTIC(NumReadOnly, "Number of functions marked readonly");
|
|
STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
|
|
STATISTIC(NumReturned, "Number of arguments marked returned");
|
|
STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
|
|
STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
|
|
STATISTIC(NumNoAlias, "Number of function returns marked noalias");
|
|
STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
|
|
STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
|
|
|
|
namespace {
|
|
typedef SmallSetVector<Function *, 8> SCCNodeSet;
|
|
}
|
|
|
|
namespace {
|
|
/// The three kinds of memory access relevant to 'readonly' and
|
|
/// 'readnone' attributes.
|
|
enum MemoryAccessKind {
|
|
MAK_ReadNone = 0,
|
|
MAK_ReadOnly = 1,
|
|
MAK_MayWrite = 2
|
|
};
|
|
}
|
|
|
|
static MemoryAccessKind checkFunctionMemoryAccess(Function &F, AAResults &AAR,
|
|
const SCCNodeSet &SCCNodes) {
|
|
FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
|
|
if (MRB == FMRB_DoesNotAccessMemory)
|
|
// Already perfect!
|
|
return MAK_ReadNone;
|
|
|
|
// Non-exact function definitions may not be selected at link time, and an
|
|
// alternative version that writes to memory may be selected. See the comment
|
|
// on GlobalValue::isDefinitionExact for more details.
|
|
if (!F.hasExactDefinition()) {
|
|
if (AliasAnalysis::onlyReadsMemory(MRB))
|
|
return MAK_ReadOnly;
|
|
|
|
// Conservatively assume it writes to memory.
|
|
return MAK_MayWrite;
|
|
}
|
|
|
|
// Scan the function body for instructions that may read or write memory.
|
|
bool ReadsMemory = false;
|
|
for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
|
|
Instruction *I = &*II;
|
|
|
|
// Some instructions can be ignored even if they read or write memory.
|
|
// Detect these now, skipping to the next instruction if one is found.
|
|
CallSite CS(cast<Value>(I));
|
|
if (CS) {
|
|
// Ignore calls to functions in the same SCC, as long as the call sites
|
|
// don't have operand bundles. Calls with operand bundles are allowed to
|
|
// have memory effects not described by the memory effects of the call
|
|
// target.
|
|
if (!CS.hasOperandBundles() && CS.getCalledFunction() &&
|
|
SCCNodes.count(CS.getCalledFunction()))
|
|
continue;
|
|
FunctionModRefBehavior MRB = AAR.getModRefBehavior(CS);
|
|
|
|
// If the call doesn't access memory, we're done.
|
|
if (!(MRB & MRI_ModRef))
|
|
continue;
|
|
|
|
if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
|
|
// The call could access any memory. If that includes writes, give up.
|
|
if (MRB & MRI_Mod)
|
|
return MAK_MayWrite;
|
|
// If it reads, note it.
|
|
if (MRB & MRI_Ref)
|
|
ReadsMemory = true;
|
|
continue;
|
|
}
|
|
|
|
// Check whether all pointer arguments point to local memory, and
|
|
// ignore calls that only access local memory.
|
|
for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
|
|
CI != CE; ++CI) {
|
|
Value *Arg = *CI;
|
|
if (!Arg->getType()->isPtrOrPtrVectorTy())
|
|
continue;
|
|
|
|
AAMDNodes AAInfo;
|
|
I->getAAMetadata(AAInfo);
|
|
MemoryLocation Loc(Arg, MemoryLocation::UnknownSize, AAInfo);
|
|
|
|
// Skip accesses to local or constant memory as they don't impact the
|
|
// externally visible mod/ref behavior.
|
|
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
|
|
continue;
|
|
|
|
if (MRB & MRI_Mod)
|
|
// Writes non-local memory. Give up.
|
|
return MAK_MayWrite;
|
|
if (MRB & MRI_Ref)
|
|
// Ok, it reads non-local memory.
|
|
ReadsMemory = true;
|
|
}
|
|
continue;
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
// Ignore non-volatile loads from local memory. (Atomic is okay here.)
|
|
if (!LI->isVolatile()) {
|
|
MemoryLocation Loc = MemoryLocation::get(LI);
|
|
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
|
|
continue;
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
// Ignore non-volatile stores to local memory. (Atomic is okay here.)
|
|
if (!SI->isVolatile()) {
|
|
MemoryLocation Loc = MemoryLocation::get(SI);
|
|
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
|
|
continue;
|
|
}
|
|
} else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
|
|
// Ignore vaargs on local memory.
|
|
MemoryLocation Loc = MemoryLocation::get(VI);
|
|
if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
|
|
continue;
|
|
}
|
|
|
|
// Any remaining instructions need to be taken seriously! Check if they
|
|
// read or write memory.
|
|
if (I->mayWriteToMemory())
|
|
// Writes memory. Just give up.
|
|
return MAK_MayWrite;
|
|
|
|
// If this instruction may read memory, remember that.
|
|
ReadsMemory |= I->mayReadFromMemory();
|
|
}
|
|
|
|
return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
|
|
}
|
|
|
|
/// Deduce readonly/readnone attributes for the SCC.
|
|
template <typename AARGetterT>
|
|
static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT AARGetter) {
|
|
// Check if any of the functions in the SCC read or write memory. If they
|
|
// write memory then they can't be marked readnone or readonly.
|
|
bool ReadsMemory = false;
|
|
for (Function *F : SCCNodes) {
|
|
// Call the callable parameter to look up AA results for this function.
|
|
AAResults &AAR = AARGetter(*F);
|
|
|
|
switch (checkFunctionMemoryAccess(*F, AAR, SCCNodes)) {
|
|
case MAK_MayWrite:
|
|
return false;
|
|
case MAK_ReadOnly:
|
|
ReadsMemory = true;
|
|
break;
|
|
case MAK_ReadNone:
|
|
// Nothing to do!
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Success! Functions in this SCC do not access memory, or only read memory.
|
|
// Give them the appropriate attribute.
|
|
bool MadeChange = false;
|
|
for (Function *F : SCCNodes) {
|
|
if (F->doesNotAccessMemory())
|
|
// Already perfect!
|
|
continue;
|
|
|
|
if (F->onlyReadsMemory() && ReadsMemory)
|
|
// No change.
|
|
continue;
|
|
|
|
MadeChange = true;
|
|
|
|
// Clear out any existing attributes.
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
|
|
F->removeAttributes(
|
|
AttributeSet::FunctionIndex,
|
|
AttributeSet::get(F->getContext(), AttributeSet::FunctionIndex, B));
|
|
|
|
// Add in the new attribute.
|
|
F->addAttribute(AttributeSet::FunctionIndex,
|
|
ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
|
|
|
|
if (ReadsMemory)
|
|
++NumReadOnly;
|
|
else
|
|
++NumReadNone;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
namespace {
|
|
/// For a given pointer Argument, this retains a list of Arguments of functions
|
|
/// in the same SCC that the pointer data flows into. We use this to build an
|
|
/// SCC of the arguments.
|
|
struct ArgumentGraphNode {
|
|
Argument *Definition;
|
|
SmallVector<ArgumentGraphNode *, 4> Uses;
|
|
};
|
|
|
|
class ArgumentGraph {
|
|
// We store pointers to ArgumentGraphNode objects, so it's important that
|
|
// that they not move around upon insert.
|
|
typedef std::map<Argument *, ArgumentGraphNode> ArgumentMapTy;
|
|
|
|
ArgumentMapTy ArgumentMap;
|
|
|
|
// There is no root node for the argument graph, in fact:
|
|
// void f(int *x, int *y) { if (...) f(x, y); }
|
|
// is an example where the graph is disconnected. The SCCIterator requires a
|
|
// single entry point, so we maintain a fake ("synthetic") root node that
|
|
// uses every node. Because the graph is directed and nothing points into
|
|
// the root, it will not participate in any SCCs (except for its own).
|
|
ArgumentGraphNode SyntheticRoot;
|
|
|
|
public:
|
|
ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
|
|
|
|
typedef SmallVectorImpl<ArgumentGraphNode *>::iterator iterator;
|
|
|
|
iterator begin() { return SyntheticRoot.Uses.begin(); }
|
|
iterator end() { return SyntheticRoot.Uses.end(); }
|
|
ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
|
|
|
|
ArgumentGraphNode *operator[](Argument *A) {
|
|
ArgumentGraphNode &Node = ArgumentMap[A];
|
|
Node.Definition = A;
|
|
SyntheticRoot.Uses.push_back(&Node);
|
|
return &Node;
|
|
}
|
|
};
|
|
|
|
/// This tracker checks whether callees are in the SCC, and if so it does not
|
|
/// consider that a capture, instead adding it to the "Uses" list and
|
|
/// continuing with the analysis.
|
|
struct ArgumentUsesTracker : public CaptureTracker {
|
|
ArgumentUsesTracker(const SCCNodeSet &SCCNodes)
|
|
: Captured(false), SCCNodes(SCCNodes) {}
|
|
|
|
void tooManyUses() override { Captured = true; }
|
|
|
|
bool captured(const Use *U) override {
|
|
CallSite CS(U->getUser());
|
|
if (!CS.getInstruction()) {
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
Function *F = CS.getCalledFunction();
|
|
if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
// Note: the callee and the two successor blocks *follow* the argument
|
|
// operands. This means there is no need to adjust UseIndex to account for
|
|
// these.
|
|
|
|
unsigned UseIndex =
|
|
std::distance(const_cast<const Use *>(CS.arg_begin()), U);
|
|
|
|
assert(UseIndex < CS.data_operands_size() &&
|
|
"Indirect function calls should have been filtered above!");
|
|
|
|
if (UseIndex >= CS.getNumArgOperands()) {
|
|
// Data operand, but not a argument operand -- must be a bundle operand
|
|
assert(CS.hasOperandBundles() && "Must be!");
|
|
|
|
// CaptureTracking told us that we're being captured by an operand bundle
|
|
// use. In this case it does not matter if the callee is within our SCC
|
|
// or not -- we've been captured in some unknown way, and we have to be
|
|
// conservative.
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
if (UseIndex >= F->arg_size()) {
|
|
assert(F->isVarArg() && "More params than args in non-varargs call");
|
|
Captured = true;
|
|
return true;
|
|
}
|
|
|
|
Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
|
|
return false;
|
|
}
|
|
|
|
bool Captured; // True only if certainly captured (used outside our SCC).
|
|
SmallVector<Argument *, 4> Uses; // Uses within our SCC.
|
|
|
|
const SCCNodeSet &SCCNodes;
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
template <> struct GraphTraits<ArgumentGraphNode *> {
|
|
typedef ArgumentGraphNode *NodeRef;
|
|
typedef SmallVectorImpl<ArgumentGraphNode *>::iterator ChildIteratorType;
|
|
|
|
static inline NodeRef getEntryNode(NodeRef A) { return A; }
|
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
|
return N->Uses.begin();
|
|
}
|
|
static inline ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
|
|
};
|
|
template <>
|
|
struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
|
|
static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
|
|
static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
|
|
return AG->begin();
|
|
}
|
|
static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
|
|
};
|
|
}
|
|
|
|
/// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
|
|
static Attribute::AttrKind
|
|
determinePointerReadAttrs(Argument *A,
|
|
const SmallPtrSet<Argument *, 8> &SCCNodes) {
|
|
|
|
SmallVector<Use *, 32> Worklist;
|
|
SmallSet<Use *, 32> Visited;
|
|
|
|
// inalloca arguments are always clobbered by the call.
|
|
if (A->hasInAllocaAttr())
|
|
return Attribute::None;
|
|
|
|
bool IsRead = false;
|
|
// We don't need to track IsWritten. If A is written to, return immediately.
|
|
|
|
for (Use &U : A->uses()) {
|
|
Visited.insert(&U);
|
|
Worklist.push_back(&U);
|
|
}
|
|
|
|
while (!Worklist.empty()) {
|
|
Use *U = Worklist.pop_back_val();
|
|
Instruction *I = cast<Instruction>(U->getUser());
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::PHI:
|
|
case Instruction::Select:
|
|
case Instruction::AddrSpaceCast:
|
|
// The original value is not read/written via this if the new value isn't.
|
|
for (Use &UU : I->uses())
|
|
if (Visited.insert(&UU).second)
|
|
Worklist.push_back(&UU);
|
|
break;
|
|
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
bool Captures = true;
|
|
|
|
if (I->getType()->isVoidTy())
|
|
Captures = false;
|
|
|
|
auto AddUsersToWorklistIfCapturing = [&] {
|
|
if (Captures)
|
|
for (Use &UU : I->uses())
|
|
if (Visited.insert(&UU).second)
|
|
Worklist.push_back(&UU);
|
|
};
|
|
|
|
CallSite CS(I);
|
|
if (CS.doesNotAccessMemory()) {
|
|
AddUsersToWorklistIfCapturing();
|
|
continue;
|
|
}
|
|
|
|
Function *F = CS.getCalledFunction();
|
|
if (!F) {
|
|
if (CS.onlyReadsMemory()) {
|
|
IsRead = true;
|
|
AddUsersToWorklistIfCapturing();
|
|
continue;
|
|
}
|
|
return Attribute::None;
|
|
}
|
|
|
|
// Note: the callee and the two successor blocks *follow* the argument
|
|
// operands. This means there is no need to adjust UseIndex to account
|
|
// for these.
|
|
|
|
unsigned UseIndex = std::distance(CS.arg_begin(), U);
|
|
|
|
// U cannot be the callee operand use: since we're exploring the
|
|
// transitive uses of an Argument, having such a use be a callee would
|
|
// imply the CallSite is an indirect call or invoke; and we'd take the
|
|
// early exit above.
|
|
assert(UseIndex < CS.data_operands_size() &&
|
|
"Data operand use expected!");
|
|
|
|
bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
|
|
|
|
if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
|
|
assert(F->isVarArg() && "More params than args in non-varargs call");
|
|
return Attribute::None;
|
|
}
|
|
|
|
Captures &= !CS.doesNotCapture(UseIndex);
|
|
|
|
// Since the optimizer (by design) cannot see the data flow corresponding
|
|
// to a operand bundle use, these cannot participate in the optimistic SCC
|
|
// analysis. Instead, we model the operand bundle uses as arguments in
|
|
// call to a function external to the SCC.
|
|
if (IsOperandBundleUse ||
|
|
!SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
|
|
|
|
// The accessors used on CallSite here do the right thing for calls and
|
|
// invokes with operand bundles.
|
|
|
|
if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
|
|
return Attribute::None;
|
|
if (!CS.doesNotAccessMemory(UseIndex))
|
|
IsRead = true;
|
|
}
|
|
|
|
AddUsersToWorklistIfCapturing();
|
|
break;
|
|
}
|
|
|
|
case Instruction::Load:
|
|
// A volatile load has side effects beyond what readonly can be relied
|
|
// upon.
|
|
if (cast<LoadInst>(I)->isVolatile())
|
|
return Attribute::None;
|
|
|
|
IsRead = true;
|
|
break;
|
|
|
|
case Instruction::ICmp:
|
|
case Instruction::Ret:
|
|
break;
|
|
|
|
default:
|
|
return Attribute::None;
|
|
}
|
|
}
|
|
|
|
return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
|
|
}
|
|
|
|
/// Deduce returned attributes for the SCC.
|
|
static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
|
|
bool Changed = false;
|
|
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::Returned);
|
|
|
|
// Check each function in turn, determining if an argument is always returned.
|
|
for (Function *F : SCCNodes) {
|
|
// We can infer and propagate function attributes only when we know that the
|
|
// definition we'll get at link time is *exactly* the definition we see now.
|
|
// For more details, see GlobalValue::mayBeDerefined.
|
|
if (!F->hasExactDefinition())
|
|
continue;
|
|
|
|
if (F->getReturnType()->isVoidTy())
|
|
continue;
|
|
|
|
auto FindRetArg = [&]() -> Value * {
|
|
Value *RetArg = nullptr;
|
|
for (BasicBlock &BB : *F)
|
|
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
|
|
// Note that stripPointerCasts should look through functions with
|
|
// returned arguments.
|
|
Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
|
|
if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
|
|
return nullptr;
|
|
|
|
if (!RetArg)
|
|
RetArg = RetVal;
|
|
else if (RetArg != RetVal)
|
|
return nullptr;
|
|
}
|
|
|
|
return RetArg;
|
|
};
|
|
|
|
if (Value *RetArg = FindRetArg()) {
|
|
auto *A = cast<Argument>(RetArg);
|
|
A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
|
|
++NumReturned;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Deduce nocapture attributes for the SCC.
|
|
static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
|
|
bool Changed = false;
|
|
|
|
ArgumentGraph AG;
|
|
|
|
AttrBuilder B;
|
|
B.addAttribute(Attribute::NoCapture);
|
|
|
|
// Check each function in turn, determining which pointer arguments are not
|
|
// captured.
|
|
for (Function *F : SCCNodes) {
|
|
// We can infer and propagate function attributes only when we know that the
|
|
// definition we'll get at link time is *exactly* the definition we see now.
|
|
// For more details, see GlobalValue::mayBeDerefined.
|
|
if (!F->hasExactDefinition())
|
|
continue;
|
|
|
|
// Functions that are readonly (or readnone) and nounwind and don't return
|
|
// a value can't capture arguments. Don't analyze them.
|
|
if (F->onlyReadsMemory() && F->doesNotThrow() &&
|
|
F->getReturnType()->isVoidTy()) {
|
|
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
|
|
++A) {
|
|
if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
|
|
A->addAttr(AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
|
|
++NumNoCapture;
|
|
Changed = true;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
|
|
++A) {
|
|
if (!A->getType()->isPointerTy())
|
|
continue;
|
|
bool HasNonLocalUses = false;
|
|
if (!A->hasNoCaptureAttr()) {
|
|
ArgumentUsesTracker Tracker(SCCNodes);
|
|
PointerMayBeCaptured(&*A, &Tracker);
|
|
if (!Tracker.Captured) {
|
|
if (Tracker.Uses.empty()) {
|
|
// If it's trivially not captured, mark it nocapture now.
|
|
A->addAttr(
|
|
AttributeSet::get(F->getContext(), A->getArgNo() + 1, B));
|
|
++NumNoCapture;
|
|
Changed = true;
|
|
} else {
|
|
// If it's not trivially captured and not trivially not captured,
|
|
// then it must be calling into another function in our SCC. Save
|
|
// its particulars for Argument-SCC analysis later.
|
|
ArgumentGraphNode *Node = AG[&*A];
|
|
for (Argument *Use : Tracker.Uses) {
|
|
Node->Uses.push_back(AG[Use]);
|
|
if (Use != &*A)
|
|
HasNonLocalUses = true;
|
|
}
|
|
}
|
|
}
|
|
// Otherwise, it's captured. Don't bother doing SCC analysis on it.
|
|
}
|
|
if (!HasNonLocalUses && !A->onlyReadsMemory()) {
|
|
// Can we determine that it's readonly/readnone without doing an SCC?
|
|
// Note that we don't allow any calls at all here, or else our result
|
|
// will be dependent on the iteration order through the functions in the
|
|
// SCC.
|
|
SmallPtrSet<Argument *, 8> Self;
|
|
Self.insert(&*A);
|
|
Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
|
|
if (R != Attribute::None) {
|
|
AttrBuilder B;
|
|
B.addAttribute(R);
|
|
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
|
|
Changed = true;
|
|
R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// The graph we've collected is partial because we stopped scanning for
|
|
// argument uses once we solved the argument trivially. These partial nodes
|
|
// show up as ArgumentGraphNode objects with an empty Uses list, and for
|
|
// these nodes the final decision about whether they capture has already been
|
|
// made. If the definition doesn't have a 'nocapture' attribute by now, it
|
|
// captures.
|
|
|
|
for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
|
|
const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
|
|
if (ArgumentSCC.size() == 1) {
|
|
if (!ArgumentSCC[0]->Definition)
|
|
continue; // synthetic root node
|
|
|
|
// eg. "void f(int* x) { if (...) f(x); }"
|
|
if (ArgumentSCC[0]->Uses.size() == 1 &&
|
|
ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
|
|
Argument *A = ArgumentSCC[0]->Definition;
|
|
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
|
|
++NumNoCapture;
|
|
Changed = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bool SCCCaptured = false;
|
|
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
|
|
I != E && !SCCCaptured; ++I) {
|
|
ArgumentGraphNode *Node = *I;
|
|
if (Node->Uses.empty()) {
|
|
if (!Node->Definition->hasNoCaptureAttr())
|
|
SCCCaptured = true;
|
|
}
|
|
}
|
|
if (SCCCaptured)
|
|
continue;
|
|
|
|
SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
|
|
// Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
|
|
// quickly looking up whether a given Argument is in this ArgumentSCC.
|
|
for (ArgumentGraphNode *I : ArgumentSCC) {
|
|
ArgumentSCCNodes.insert(I->Definition);
|
|
}
|
|
|
|
for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
|
|
I != E && !SCCCaptured; ++I) {
|
|
ArgumentGraphNode *N = *I;
|
|
for (ArgumentGraphNode *Use : N->Uses) {
|
|
Argument *A = Use->Definition;
|
|
if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
|
|
continue;
|
|
SCCCaptured = true;
|
|
break;
|
|
}
|
|
}
|
|
if (SCCCaptured)
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
|
|
Argument *A = ArgumentSCC[i]->Definition;
|
|
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
|
|
++NumNoCapture;
|
|
Changed = true;
|
|
}
|
|
|
|
// We also want to compute readonly/readnone. With a small number of false
|
|
// negatives, we can assume that any pointer which is captured isn't going
|
|
// to be provably readonly or readnone, since by definition we can't
|
|
// analyze all uses of a captured pointer.
|
|
//
|
|
// The false negatives happen when the pointer is captured by a function
|
|
// that promises readonly/readnone behaviour on the pointer, then the
|
|
// pointer's lifetime ends before anything that writes to arbitrary memory.
|
|
// Also, a readonly/readnone pointer may be returned, but returning a
|
|
// pointer is capturing it.
|
|
|
|
Attribute::AttrKind ReadAttr = Attribute::ReadNone;
|
|
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
|
|
Argument *A = ArgumentSCC[i]->Definition;
|
|
Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
|
|
if (K == Attribute::ReadNone)
|
|
continue;
|
|
if (K == Attribute::ReadOnly) {
|
|
ReadAttr = Attribute::ReadOnly;
|
|
continue;
|
|
}
|
|
ReadAttr = K;
|
|
break;
|
|
}
|
|
|
|
if (ReadAttr != Attribute::None) {
|
|
AttrBuilder B, R;
|
|
B.addAttribute(ReadAttr);
|
|
R.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
|
|
for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
|
|
Argument *A = ArgumentSCC[i]->Definition;
|
|
// Clear out existing readonly/readnone attributes
|
|
A->removeAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, R));
|
|
A->addAttr(AttributeSet::get(A->getContext(), A->getArgNo() + 1, B));
|
|
ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Tests whether a function is "malloc-like".
|
|
///
|
|
/// A function is "malloc-like" if it returns either null or a pointer that
|
|
/// doesn't alias any other pointer visible to the caller.
|
|
static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
|
|
SmallSetVector<Value *, 8> FlowsToReturn;
|
|
for (BasicBlock &BB : *F)
|
|
if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
|
|
FlowsToReturn.insert(Ret->getReturnValue());
|
|
|
|
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
|
|
Value *RetVal = FlowsToReturn[i];
|
|
|
|
if (Constant *C = dyn_cast<Constant>(RetVal)) {
|
|
if (!C->isNullValue() && !isa<UndefValue>(C))
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (isa<Argument>(RetVal))
|
|
return false;
|
|
|
|
if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
|
|
switch (RVI->getOpcode()) {
|
|
// Extend the analysis by looking upwards.
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::AddrSpaceCast:
|
|
FlowsToReturn.insert(RVI->getOperand(0));
|
|
continue;
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(RVI);
|
|
FlowsToReturn.insert(SI->getTrueValue());
|
|
FlowsToReturn.insert(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
case Instruction::PHI: {
|
|
PHINode *PN = cast<PHINode>(RVI);
|
|
for (Value *IncValue : PN->incoming_values())
|
|
FlowsToReturn.insert(IncValue);
|
|
continue;
|
|
}
|
|
|
|
// Check whether the pointer came from an allocation.
|
|
case Instruction::Alloca:
|
|
break;
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
CallSite CS(RVI);
|
|
if (CS.paramHasAttr(0, Attribute::NoAlias))
|
|
break;
|
|
if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
|
|
break;
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
default:
|
|
return false; // Did not come from an allocation.
|
|
}
|
|
|
|
if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Deduce noalias attributes for the SCC.
|
|
static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
|
|
// Check each function in turn, determining which functions return noalias
|
|
// pointers.
|
|
for (Function *F : SCCNodes) {
|
|
// Already noalias.
|
|
if (F->doesNotAlias(0))
|
|
continue;
|
|
|
|
// We can infer and propagate function attributes only when we know that the
|
|
// definition we'll get at link time is *exactly* the definition we see now.
|
|
// For more details, see GlobalValue::mayBeDerefined.
|
|
if (!F->hasExactDefinition())
|
|
return false;
|
|
|
|
// We annotate noalias return values, which are only applicable to
|
|
// pointer types.
|
|
if (!F->getReturnType()->isPointerTy())
|
|
continue;
|
|
|
|
if (!isFunctionMallocLike(F, SCCNodes))
|
|
return false;
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (Function *F : SCCNodes) {
|
|
if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
|
|
continue;
|
|
|
|
F->setDoesNotAlias(0);
|
|
++NumNoAlias;
|
|
MadeChange = true;
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Tests whether this function is known to not return null.
|
|
///
|
|
/// Requires that the function returns a pointer.
|
|
///
|
|
/// Returns true if it believes the function will not return a null, and sets
|
|
/// \p Speculative based on whether the returned conclusion is a speculative
|
|
/// conclusion due to SCC calls.
|
|
static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
|
|
bool &Speculative) {
|
|
assert(F->getReturnType()->isPointerTy() &&
|
|
"nonnull only meaningful on pointer types");
|
|
Speculative = false;
|
|
|
|
SmallSetVector<Value *, 8> FlowsToReturn;
|
|
for (BasicBlock &BB : *F)
|
|
if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
|
|
FlowsToReturn.insert(Ret->getReturnValue());
|
|
|
|
for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
|
|
Value *RetVal = FlowsToReturn[i];
|
|
|
|
// If this value is locally known to be non-null, we're good
|
|
if (isKnownNonNull(RetVal))
|
|
continue;
|
|
|
|
// Otherwise, we need to look upwards since we can't make any local
|
|
// conclusions.
|
|
Instruction *RVI = dyn_cast<Instruction>(RetVal);
|
|
if (!RVI)
|
|
return false;
|
|
switch (RVI->getOpcode()) {
|
|
// Extend the analysis by looking upwards.
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
case Instruction::AddrSpaceCast:
|
|
FlowsToReturn.insert(RVI->getOperand(0));
|
|
continue;
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(RVI);
|
|
FlowsToReturn.insert(SI->getTrueValue());
|
|
FlowsToReturn.insert(SI->getFalseValue());
|
|
continue;
|
|
}
|
|
case Instruction::PHI: {
|
|
PHINode *PN = cast<PHINode>(RVI);
|
|
for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
FlowsToReturn.insert(PN->getIncomingValue(i));
|
|
continue;
|
|
}
|
|
case Instruction::Call:
|
|
case Instruction::Invoke: {
|
|
CallSite CS(RVI);
|
|
Function *Callee = CS.getCalledFunction();
|
|
// A call to a node within the SCC is assumed to return null until
|
|
// proven otherwise
|
|
if (Callee && SCCNodes.count(Callee)) {
|
|
Speculative = true;
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
default:
|
|
return false; // Unknown source, may be null
|
|
};
|
|
llvm_unreachable("should have either continued or returned");
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Deduce nonnull attributes for the SCC.
|
|
static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
|
|
// Speculative that all functions in the SCC return only nonnull
|
|
// pointers. We may refute this as we analyze functions.
|
|
bool SCCReturnsNonNull = true;
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Check each function in turn, determining which functions return nonnull
|
|
// pointers.
|
|
for (Function *F : SCCNodes) {
|
|
// Already nonnull.
|
|
if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
|
|
Attribute::NonNull))
|
|
continue;
|
|
|
|
// We can infer and propagate function attributes only when we know that the
|
|
// definition we'll get at link time is *exactly* the definition we see now.
|
|
// For more details, see GlobalValue::mayBeDerefined.
|
|
if (!F->hasExactDefinition())
|
|
return false;
|
|
|
|
// We annotate nonnull return values, which are only applicable to
|
|
// pointer types.
|
|
if (!F->getReturnType()->isPointerTy())
|
|
continue;
|
|
|
|
bool Speculative = false;
|
|
if (isReturnNonNull(F, SCCNodes, Speculative)) {
|
|
if (!Speculative) {
|
|
// Mark the function eagerly since we may discover a function
|
|
// which prevents us from speculating about the entire SCC
|
|
DEBUG(dbgs() << "Eagerly marking " << F->getName() << " as nonnull\n");
|
|
F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
|
|
++NumNonNullReturn;
|
|
MadeChange = true;
|
|
}
|
|
continue;
|
|
}
|
|
// At least one function returns something which could be null, can't
|
|
// speculate any more.
|
|
SCCReturnsNonNull = false;
|
|
}
|
|
|
|
if (SCCReturnsNonNull) {
|
|
for (Function *F : SCCNodes) {
|
|
if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
|
|
Attribute::NonNull) ||
|
|
!F->getReturnType()->isPointerTy())
|
|
continue;
|
|
|
|
DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
|
|
F->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
|
|
++NumNonNullReturn;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Remove the convergent attribute from all functions in the SCC if every
|
|
/// callsite within the SCC is not convergent (except for calls to functions
|
|
/// within the SCC). Returns true if changes were made.
|
|
static bool removeConvergentAttrs(const SCCNodeSet &SCCNodes) {
|
|
// For every function in SCC, ensure that either
|
|
// * it is not convergent, or
|
|
// * we can remove its convergent attribute.
|
|
bool HasConvergentFn = false;
|
|
for (Function *F : SCCNodes) {
|
|
if (!F->isConvergent()) continue;
|
|
HasConvergentFn = true;
|
|
|
|
// Can't remove convergent from function declarations.
|
|
if (F->isDeclaration()) return false;
|
|
|
|
// Can't remove convergent if any of our functions has a convergent call to a
|
|
// function not in the SCC.
|
|
for (Instruction &I : instructions(*F)) {
|
|
CallSite CS(&I);
|
|
// Bail if CS is a convergent call to a function not in the SCC.
|
|
if (CS && CS.isConvergent() &&
|
|
SCCNodes.count(CS.getCalledFunction()) == 0)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the SCC doesn't have any convergent functions, we have nothing to do.
|
|
if (!HasConvergentFn) return false;
|
|
|
|
// If we got here, all of the calls the SCC makes to functions not in the SCC
|
|
// are non-convergent. Therefore all of the SCC's functions can also be made
|
|
// non-convergent. We'll remove the attr from the callsites in
|
|
// InstCombineCalls.
|
|
for (Function *F : SCCNodes) {
|
|
if (!F->isConvergent()) continue;
|
|
|
|
DEBUG(dbgs() << "Removing convergent attr from fn " << F->getName()
|
|
<< "\n");
|
|
F->setNotConvergent();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool setDoesNotRecurse(Function &F) {
|
|
if (F.doesNotRecurse())
|
|
return false;
|
|
F.setDoesNotRecurse();
|
|
++NumNoRecurse;
|
|
return true;
|
|
}
|
|
|
|
static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
|
|
// Try and identify functions that do not recurse.
|
|
|
|
// If the SCC contains multiple nodes we know for sure there is recursion.
|
|
if (SCCNodes.size() != 1)
|
|
return false;
|
|
|
|
Function *F = *SCCNodes.begin();
|
|
if (!F || F->isDeclaration() || F->doesNotRecurse())
|
|
return false;
|
|
|
|
// If all of the calls in F are identifiable and are to norecurse functions, F
|
|
// is norecurse. This check also detects self-recursion as F is not currently
|
|
// marked norecurse, so any called from F to F will not be marked norecurse.
|
|
for (Instruction &I : instructions(*F))
|
|
if (auto CS = CallSite(&I)) {
|
|
Function *Callee = CS.getCalledFunction();
|
|
if (!Callee || Callee == F || !Callee->doesNotRecurse())
|
|
// Function calls a potentially recursive function.
|
|
return false;
|
|
}
|
|
|
|
// Every call was to a non-recursive function other than this function, and
|
|
// we have no indirect recursion as the SCC size is one. This function cannot
|
|
// recurse.
|
|
return setDoesNotRecurse(*F);
|
|
}
|
|
|
|
PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &) {
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
// We pass a lambda into functions to wire them up to the analysis manager
|
|
// for getting function analyses.
|
|
auto AARGetter = [&](Function &F) -> AAResults & {
|
|
return FAM.getResult<AAManager>(F);
|
|
};
|
|
|
|
// Fill SCCNodes with the elements of the SCC. Also track whether there are
|
|
// any external or opt-none nodes that will prevent us from optimizing any
|
|
// part of the SCC.
|
|
SCCNodeSet SCCNodes;
|
|
bool HasUnknownCall = false;
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function &F = N.getFunction();
|
|
if (F.hasFnAttribute(Attribute::OptimizeNone)) {
|
|
// Treat any function we're trying not to optimize as if it were an
|
|
// indirect call and omit it from the node set used below.
|
|
HasUnknownCall = true;
|
|
continue;
|
|
}
|
|
// Track whether any functions in this SCC have an unknown call edge.
|
|
// Note: if this is ever a performance hit, we can common it with
|
|
// subsequent routines which also do scans over the instructions of the
|
|
// function.
|
|
if (!HasUnknownCall)
|
|
for (Instruction &I : instructions(F))
|
|
if (auto CS = CallSite(&I))
|
|
if (!CS.getCalledFunction()) {
|
|
HasUnknownCall = true;
|
|
break;
|
|
}
|
|
|
|
SCCNodes.insert(&F);
|
|
}
|
|
|
|
bool Changed = false;
|
|
Changed |= addArgumentReturnedAttrs(SCCNodes);
|
|
Changed |= addReadAttrs(SCCNodes, AARGetter);
|
|
Changed |= addArgumentAttrs(SCCNodes);
|
|
|
|
// If we have no external nodes participating in the SCC, we can deduce some
|
|
// more precise attributes as well.
|
|
if (!HasUnknownCall) {
|
|
Changed |= addNoAliasAttrs(SCCNodes);
|
|
Changed |= addNonNullAttrs(SCCNodes);
|
|
Changed |= removeConvergentAttrs(SCCNodes);
|
|
Changed |= addNoRecurseAttrs(SCCNodes);
|
|
}
|
|
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
}
|
|
|
|
namespace {
|
|
struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
|
|
initializePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnSCC(CallGraphSCC &SCC) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
getAAResultsAnalysisUsage(AU);
|
|
CallGraphSCCPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char PostOrderFunctionAttrsLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
|
|
"Deduce function attributes", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
|
|
"Deduce function attributes", false, false)
|
|
|
|
Pass *llvm::createPostOrderFunctionAttrsLegacyPass() { return new PostOrderFunctionAttrsLegacyPass(); }
|
|
|
|
template <typename AARGetterT>
|
|
static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
|
|
bool Changed = false;
|
|
|
|
// Fill SCCNodes with the elements of the SCC. Used for quickly looking up
|
|
// whether a given CallGraphNode is in this SCC. Also track whether there are
|
|
// any external or opt-none nodes that will prevent us from optimizing any
|
|
// part of the SCC.
|
|
SCCNodeSet SCCNodes;
|
|
bool ExternalNode = false;
|
|
for (CallGraphNode *I : SCC) {
|
|
Function *F = I->getFunction();
|
|
if (!F || F->hasFnAttribute(Attribute::OptimizeNone)) {
|
|
// External node or function we're trying not to optimize - we both avoid
|
|
// transform them and avoid leveraging information they provide.
|
|
ExternalNode = true;
|
|
continue;
|
|
}
|
|
|
|
SCCNodes.insert(F);
|
|
}
|
|
|
|
Changed |= addArgumentReturnedAttrs(SCCNodes);
|
|
Changed |= addReadAttrs(SCCNodes, AARGetter);
|
|
Changed |= addArgumentAttrs(SCCNodes);
|
|
|
|
// If we have no external nodes participating in the SCC, we can deduce some
|
|
// more precise attributes as well.
|
|
if (!ExternalNode) {
|
|
Changed |= addNoAliasAttrs(SCCNodes);
|
|
Changed |= addNonNullAttrs(SCCNodes);
|
|
Changed |= removeConvergentAttrs(SCCNodes);
|
|
Changed |= addNoRecurseAttrs(SCCNodes);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
|
|
if (skipSCC(SCC))
|
|
return false;
|
|
|
|
// We compute dedicated AA results for each function in the SCC as needed. We
|
|
// use a lambda referencing external objects so that they live long enough to
|
|
// be queried, but we re-use them each time.
|
|
Optional<BasicAAResult> BAR;
|
|
Optional<AAResults> AAR;
|
|
auto AARGetter = [&](Function &F) -> AAResults & {
|
|
BAR.emplace(createLegacyPMBasicAAResult(*this, F));
|
|
AAR.emplace(createLegacyPMAAResults(*this, F, *BAR));
|
|
return *AAR;
|
|
};
|
|
|
|
return runImpl(SCC, AARGetter);
|
|
}
|
|
|
|
namespace {
|
|
struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
|
|
initializeReversePostOrderFunctionAttrsLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<CallGraphWrapperPass>();
|
|
AU.addPreserved<CallGraphWrapperPass>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
|
|
"Deduce function attributes in RPO", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
|
|
"Deduce function attributes in RPO", false, false)
|
|
|
|
Pass *llvm::createReversePostOrderFunctionAttrsPass() {
|
|
return new ReversePostOrderFunctionAttrsLegacyPass();
|
|
}
|
|
|
|
static bool addNoRecurseAttrsTopDown(Function &F) {
|
|
// We check the preconditions for the function prior to calling this to avoid
|
|
// the cost of building up a reversible post-order list. We assert them here
|
|
// to make sure none of the invariants this relies on were violated.
|
|
assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
|
|
assert(!F.doesNotRecurse() &&
|
|
"This function has already been deduced as norecurs!");
|
|
assert(F.hasInternalLinkage() &&
|
|
"Can only do top-down deduction for internal linkage functions!");
|
|
|
|
// If F is internal and all of its uses are calls from a non-recursive
|
|
// functions, then none of its calls could in fact recurse without going
|
|
// through a function marked norecurse, and so we can mark this function too
|
|
// as norecurse. Note that the uses must actually be calls -- otherwise
|
|
// a pointer to this function could be returned from a norecurse function but
|
|
// this function could be recursively (indirectly) called. Note that this
|
|
// also detects if F is directly recursive as F is not yet marked as
|
|
// a norecurse function.
|
|
for (auto *U : F.users()) {
|
|
auto *I = dyn_cast<Instruction>(U);
|
|
if (!I)
|
|
return false;
|
|
CallSite CS(I);
|
|
if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
|
|
return false;
|
|
}
|
|
return setDoesNotRecurse(F);
|
|
}
|
|
|
|
static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
|
|
// We only have a post-order SCC traversal (because SCCs are inherently
|
|
// discovered in post-order), so we accumulate them in a vector and then walk
|
|
// it in reverse. This is simpler than using the RPO iterator infrastructure
|
|
// because we need to combine SCC detection and the PO walk of the call
|
|
// graph. We can also cheat egregiously because we're primarily interested in
|
|
// synthesizing norecurse and so we can only save the singular SCCs as SCCs
|
|
// with multiple functions in them will clearly be recursive.
|
|
SmallVector<Function *, 16> Worklist;
|
|
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
|
|
if (I->size() != 1)
|
|
continue;
|
|
|
|
Function *F = I->front()->getFunction();
|
|
if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
|
|
F->hasInternalLinkage())
|
|
Worklist.push_back(F);
|
|
}
|
|
|
|
bool Changed = false;
|
|
for (auto *F : reverse(Worklist))
|
|
Changed |= addNoRecurseAttrsTopDown(*F);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
|
|
if (skipModule(M))
|
|
return false;
|
|
|
|
auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
|
|
|
|
return deduceFunctionAttributeInRPO(M, CG);
|
|
}
|
|
|
|
PreservedAnalyses
|
|
ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
auto &CG = AM.getResult<CallGraphAnalysis>(M);
|
|
|
|
bool Changed = deduceFunctionAttributeInRPO(M, CG);
|
|
|
|
// CallGraphAnalysis holds AssertingVH and must be invalidated eagerly so
|
|
// that other passes don't delete stuff from under it.
|
|
// FIXME: We need to invalidate this to avoid PR28400. Is there a better
|
|
// solution?
|
|
AM.invalidate<CallGraphAnalysis>(M);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<CallGraphAnalysis>();
|
|
return PA;
|
|
}
|