mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-11 23:16:20 +00:00
3ef1aae2b5
This change teaches LazyValueInfo to use the @llvm.assume intrinsic. Like with the known-bits change (r217342), this requires feeding a "context" instruction pointer through many functions. Aside from a little refactoring to reuse the logic that turns predicates into constant ranges in LVI, the only new code is that which can 'merge' the range from an assumption into that otherwise computed. There is also a small addition to JumpThreading so that it can have LVI use assumptions in the same block as the comparison feeding a conditional branch. With this patch, we can now simplify this as expected: int foo(int a) { __builtin_assume(a > 5); if (a > 3) { bar(); return 1; } return 0; } git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217345 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//