mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-25 03:55:25 +00:00
4e042482c8
The XOP shifts just have logical/arithmetic versions and the left/right shifts are controlled by whether the value is positive/negative. Because of this I've added new X86ISD nodes instead of trying to force them to use the existing shift nodes. Additionally Excavator cores (bdver4) support XOP and AVX2 - meaning that it should use the AVX2 shifts when it can and fall back to XOP in other cases. Differential Revision: http://reviews.llvm.org/D8690 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@248878 91177308-0d34-0410-b5e6-96231b3b80d8
1191 lines
44 KiB
C++
1191 lines
44 KiB
C++
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// X86 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetTransformInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/CostTable.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86tti"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// X86 cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
// TODO: Currently the __builtin_popcount() implementation using SSE3
|
|
// instructions is inefficient. Once the problem is fixed, we should
|
|
// call ST->hasSSE3() instead of ST->hasPOPCNT().
|
|
return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
|
|
}
|
|
|
|
unsigned X86TTIImpl::getNumberOfRegisters(bool Vector) {
|
|
if (Vector && !ST->hasSSE1())
|
|
return 0;
|
|
|
|
if (ST->is64Bit()) {
|
|
if (Vector && ST->hasAVX512())
|
|
return 32;
|
|
return 16;
|
|
}
|
|
return 8;
|
|
}
|
|
|
|
unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) {
|
|
if (Vector) {
|
|
if (ST->hasAVX512()) return 512;
|
|
if (ST->hasAVX()) return 256;
|
|
if (ST->hasSSE1()) return 128;
|
|
return 0;
|
|
}
|
|
|
|
if (ST->is64Bit())
|
|
return 64;
|
|
return 32;
|
|
|
|
}
|
|
|
|
unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
// If the loop will not be vectorized, don't interleave the loop.
|
|
// Let regular unroll to unroll the loop, which saves the overflow
|
|
// check and memory check cost.
|
|
if (VF == 1)
|
|
return 1;
|
|
|
|
if (ST->isAtom())
|
|
return 1;
|
|
|
|
// Sandybridge and Haswell have multiple execution ports and pipelined
|
|
// vector units.
|
|
if (ST->hasAVX())
|
|
return 4;
|
|
|
|
return 2;
|
|
}
|
|
|
|
int X86TTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
|
|
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo) {
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
if (ISD == ISD::SDIV &&
|
|
Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
|
|
Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
|
|
// On X86, vector signed division by constants power-of-two are
|
|
// normally expanded to the sequence SRA + SRL + ADD + SRA.
|
|
// The OperandValue properties many not be same as that of previous
|
|
// operation;conservatively assume OP_None.
|
|
int Cost = 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info,
|
|
Op2Info, TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
|
|
TargetTransformInfo::OP_None,
|
|
TargetTransformInfo::OP_None);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType>
|
|
AVX2UniformConstCostTable[] = {
|
|
{ ISD::SRA, MVT::v4i64, 4 }, // 2 x psrad + shuffle.
|
|
|
|
{ ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
|
|
{ ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
|
|
{ ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
|
|
{ ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
|
|
};
|
|
|
|
if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
|
|
ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2UniformConstCostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
|
|
{ ISD::SHL, MVT::v16i32, 1 },
|
|
{ ISD::SRL, MVT::v16i32, 1 },
|
|
{ ISD::SRA, MVT::v16i32, 1 },
|
|
{ ISD::SHL, MVT::v8i64, 1 },
|
|
{ ISD::SRL, MVT::v8i64, 1 },
|
|
{ ISD::SRA, MVT::v8i64, 1 },
|
|
};
|
|
|
|
if (ST->hasAVX512()) {
|
|
int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX512CostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
|
|
// Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
|
|
// customize them to detect the cases where shift amount is a scalar one.
|
|
{ ISD::SHL, MVT::v4i32, 1 },
|
|
{ ISD::SRL, MVT::v4i32, 1 },
|
|
{ ISD::SRA, MVT::v4i32, 1 },
|
|
{ ISD::SHL, MVT::v8i32, 1 },
|
|
{ ISD::SRL, MVT::v8i32, 1 },
|
|
{ ISD::SRA, MVT::v8i32, 1 },
|
|
{ ISD::SHL, MVT::v2i64, 1 },
|
|
{ ISD::SRL, MVT::v2i64, 1 },
|
|
{ ISD::SHL, MVT::v4i64, 1 },
|
|
{ ISD::SRL, MVT::v4i64, 1 },
|
|
};
|
|
|
|
// Look for AVX2 lowering tricks.
|
|
if (ST->hasAVX2()) {
|
|
if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
|
|
(Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
|
|
Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
|
|
// On AVX2, a packed v16i16 shift left by a constant build_vector
|
|
// is lowered into a vector multiply (vpmullw).
|
|
return LT.first;
|
|
|
|
int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> XOPCostTable[] = {
|
|
// 128bit shifts take 1cy, but right shifts require negation beforehand.
|
|
{ ISD::SHL, MVT::v16i8, 1 },
|
|
{ ISD::SRL, MVT::v16i8, 2 },
|
|
{ ISD::SRA, MVT::v16i8, 2 },
|
|
{ ISD::SHL, MVT::v8i16, 1 },
|
|
{ ISD::SRL, MVT::v8i16, 2 },
|
|
{ ISD::SRA, MVT::v8i16, 2 },
|
|
{ ISD::SHL, MVT::v4i32, 1 },
|
|
{ ISD::SRL, MVT::v4i32, 2 },
|
|
{ ISD::SRA, MVT::v4i32, 2 },
|
|
{ ISD::SHL, MVT::v2i64, 1 },
|
|
{ ISD::SRL, MVT::v2i64, 2 },
|
|
{ ISD::SRA, MVT::v2i64, 2 },
|
|
// 256bit shifts require splitting if AVX2 didn't catch them above.
|
|
{ ISD::SHL, MVT::v32i8, 2 },
|
|
{ ISD::SRL, MVT::v32i8, 4 },
|
|
{ ISD::SRA, MVT::v32i8, 4 },
|
|
{ ISD::SHL, MVT::v16i16, 2 },
|
|
{ ISD::SRL, MVT::v16i16, 4 },
|
|
{ ISD::SRA, MVT::v16i16, 4 },
|
|
{ ISD::SHL, MVT::v8i32, 2 },
|
|
{ ISD::SRL, MVT::v8i32, 4 },
|
|
{ ISD::SRA, MVT::v8i32, 4 },
|
|
{ ISD::SHL, MVT::v4i64, 2 },
|
|
{ ISD::SRL, MVT::v4i64, 4 },
|
|
{ ISD::SRA, MVT::v4i64, 4 },
|
|
};
|
|
|
|
// Look for XOP lowering tricks.
|
|
if (ST->hasXOP()) {
|
|
int Idx = CostTableLookup(XOPCostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * XOPCostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX2CustomCostTable[] = {
|
|
{ ISD::SHL, MVT::v32i8, 11 }, // vpblendvb sequence.
|
|
{ ISD::SHL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
|
|
|
|
{ ISD::SRL, MVT::v32i8, 11 }, // vpblendvb sequence.
|
|
{ ISD::SRL, MVT::v16i16, 10 }, // extend/vpsrlvd/pack sequence.
|
|
|
|
{ ISD::SRA, MVT::v32i8, 24 }, // vpblendvb sequence.
|
|
{ ISD::SRA, MVT::v16i16, 10 }, // extend/vpsravd/pack sequence.
|
|
{ ISD::SRA, MVT::v2i64, 4 }, // srl/xor/sub sequence.
|
|
{ ISD::SRA, MVT::v4i64, 4 }, // srl/xor/sub sequence.
|
|
|
|
// Vectorizing division is a bad idea. See the SSE2 table for more comments.
|
|
{ ISD::SDIV, MVT::v32i8, 32*20 },
|
|
{ ISD::SDIV, MVT::v16i16, 16*20 },
|
|
{ ISD::SDIV, MVT::v8i32, 8*20 },
|
|
{ ISD::SDIV, MVT::v4i64, 4*20 },
|
|
{ ISD::UDIV, MVT::v32i8, 32*20 },
|
|
{ ISD::UDIV, MVT::v16i16, 16*20 },
|
|
{ ISD::UDIV, MVT::v8i32, 8*20 },
|
|
{ ISD::UDIV, MVT::v4i64, 4*20 },
|
|
};
|
|
|
|
// Look for AVX2 lowering tricks for custom cases.
|
|
if (ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX2CustomCostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CustomCostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType>
|
|
SSE2UniformConstCostTable[] = {
|
|
// We don't correctly identify costs of casts because they are marked as
|
|
// custom.
|
|
// Constant splats are cheaper for the following instructions.
|
|
{ ISD::SHL, MVT::v16i8, 1 }, // psllw.
|
|
{ ISD::SHL, MVT::v8i16, 1 }, // psllw.
|
|
{ ISD::SHL, MVT::v4i32, 1 }, // pslld
|
|
{ ISD::SHL, MVT::v2i64, 1 }, // psllq.
|
|
|
|
{ ISD::SRL, MVT::v16i8, 1 }, // psrlw.
|
|
{ ISD::SRL, MVT::v8i16, 1 }, // psrlw.
|
|
{ ISD::SRL, MVT::v4i32, 1 }, // psrld.
|
|
{ ISD::SRL, MVT::v2i64, 1 }, // psrlq.
|
|
|
|
{ ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SRA, MVT::v8i16, 1 }, // psraw.
|
|
{ ISD::SRA, MVT::v4i32, 1 }, // psrad.
|
|
{ ISD::SRA, MVT::v2i64, 4 }, // 2 x psrad + shuffle.
|
|
|
|
{ ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
|
|
{ ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
|
|
{ ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
|
|
{ ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
|
|
};
|
|
|
|
if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
|
|
ST->hasSSE2()) {
|
|
// pmuldq sequence.
|
|
if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
|
|
return LT.first * 15;
|
|
|
|
int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSE2UniformConstCostTable[Idx].Cost;
|
|
}
|
|
|
|
if (ISD == ISD::SHL &&
|
|
Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
|
|
EVT VT = LT.second;
|
|
if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
|
|
(VT == MVT::v4i32 && ST->hasSSE41()))
|
|
// Vector shift left by non uniform constant can be lowered
|
|
// into vector multiply (pmullw/pmulld).
|
|
return LT.first;
|
|
if (VT == MVT::v4i32 && ST->hasSSE2())
|
|
// A vector shift left by non uniform constant is converted
|
|
// into a vector multiply; the new multiply is eventually
|
|
// lowered into a sequence of shuffles and 2 x pmuludq.
|
|
ISD = ISD::MUL;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
|
|
// We don't correctly identify costs of casts because they are marked as
|
|
// custom.
|
|
// For some cases, where the shift amount is a scalar we would be able
|
|
// to generate better code. Unfortunately, when this is the case the value
|
|
// (the splat) will get hoisted out of the loop, thereby making it invisible
|
|
// to ISel. The cost model must return worst case assumptions because it is
|
|
// used for vectorization and we don't want to make vectorized code worse
|
|
// than scalar code.
|
|
{ ISD::SHL, MVT::v16i8, 26 }, // cmpgtb sequence.
|
|
{ ISD::SHL, MVT::v8i16, 32 }, // cmpgtb sequence.
|
|
{ ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
|
|
{ ISD::SHL, MVT::v2i64, 4 }, // splat+shuffle sequence.
|
|
{ ISD::SHL, MVT::v4i64, 8 }, // splat+shuffle sequence.
|
|
|
|
{ ISD::SRL, MVT::v16i8, 26 }, // cmpgtb sequence.
|
|
{ ISD::SRL, MVT::v8i16, 32 }, // cmpgtb sequence.
|
|
{ ISD::SRL, MVT::v4i32, 16 }, // Shift each lane + blend.
|
|
{ ISD::SRL, MVT::v2i64, 4 }, // splat+shuffle sequence.
|
|
|
|
{ ISD::SRA, MVT::v16i8, 54 }, // unpacked cmpgtb sequence.
|
|
{ ISD::SRA, MVT::v8i16, 32 }, // cmpgtb sequence.
|
|
{ ISD::SRA, MVT::v4i32, 16 }, // Shift each lane + blend.
|
|
{ ISD::SRA, MVT::v2i64, 12 }, // srl/xor/sub sequence.
|
|
|
|
// It is not a good idea to vectorize division. We have to scalarize it and
|
|
// in the process we will often end up having to spilling regular
|
|
// registers. The overhead of division is going to dominate most kernels
|
|
// anyways so try hard to prevent vectorization of division - it is
|
|
// generally a bad idea. Assume somewhat arbitrarily that we have to be able
|
|
// to hide "20 cycles" for each lane.
|
|
{ ISD::SDIV, MVT::v16i8, 16*20 },
|
|
{ ISD::SDIV, MVT::v8i16, 8*20 },
|
|
{ ISD::SDIV, MVT::v4i32, 4*20 },
|
|
{ ISD::SDIV, MVT::v2i64, 2*20 },
|
|
{ ISD::UDIV, MVT::v16i8, 16*20 },
|
|
{ ISD::UDIV, MVT::v8i16, 8*20 },
|
|
{ ISD::UDIV, MVT::v4i32, 4*20 },
|
|
{ ISD::UDIV, MVT::v2i64, 2*20 },
|
|
};
|
|
|
|
if (ST->hasSSE2()) {
|
|
int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSE2CostTable[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
|
|
// We don't have to scalarize unsupported ops. We can issue two half-sized
|
|
// operations and we only need to extract the upper YMM half.
|
|
// Two ops + 1 extract + 1 insert = 4.
|
|
{ ISD::MUL, MVT::v16i16, 4 },
|
|
{ ISD::MUL, MVT::v8i32, 4 },
|
|
{ ISD::SUB, MVT::v8i32, 4 },
|
|
{ ISD::ADD, MVT::v8i32, 4 },
|
|
{ ISD::SUB, MVT::v4i64, 4 },
|
|
{ ISD::ADD, MVT::v4i64, 4 },
|
|
// A v4i64 multiply is custom lowered as two split v2i64 vectors that then
|
|
// are lowered as a series of long multiplies(3), shifts(4) and adds(2)
|
|
// Because we believe v4i64 to be a legal type, we must also include the
|
|
// split factor of two in the cost table. Therefore, the cost here is 18
|
|
// instead of 9.
|
|
{ ISD::MUL, MVT::v4i64, 18 },
|
|
};
|
|
|
|
// Look for AVX1 lowering tricks.
|
|
if (ST->hasAVX() && !ST->hasAVX2()) {
|
|
EVT VT = LT.second;
|
|
|
|
// v16i16 and v8i32 shifts by non-uniform constants are lowered into a
|
|
// sequence of extract + two vector multiply + insert.
|
|
if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
|
|
Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
|
|
ISD = ISD::MUL;
|
|
|
|
int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTable[Idx].Cost;
|
|
}
|
|
|
|
// Custom lowering of vectors.
|
|
static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
|
|
// A v2i64/v4i64 and multiply is custom lowered as a series of long
|
|
// multiplies(3), shifts(4) and adds(2).
|
|
{ ISD::MUL, MVT::v2i64, 9 },
|
|
{ ISD::MUL, MVT::v4i64, 9 },
|
|
};
|
|
int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * CustomLowered[Idx].Cost;
|
|
|
|
// Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
|
|
// 2x pmuludq, 2x shuffle.
|
|
if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
|
|
!ST->hasSSE41())
|
|
return LT.first * 6;
|
|
|
|
// Fallback to the default implementation.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info);
|
|
}
|
|
|
|
int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
|
|
Type *SubTp) {
|
|
// We only estimate the cost of reverse and alternate shuffles.
|
|
if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
|
|
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
|
|
if (Kind == TTI::SK_Reverse) {
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
int Cost = 1;
|
|
if (LT.second.getSizeInBits() > 128)
|
|
Cost = 3; // Extract + insert + copy.
|
|
|
|
// Multiple by the number of parts.
|
|
return Cost * LT.first;
|
|
}
|
|
|
|
if (Kind == TTI::SK_Alternate) {
|
|
// 64-bit packed float vectors (v2f32) are widened to type v4f32.
|
|
// 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
|
|
|
|
// The backend knows how to generate a single VEX.256 version of
|
|
// instruction VPBLENDW if the target supports AVX2.
|
|
if (ST->hasAVX2() && LT.second == MVT::v16i16)
|
|
return LT.first;
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps
|
|
|
|
// This shuffle is custom lowered into a sequence of:
|
|
// 2x vextractf128 , 2x vpblendw , 1x vinsertf128
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
|
|
|
|
// This shuffle is custom lowered into a long sequence of:
|
|
// 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128
|
|
{ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
|
|
};
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * AVXAltShuffleTbl[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
|
|
// These are lowered into movsd.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
|
|
|
|
// packed float vectors with four elements are lowered into BLENDI dag
|
|
// nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
|
|
|
|
// This shuffle generates a single pshufw.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
|
|
|
|
// There is no instruction that matches a v16i8 alternate shuffle.
|
|
// The backend will expand it into the sequence 'pshufb + pshufb + or'.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
|
|
};
|
|
|
|
if (ST->hasSSE41()) {
|
|
int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSE41AltShuffleTbl[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
|
|
|
|
// SSE3 doesn't have 'blendps'. The following shuffles are expanded into
|
|
// the sequence 'shufps + pshufd'
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
|
|
};
|
|
|
|
if (ST->hasSSSE3()) {
|
|
int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
|
|
}
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
|
|
{ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
|
|
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
|
|
{ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
|
|
|
|
// This is expanded into a long sequence of four extract + four insert.
|
|
{ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
|
|
|
|
// 8 x (pinsrw + pextrw + and + movb + movzb + or)
|
|
{ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
|
|
};
|
|
|
|
// Fall-back (SSE3 and SSE2).
|
|
int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
|
|
if (Idx != -1)
|
|
return LT.first * SSEAltShuffleTbl[Idx].Cost;
|
|
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
AVX512ConversionTbl[] = {
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
|
|
{ ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
|
|
{ ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
|
|
|
|
// v16i1 -> v16i32 - load + broadcast
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
AVX2ConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
|
|
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
|
|
{ ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
AVXConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
|
|
// The generic code to compute the scalar overhead is currently broken.
|
|
// Workaround this limitation by estimating the scalarization overhead
|
|
// here. We have roughly 10 instructions per scalar element.
|
|
// Multiply that by the vector width.
|
|
// FIXME: remove that when PR19268 is fixed.
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
|
|
// This node is expanded into scalarized operations but BasicTTI is overly
|
|
// optimistic estimating its cost. It computes 3 per element (one
|
|
// vector-extract, one scalar conversion and one vector-insert). The
|
|
// problem is that the inserts form a read-modify-write chain so latency
|
|
// should be factored in too. Inflating the cost per element by 1.
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry<MVT::SimpleValueType>
|
|
SSE2ConvTbl[] = {
|
|
// These are somewhat magic numbers justified by looking at the output of
|
|
// Intel's IACA, running some kernels and making sure when we take
|
|
// legalization into account the throughput will be overestimated.
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
|
|
// There are faster sequences for float conversions.
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
|
|
};
|
|
|
|
std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
|
|
std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
|
|
|
|
if (ST->hasSSE2() && !ST->hasAVX()) {
|
|
int Idx =
|
|
ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
|
|
if (Idx != -1)
|
|
return LTSrc.first * SSE2ConvTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX512()) {
|
|
int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
|
|
LTSrc.second);
|
|
if (Idx != -1)
|
|
return AVX512ConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
EVT SrcTy = TLI->getValueType(DL, Src);
|
|
EVT DstTy = TLI->getValueType(DL, Dst);
|
|
|
|
// The function getSimpleVT only handles simple value types.
|
|
if (!SrcTy.isSimple() || !DstTy.isSimple())
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src);
|
|
|
|
if (ST->hasAVX2()) {
|
|
int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
|
|
DstTy.getSimpleVT(), SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return AVX2ConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
|
|
SrcTy.getSimpleVT());
|
|
if (Idx != -1)
|
|
return AVXConversionTbl[Idx].Cost;
|
|
}
|
|
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src);
|
|
}
|
|
|
|
int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2f64, 1 },
|
|
{ ISD::SETCC, MVT::v4f32, 1 },
|
|
{ ISD::SETCC, MVT::v2i64, 1 },
|
|
{ ISD::SETCC, MVT::v4i32, 1 },
|
|
{ ISD::SETCC, MVT::v8i16, 1 },
|
|
{ ISD::SETCC, MVT::v16i8, 1 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f64, 1 },
|
|
{ ISD::SETCC, MVT::v8f32, 1 },
|
|
// AVX1 does not support 8-wide integer compare.
|
|
{ ISD::SETCC, MVT::v4i64, 4 },
|
|
{ ISD::SETCC, MVT::v8i32, 4 },
|
|
{ ISD::SETCC, MVT::v16i16, 4 },
|
|
{ ISD::SETCC, MVT::v32i8, 4 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4i64, 1 },
|
|
{ ISD::SETCC, MVT::v8i32, 1 },
|
|
{ ISD::SETCC, MVT::v16i16, 1 },
|
|
{ ISD::SETCC, MVT::v32i8, 1 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v8i64, 1 },
|
|
{ ISD::SETCC, MVT::v16i32, 1 },
|
|
{ ISD::SETCC, MVT::v8f64, 1 },
|
|
{ ISD::SETCC, MVT::v16f32, 1 },
|
|
};
|
|
|
|
if (ST->hasAVX512()) {
|
|
int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX512CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX2()) {
|
|
int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX2CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasAVX()) {
|
|
int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTbl[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasSSE42()) {
|
|
int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * SSE42CostTbl[Idx].Cost;
|
|
}
|
|
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
|
|
}
|
|
|
|
int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
|
|
if (Index != -1U) {
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned Width = LT.second.getVectorNumElements();
|
|
Index = Index % Width;
|
|
|
|
// Floating point scalars are already located in index #0.
|
|
if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
|
|
return 0;
|
|
}
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
int X86TTIImpl::getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) {
|
|
assert (Ty->isVectorTy() && "Can only scalarize vectors");
|
|
int Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
|
|
if (Insert)
|
|
Cost += getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
// Handle non-power-of-two vectors such as <3 x float>
|
|
if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
|
|
unsigned NumElem = VTy->getVectorNumElements();
|
|
|
|
// Handle a few common cases:
|
|
// <3 x float>
|
|
if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
|
|
// Cost = 64 bit store + extract + 32 bit store.
|
|
return 3;
|
|
|
|
// <3 x double>
|
|
if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
|
|
// Cost = 128 bit store + unpack + 64 bit store.
|
|
return 3;
|
|
|
|
// Assume that all other non-power-of-two numbers are scalarized.
|
|
if (!isPowerOf2_32(NumElem)) {
|
|
int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
|
|
AddressSpace);
|
|
int SplitCost = getScalarizationOverhead(Src, Opcode == Instruction::Load,
|
|
Opcode == Instruction::Store);
|
|
return NumElem * Cost + SplitCost;
|
|
}
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
|
|
// Each load/store unit costs 1.
|
|
int Cost = LT.first * 1;
|
|
|
|
// On Sandybridge 256bit load/stores are double pumped
|
|
// (but not on Haswell).
|
|
if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
|
|
Cost*=2;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace) {
|
|
VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
|
|
if (!SrcVTy)
|
|
// To calculate scalar take the regular cost, without mask
|
|
return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
|
|
|
|
unsigned NumElem = SrcVTy->getVectorNumElements();
|
|
VectorType *MaskTy =
|
|
VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
|
|
if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
|
|
(Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
|
|
!isPowerOf2_32(NumElem)) {
|
|
// Scalarization
|
|
int MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
|
|
int ScalarCompareCost = getCmpSelInstrCost(
|
|
Instruction::ICmp, Type::getInt8Ty(getGlobalContext()), NULL);
|
|
int BranchCost = getCFInstrCost(Instruction::Br);
|
|
int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
|
|
|
|
int ValueSplitCost = getScalarizationOverhead(
|
|
SrcVTy, Opcode == Instruction::Load, Opcode == Instruction::Store);
|
|
int MemopCost =
|
|
NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
|
|
Alignment, AddressSpace);
|
|
return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
|
|
int Cost = 0;
|
|
if (LT.second != TLI->getValueType(DL, SrcVTy).getSimpleVT() &&
|
|
LT.second.getVectorNumElements() == NumElem)
|
|
// Promotion requires expand/truncate for data and a shuffle for mask.
|
|
Cost += getShuffleCost(TTI::SK_Alternate, SrcVTy, 0, 0) +
|
|
getShuffleCost(TTI::SK_Alternate, MaskTy, 0, 0);
|
|
|
|
else if (LT.second.getVectorNumElements() > NumElem) {
|
|
VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
|
|
LT.second.getVectorNumElements());
|
|
// Expanding requires fill mask with zeroes
|
|
Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
|
|
}
|
|
if (!ST->hasAVX512())
|
|
return Cost + LT.first*4; // Each maskmov costs 4
|
|
|
|
// AVX-512 masked load/store is cheapper
|
|
return Cost+LT.first;
|
|
}
|
|
|
|
int X86TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
if (Ty->isVectorTy() && IsComplex)
|
|
return NumVectorInstToHideOverhead;
|
|
|
|
return BaseT::getAddressComputationCost(Ty, IsComplex);
|
|
}
|
|
|
|
int X86TTIImpl::getReductionCost(unsigned Opcode, Type *ValTy,
|
|
bool IsPairwise) {
|
|
|
|
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
|
|
// and make it as the cost.
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
|
|
{ ISD::FADD, MVT::v2f64, 2 },
|
|
{ ISD::FADD, MVT::v4f32, 4 },
|
|
{ ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
|
|
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
|
|
{ ISD::ADD, MVT::v8i16, 5 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
|
|
{ ISD::FADD, MVT::v4f32, 4 },
|
|
{ ISD::FADD, MVT::v4f64, 5 },
|
|
{ ISD::FADD, MVT::v8f32, 7 },
|
|
{ ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
|
|
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
|
|
{ ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
|
|
{ ISD::ADD, MVT::v8i16, 5 },
|
|
{ ISD::ADD, MVT::v8i32, 5 },
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
|
|
{ ISD::FADD, MVT::v2f64, 2 },
|
|
{ ISD::FADD, MVT::v4f32, 4 },
|
|
{ ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
|
|
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
|
|
{ ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
|
|
};
|
|
|
|
static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
|
|
{ ISD::FADD, MVT::v4f32, 3 },
|
|
{ ISD::FADD, MVT::v4f64, 3 },
|
|
{ ISD::FADD, MVT::v8f32, 4 },
|
|
{ ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
|
|
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
|
|
{ ISD::ADD, MVT::v4i64, 3 },
|
|
{ ISD::ADD, MVT::v8i16, 4 },
|
|
{ ISD::ADD, MVT::v8i32, 5 },
|
|
};
|
|
|
|
if (IsPairwise) {
|
|
if (ST->hasAVX()) {
|
|
int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTblPairWise[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasSSE42()) {
|
|
int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * SSE42CostTblPairWise[Idx].Cost;
|
|
}
|
|
} else {
|
|
if (ST->hasAVX()) {
|
|
int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
|
|
}
|
|
|
|
if (ST->hasSSE42()) {
|
|
int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
|
|
if (Idx != -1)
|
|
return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
|
|
}
|
|
}
|
|
|
|
return BaseT::getReductionCost(Opcode, ValTy, IsPairwise);
|
|
}
|
|
|
|
/// \brief Calculate the cost of materializing a 64-bit value. This helper
|
|
/// method might only calculate a fraction of a larger immediate. Therefore it
|
|
/// is valid to return a cost of ZERO.
|
|
int X86TTIImpl::getIntImmCost(int64_t Val) {
|
|
if (Val == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (isInt<32>(Val))
|
|
return TTI::TCC_Basic;
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
}
|
|
|
|
int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
// Never hoist constants larger than 128bit, because this might lead to
|
|
// incorrect code generation or assertions in codegen.
|
|
// Fixme: Create a cost model for types larger than i128 once the codegen
|
|
// issues have been fixed.
|
|
if (BitSize > 128)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// Sign-extend all constants to a multiple of 64-bit.
|
|
APInt ImmVal = Imm;
|
|
if (BitSize & 0x3f)
|
|
ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
|
|
|
|
// Split the constant into 64-bit chunks and calculate the cost for each
|
|
// chunk.
|
|
int Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
|
|
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
|
|
int64_t Val = Tmp.getSExtValue();
|
|
Cost += getIntImmCost(Val);
|
|
}
|
|
// We need at least one instruction to materialze the constant.
|
|
return std::max(1, Cost);
|
|
}
|
|
|
|
int X86TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
// creation of new constants for every base constant that gets constant
|
|
// folded with the offset.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::Store:
|
|
ImmIdx = 0;
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::ICmp:
|
|
ImmIdx = 1;
|
|
break;
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
if (Idx == 1)
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Select:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
break;
|
|
}
|
|
|
|
if (Idx == ImmIdx) {
|
|
int NumConstants = (BitSize + 63) / 64;
|
|
int Cost = X86TTIImpl::getIntImmCost(Imm, Ty);
|
|
return (Cost <= NumConstants * TTI::TCC_Basic)
|
|
? static_cast<int>(TTI::TCC_Free)
|
|
: Cost;
|
|
}
|
|
|
|
return X86TTIImpl::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
int X86TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
|
|
Type *Ty) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return X86TTIImpl::getIntImmCost(Imm, Ty);
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, int Consecutive) {
|
|
int DataWidth = DataTy->getPrimitiveSizeInBits();
|
|
|
|
// Todo: AVX512 allows gather/scatter, works with strided and random as well
|
|
if ((DataWidth < 32) || (Consecutive == 0))
|
|
return false;
|
|
if (ST->hasAVX512() || ST->hasAVX2())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedStore(Type *DataType, int Consecutive) {
|
|
return isLegalMaskedLoad(DataType, Consecutive);
|
|
}
|
|
|
|
bool X86TTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
|
|
// Work this as a subsetting of subtarget features.
|
|
const FeatureBitset &CallerBits =
|
|
TM.getSubtargetImpl(*Caller)->getFeatureBits();
|
|
const FeatureBitset &CalleeBits =
|
|
TM.getSubtargetImpl(*Callee)->getFeatureBits();
|
|
|
|
// FIXME: This is likely too limiting as it will include subtarget features
|
|
// that we might not care about for inlining, but it is conservatively
|
|
// correct.
|
|
return (CallerBits & CalleeBits) == CalleeBits;
|
|
}
|