llvm/tools/opt/opt.cpp
Chandler Carruth 8bc3434e68 Teach the 'opt' tool about '-Os' and '-Oz', corresponding to the Clang
options, to enable easier testing of the innards of LLVM that are
enabled by such optimization strategies.

Note that this doesn't provide the (much needed) function attribute
support for -Oz (as opposed to -Os), but still seems like a positive
step to better test the logic that Clang currently relies on.

Patch by Patrik Hägglund.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@156913 91177308-0d34-0410-b5e6-96231b3b80d8
2012-05-16 08:32:49 +00:00

753 lines
23 KiB
C++

//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified.
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/PassNameParser.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/IRReader.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/LinkAllVMCore.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include <memory>
#include <algorithm>
using namespace llvm;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
//
static cl::list<const PassInfo*, bool, PassNameParser>
PassList(cl::desc("Optimizations available:"));
// Other command line options...
//
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode file>"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"));
static cl::opt<bool>
Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
PrintEachXForm("p", cl::desc("Print module after each transformation"));
static cl::opt<bool>
NoOutput("disable-output",
cl::desc("Do not write result bitcode file"), cl::Hidden);
static cl::opt<bool>
OutputAssembly("S", cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden);
static cl::opt<bool>
VerifyEach("verify-each", cl::desc("Verify after each transform"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
DisableInline("disable-inlining", cl::desc("Do not run the inliner pass"));
static cl::opt<bool>
DisableOptimizations("disable-opt",
cl::desc("Do not run any optimization passes"));
static cl::opt<bool>
DisableInternalize("disable-internalize",
cl::desc("Do not mark all symbols as internal"));
static cl::opt<bool>
StandardCompileOpts("std-compile-opts",
cl::desc("Include the standard compile time optimizations"));
static cl::opt<bool>
StandardLinkOpts("std-link-opts",
cl::desc("Include the standard link time optimizations"));
static cl::opt<bool>
OptLevelO1("O1",
cl::desc("Optimization level 1. Similar to clang -O1"));
static cl::opt<bool>
OptLevelO2("O2",
cl::desc("Optimization level 2. Similar to clang -O2"));
static cl::opt<bool>
OptLevelOs("Os",
cl::desc("Like -O2 with extra optimizations for size. Similar to clang -Os"));
static cl::opt<bool>
OptLevelOz("Oz",
cl::desc("Like -Os but reduces code size further. Similar to clang -Oz"));
static cl::opt<bool>
OptLevelO3("O3",
cl::desc("Optimization level 3. Similar to clang -O3"));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static cl::opt<bool>
UnitAtATime("funit-at-a-time",
cl::desc("Enable IPO. This is same as llvm-gcc's -funit-at-a-time"),
cl::init(true));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::opt<bool>
Quiet("q", cl::desc("Obsolete option"), cl::Hidden);
static cl::alias
QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet));
static cl::opt<bool>
AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization"));
static cl::opt<bool>
PrintBreakpoints("print-breakpoints-for-testing",
cl::desc("Print select breakpoints location for testing"));
static cl::opt<std::string>
DefaultDataLayout("default-data-layout",
cl::desc("data layout string to use if not specified by module"),
cl::value_desc("layout-string"), cl::init(""));
// ---------- Define Printers for module and function passes ------------
namespace {
struct CallGraphSCCPassPrinter : public CallGraphSCCPass {
static char ID;
const PassInfo *PassToPrint;
raw_ostream &Out;
std::string PassName;
CallGraphSCCPassPrinter(const PassInfo *PI, raw_ostream &out) :
CallGraphSCCPass(ID), PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "CallGraphSCCPass Printer: " + PassToPrintName;
}
virtual bool runOnSCC(CallGraphSCC &SCC) {
if (!Quiet)
Out << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
// Get and print pass...
for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
Function *F = (*I)->getFunction();
if (F)
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out,
F->getParent());
}
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char CallGraphSCCPassPrinter::ID = 0;
struct ModulePassPrinter : public ModulePass {
static char ID;
const PassInfo *PassToPrint;
raw_ostream &Out;
std::string PassName;
ModulePassPrinter(const PassInfo *PI, raw_ostream &out)
: ModulePass(ID), PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "ModulePass Printer: " + PassToPrintName;
}
virtual bool runOnModule(Module &M) {
if (!Quiet)
Out << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
// Get and print pass...
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out, &M);
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char ModulePassPrinter::ID = 0;
struct FunctionPassPrinter : public FunctionPass {
const PassInfo *PassToPrint;
raw_ostream &Out;
static char ID;
std::string PassName;
FunctionPassPrinter(const PassInfo *PI, raw_ostream &out)
: FunctionPass(ID), PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "FunctionPass Printer: " + PassToPrintName;
}
virtual bool runOnFunction(Function &F) {
if (!Quiet)
Out << "Printing analysis '" << PassToPrint->getPassName()
<< "' for function '" << F.getName() << "':\n";
// Get and print pass...
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out,
F.getParent());
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char FunctionPassPrinter::ID = 0;
struct LoopPassPrinter : public LoopPass {
static char ID;
const PassInfo *PassToPrint;
raw_ostream &Out;
std::string PassName;
LoopPassPrinter(const PassInfo *PI, raw_ostream &out) :
LoopPass(ID), PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "LoopPass Printer: " + PassToPrintName;
}
virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
if (!Quiet)
Out << "Printing analysis '" << PassToPrint->getPassName() << "':\n";
// Get and print pass...
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out,
L->getHeader()->getParent()->getParent());
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char LoopPassPrinter::ID = 0;
struct RegionPassPrinter : public RegionPass {
static char ID;
const PassInfo *PassToPrint;
raw_ostream &Out;
std::string PassName;
RegionPassPrinter(const PassInfo *PI, raw_ostream &out) : RegionPass(ID),
PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "RegionPass Printer: " + PassToPrintName;
}
virtual bool runOnRegion(Region *R, RGPassManager &RGM) {
if (!Quiet) {
Out << "Printing analysis '" << PassToPrint->getPassName() << "' for "
<< "region: '" << R->getNameStr() << "' in function '"
<< R->getEntry()->getParent()->getName() << "':\n";
}
// Get and print pass...
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out,
R->getEntry()->getParent()->getParent());
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char RegionPassPrinter::ID = 0;
struct BasicBlockPassPrinter : public BasicBlockPass {
const PassInfo *PassToPrint;
raw_ostream &Out;
static char ID;
std::string PassName;
BasicBlockPassPrinter(const PassInfo *PI, raw_ostream &out)
: BasicBlockPass(ID), PassToPrint(PI), Out(out) {
std::string PassToPrintName = PassToPrint->getPassName();
PassName = "BasicBlockPass Printer: " + PassToPrintName;
}
virtual bool runOnBasicBlock(BasicBlock &BB) {
if (!Quiet)
Out << "Printing Analysis info for BasicBlock '" << BB.getName()
<< "': Pass " << PassToPrint->getPassName() << ":\n";
// Get and print pass...
getAnalysisID<Pass>(PassToPrint->getTypeInfo()).print(Out,
BB.getParent()->getParent());
return false;
}
virtual const char *getPassName() const { return PassName.c_str(); }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(PassToPrint->getTypeInfo());
AU.setPreservesAll();
}
};
char BasicBlockPassPrinter::ID = 0;
struct BreakpointPrinter : public ModulePass {
raw_ostream &Out;
static char ID;
BreakpointPrinter(raw_ostream &out)
: ModulePass(ID), Out(out) {
}
void getContextName(DIDescriptor Context, std::string &N) {
if (Context.isNameSpace()) {
DINameSpace NS(Context);
if (!NS.getName().empty()) {
getContextName(NS.getContext(), N);
N = N + NS.getName().str() + "::";
}
} else if (Context.isType()) {
DIType TY(Context);
if (!TY.getName().empty()) {
getContextName(TY.getContext(), N);
N = N + TY.getName().str() + "::";
}
}
}
virtual bool runOnModule(Module &M) {
StringSet<> Processed;
if (NamedMDNode *NMD = M.getNamedMetadata("llvm.dbg.sp"))
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
std::string Name;
DISubprogram SP(NMD->getOperand(i));
if (SP.Verify())
getContextName(SP.getContext(), Name);
Name = Name + SP.getDisplayName().str();
if (!Name.empty() && Processed.insert(Name)) {
Out << Name << "\n";
}
}
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
} // anonymous namespace
char BreakpointPrinter::ID = 0;
static inline void addPass(PassManagerBase &PM, Pass *P) {
// Add the pass to the pass manager...
PM.add(P);
// If we are verifying all of the intermediate steps, add the verifier...
if (VerifyEach) PM.add(createVerifierPass());
}
/// AddOptimizationPasses - This routine adds optimization passes
/// based on selected optimization level, OptLevel. This routine
/// duplicates llvm-gcc behaviour.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(PassManagerBase &MPM,FunctionPassManager &FPM,
unsigned OptLevel, unsigned SizeLevel) {
FPM.add(createVerifierPass()); // Verify that input is correct
PassManagerBuilder Builder;
Builder.OptLevel = OptLevel;
Builder.SizeLevel = SizeLevel;
if (DisableInline) {
// No inlining pass
} else if (OptLevel > 1) {
unsigned Threshold = 225;
if (SizeLevel == 1) // -Os
Threshold = 75;
else if (SizeLevel == 2) // -Oz
Threshold = 25;
if (OptLevel > 2)
Threshold = 275;
Builder.Inliner = createFunctionInliningPass(Threshold);
} else {
Builder.Inliner = createAlwaysInlinerPass();
}
Builder.DisableUnitAtATime = !UnitAtATime;
Builder.DisableUnrollLoops = OptLevel == 0;
Builder.DisableSimplifyLibCalls = DisableSimplifyLibCalls;
Builder.populateFunctionPassManager(FPM);
Builder.populateModulePassManager(MPM);
}
static void AddStandardCompilePasses(PassManagerBase &PM) {
PM.add(createVerifierPass()); // Verify that input is correct
// If the -strip-debug command line option was specified, do it.
if (StripDebug)
addPass(PM, createStripSymbolsPass(true));
if (DisableOptimizations) return;
// -std-compile-opts adds the same module passes as -O3.
PassManagerBuilder Builder;
if (!DisableInline)
Builder.Inliner = createFunctionInliningPass();
Builder.OptLevel = 3;
Builder.DisableSimplifyLibCalls = DisableSimplifyLibCalls;
Builder.populateModulePassManager(PM);
}
static void AddStandardLinkPasses(PassManagerBase &PM) {
PM.add(createVerifierPass()); // Verify that input is correct
// If the -strip-debug command line option was specified, do it.
if (StripDebug)
addPass(PM, createStripSymbolsPass(true));
if (DisableOptimizations) return;
PassManagerBuilder Builder;
Builder.populateLTOPassManager(PM, /*Internalize=*/ !DisableInternalize,
/*RunInliner=*/ !DisableInline);
}
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
llvm::PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
LLVMContext &Context = getGlobalContext();
// Initialize passes
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeScalarOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeIPA(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
cl::ParseCommandLineOptions(argc, argv,
"llvm .bc -> .bc modular optimizer and analysis printer\n");
if (AnalyzeOnly && NoOutput) {
errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
return 1;
}
// Allocate a full target machine description only if necessary.
// FIXME: The choice of target should be controllable on the command line.
std::auto_ptr<TargetMachine> target;
SMDiagnostic Err;
// Load the input module...
std::auto_ptr<Module> M;
M.reset(ParseIRFile(InputFilename, Err, Context));
if (M.get() == 0) {
Err.print(argv[0], errs());
return 1;
}
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple::normalize(TargetTriple));
// Figure out what stream we are supposed to write to...
OwningPtr<tool_output_file> Out;
if (NoOutput) {
if (!OutputFilename.empty())
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output option is used.\n";
} else {
// Default to standard output.
if (OutputFilename.empty())
OutputFilename = "-";
std::string ErrorInfo;
Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
raw_fd_ostream::F_Binary));
if (!ErrorInfo.empty()) {
errs() << ErrorInfo << '\n';
return 1;
}
}
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
NoOutput = true;
// Create a PassManager to hold and optimize the collection of passes we are
// about to build.
//
PassManager Passes;
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfo *TLI = new TargetLibraryInfo(Triple(M->getTargetTriple()));
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLI->disableAllFunctions();
Passes.add(TLI);
// Add an appropriate TargetData instance for this module.
TargetData *TD = 0;
const std::string &ModuleDataLayout = M.get()->getDataLayout();
if (!ModuleDataLayout.empty())
TD = new TargetData(ModuleDataLayout);
else if (!DefaultDataLayout.empty())
TD = new TargetData(DefaultDataLayout);
if (TD)
Passes.add(TD);
OwningPtr<FunctionPassManager> FPasses;
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses.reset(new FunctionPassManager(M.get()));
if (TD)
FPasses->add(new TargetData(*TD));
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::string ErrorInfo;
Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
raw_fd_ostream::F_Binary));
if (!ErrorInfo.empty()) {
errs() << ErrorInfo << '\n';
return 1;
}
}
Passes.add(new BreakpointPrinter(Out->os()));
NoOutput = true;
}
// If the -strip-debug command line option was specified, add it. If
// -std-compile-opts was also specified, it will handle StripDebug.
if (StripDebug && !StandardCompileOpts)
addPass(Passes, createStripSymbolsPass(true));
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
// Check to see if -std-compile-opts was specified before this option. If
// so, handle it.
if (StandardCompileOpts &&
StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
AddStandardCompilePasses(Passes);
StandardCompileOpts = false;
}
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 2);
OptLevelOz = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 3, 0);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
Pass *P = 0;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
PassKind Kind = P->getPassKind();
addPass(Passes, P);
if (AnalyzeOnly) {
switch (Kind) {
case PT_BasicBlock:
Passes.add(new BasicBlockPassPrinter(PassInf, Out->os()));
break;
case PT_Region:
Passes.add(new RegionPassPrinter(PassInf, Out->os()));
break;
case PT_Loop:
Passes.add(new LoopPassPrinter(PassInf, Out->os()));
break;
case PT_Function:
Passes.add(new FunctionPassPrinter(PassInf, Out->os()));
break;
case PT_CallGraphSCC:
Passes.add(new CallGraphSCCPassPrinter(PassInf, Out->os()));
break;
default:
Passes.add(new ModulePassPrinter(PassInf, Out->os()));
break;
}
}
}
if (PrintEachXForm)
Passes.add(createPrintModulePass(&errs()));
}
// If -std-compile-opts was specified at the end of the pass list, add them.
if (StandardCompileOpts) {
AddStandardCompilePasses(Passes);
StandardCompileOpts = false;
}
if (StandardLinkOpts) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1)
AddOptimizationPasses(Passes, *FPasses, 1, 0);
if (OptLevelO2)
AddOptimizationPasses(Passes, *FPasses, 2, 0);
if (OptLevelOs)
AddOptimizationPasses(Passes, *FPasses, 2, 1);
if (OptLevelOz)
AddOptimizationPasses(Passes, *FPasses, 2, 2);
if (OptLevelO3)
AddOptimizationPasses(Passes, *FPasses, 3, 0);
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses->doInitialization();
for (Module::iterator F = M->begin(), E = M->end(); F != E; ++F)
FPasses->run(*F);
FPasses->doFinalization();
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach)
Passes.add(createVerifierPass());
// Write bitcode or assembly to the output as the last step...
if (!NoOutput && !AnalyzeOnly) {
if (OutputAssembly)
Passes.add(createPrintModulePass(&Out->os()));
else
Passes.add(createBitcodeWriterPass(Out->os()));
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// Now that we have all of the passes ready, run them.
Passes.run(*M.get());
// Declare success.
if (!NoOutput || PrintBreakpoints)
Out->keep();
return 0;
}