llvm/lib/CodeGen/RegAllocSimple.cpp

438 lines
15 KiB
C++

//===-- RegAllocSimple.cpp - A simple generic register allocator --- ------===//
//
// This file implements a simple register allocator. *Very* simple.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>
#include <set>
/// PhysRegClassMap - Construct a mapping of physical register numbers to their
/// register classes.
///
/// NOTE: This class will eventually be pulled out to somewhere shared.
///
class PhysRegClassMap {
std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
public:
PhysRegClassMap(const MRegisterInfo *RI) {
for (MRegisterInfo::const_iterator I = RI->regclass_begin(),
E = RI->regclass_end(); I != E; ++I)
for (unsigned i=0; i < (*I)->getNumRegs(); ++i)
PhysReg2RegClassMap[(*I)->getRegister(i)] = *I;
}
const TargetRegisterClass *operator[](unsigned Reg) {
assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!");
return PhysReg2RegClassMap[Reg];
}
const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); }
};
namespace {
Statistic<> NumSpilled ("ra-simple", "Number of registers spilled");
Statistic<> NumReloaded("ra-simple", "Number of registers reloaded");
class RegAllocSimple : public FunctionPass {
TargetMachine &TM;
MachineFunction *MF;
const MRegisterInfo *RegInfo;
unsigned NumBytesAllocated;
// Maps SSA Regs => offsets on the stack where these values are stored
std::map<unsigned, unsigned> VirtReg2OffsetMap;
// Maps SSA Regs => physical regs
std::map<unsigned, unsigned> SSA2PhysRegMap;
// Maps physical register to their register classes
PhysRegClassMap PhysRegClasses;
// Made to combat the incorrect allocation of r2 = add r1, r1
std::map<unsigned, unsigned> VirtReg2PhysRegMap;
// RegsUsed - Keep track of what registers are currently in use.
std::set<unsigned> RegsUsed;
// RegClassIdx - Maps RegClass => which index we can take a register
// from. Since this is a simple register allocator, when we need a register
// of a certain class, we just take the next available one.
std::map<const TargetRegisterClass*, unsigned> RegClassIdx;
public:
RegAllocSimple(TargetMachine &tm)
: TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) {
RegsUsed.insert(RegInfo->getFramePointer());
RegsUsed.insert(RegInfo->getStackPointer());
cleanupAfterFunction();
}
bool runOnFunction(Function &Fn) {
return runOnMachineFunction(MachineFunction::get(&Fn));
}
private:
/// runOnMachineFunction - Register allocate the whole function
bool runOnMachineFunction(MachineFunction &Fn);
/// AllocateBasicBlock - Register allocate the specified basic block.
void AllocateBasicBlock(MachineBasicBlock &MBB);
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
void EliminatePHINodes(MachineBasicBlock &MBB);
bool isAvailableReg(unsigned Reg) {
// assert(Reg < MRegisterInfo::FirstVirtualReg && "...");
return RegsUsed.find(Reg) == RegsUsed.end();
}
/// allocateStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass);
/// Given a virtual register, returns a physical register that is currently
/// unused.
///
/// Side effect: marks that register as being used until manually cleared
///
unsigned getFreeReg(unsigned virtualReg);
/// Returns all `borrowed' registers back to the free pool
void clearAllRegs() {
RegClassIdx.clear();
}
/// Invalidates any references, real or implicit, to physical registers
///
void invalidatePhysRegs(const MachineInstr *MI) {
unsigned Opcode = MI->getOpcode();
const MachineInstrDescriptor &Desc = TM.getInstrInfo().get(Opcode);
const unsigned *regs = Desc.ImplicitUses;
while (*regs)
RegsUsed.insert(*regs++);
regs = Desc.ImplicitDefs;
while (*regs)
RegsUsed.insert(*regs++);
}
void cleanupAfterFunction() {
VirtReg2OffsetMap.clear();
SSA2PhysRegMap.clear();
NumBytesAllocated = 4; // FIXME: This is X86 specific
}
/// Moves value from memory into that register
MachineBasicBlock::iterator
moveUseToReg (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned &PhysReg);
/// Saves reg value on the stack (maps virtual register to stack value)
MachineBasicBlock::iterator
saveVirtRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned VirtReg,
unsigned PhysReg);
MachineBasicBlock::iterator
savePhysRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, unsigned PhysReg);
};
}
/// allocateStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RegAllocSimple::allocateStackSpaceFor(unsigned VirtReg,
const TargetRegisterClass *regClass)
{
if (VirtReg2OffsetMap.find(VirtReg) == VirtReg2OffsetMap.end()) {
unsigned RegSize = regClass->getDataSize();
// Align NumBytesAllocated. We should be using TargetData alignment stuff
// to determine this, but we don't know the LLVM type associated with the
// virtual register. Instead, just align to a multiple of the size for now.
NumBytesAllocated += RegSize-1;
NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
// Assign the slot...
VirtReg2OffsetMap[VirtReg] = NumBytesAllocated;
// Reserve the space!
NumBytesAllocated += RegSize;
}
return VirtReg2OffsetMap[VirtReg];
}
unsigned RegAllocSimple::getFreeReg(unsigned virtualReg) {
const TargetRegisterClass* regClass = MF->getRegClass(virtualReg);
unsigned physReg;
assert(regClass);
if (RegClassIdx.find(regClass) != RegClassIdx.end()) {
unsigned regIdx = RegClassIdx[regClass]++;
assert(regIdx < regClass->getNumRegs() && "Not enough registers!");
physReg = regClass->getRegister(regIdx);
} else {
physReg = regClass->getRegister(0);
// assert(physReg < regClass->getNumRegs() && "No registers in class!");
RegClassIdx[regClass] = 1;
}
if (isAvailableReg(physReg))
return physReg;
else
return getFreeReg(virtualReg);
}
MachineBasicBlock::iterator
RegAllocSimple::moveUseToReg (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned &PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
PhysReg = getFreeReg(VirtReg);
// Add move instruction(s)
++NumReloaded;
return RegInfo->loadRegOffset2Reg(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::saveVirtRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned VirtReg, unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(VirtReg);
assert(regClass);
unsigned stackOffset = allocateStackSpaceFor(VirtReg, regClass);
// Add move instruction(s)
++NumSpilled;
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
-stackOffset, regClass->getDataSize());
}
MachineBasicBlock::iterator
RegAllocSimple::savePhysRegToStack (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned PhysReg)
{
const TargetRegisterClass* regClass = MF->getRegClass(PhysReg);
assert(regClass);
unsigned offset = allocateStackSpaceFor(PhysReg, regClass);
// Add move instruction(s)
++NumSpilled;
return RegInfo->storeReg2RegOffset(MBB, I, PhysReg,
RegInfo->getFramePointer(),
offset, regClass->getDataSize());
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
void RegAllocSimple::EliminatePHINodes(MachineBasicBlock &MBB) {
const MachineInstrInfo &MII = TM.getInstrInfo();
while (MBB.front()->getOpcode() == 0) {
MachineInstr *MI = MBB.front();
// Unlink the PHI node from the basic block... but don't delete the PHI
MBB.erase(MBB.begin());
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
DEBUG(std::cerr << "num invalid regs: " << RegsUsed.size() << "\n");
DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
MachineOperand &targetReg = MI->getOperand(0);
// If it's a virtual register, allocate a physical one otherwise, just use
// whatever register is there now note: it MUST be a register -- we're
// assigning to it!
//
unsigned virtualReg = (unsigned) targetReg.getAllocatedRegNum();
unsigned physReg;
if (targetReg.isVirtualRegister()) {
physReg = getFreeReg(virtualReg);
} else {
physReg = virtualReg;
}
// Find the register class of the target register: should be the
// same as the values we're trying to store there
const TargetRegisterClass* regClass = PhysRegClasses[physReg];
assert(regClass && "Target register class not found!");
unsigned dataSize = regClass->getDataSize();
for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
MachineOperand &opVal = MI->getOperand(i-1);
// Get the MachineBasicBlock equivalent of the BasicBlock that is the
// source path the phi
MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the
// same basic block. It doesn't matter which entry we use though, because
// all incoming values are guaranteed to be the same for a particular bb.
//
// Note that this is N^2 in the number of phi node entries, but since the
// # of entries is tiny, this is not a problem.
//
bool HaveNotEmitted = true;
for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
HaveNotEmitted = false;
break;
}
if (HaveNotEmitted) {
MachineBasicBlock::iterator opI = opBlock.end();
MachineInstr *opMI = *--opI;
// must backtrack over ALL the branches in the previous block
while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
opMI = *--opI;
// move back to the first branch instruction so new instructions
// are inserted right in front of it and not in front of a non-branch
if (!MII.isBranch(opMI->getOpcode()))
++opI;
// Retrieve the constant value from this op, move it to target
// register of the phi
if (opVal.isImmediate()) {
opI = RegInfo->moveImm2Reg(opBlock, opI, physReg,
(unsigned) opVal.getImmedValue(),
dataSize);
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
} else {
// Allocate a physical register and add a move in the BB
unsigned opVirtualReg = (unsigned) opVal.getAllocatedRegNum();
unsigned opPhysReg;
opI = moveUseToReg(opBlock, opI, opVirtualReg, physReg);
// Save that register value to the stack of the TARGET REG
saveVirtRegToStack(opBlock, opI, virtualReg, physReg);
}
}
// make regs available to other instructions
clearAllRegs();
}
// really delete the instruction
delete MI;
}
}
void RegAllocSimple::AllocateBasicBlock(MachineBasicBlock &MBB) {
// Handle PHI instructions specially: add moves to each pred block
EliminatePHINodes(MBB);
//loop over each basic block
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end(); ++I) {
MachineInstr *MI = *I;
// a preliminary pass that will invalidate any registers that
// are used by the instruction (including implicit uses)
invalidatePhysRegs(MI);
// Loop over uses, move from memory into registers
for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
MachineOperand &op = MI->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtualReg = (unsigned) op.getAllocatedRegNum();
DEBUG(std::cerr << "op: " << op << "\n");
DEBUG(std::cerr << "\t inst[" << i << "]: ";
MI->print(std::cerr, TM));
// make sure the same virtual register maps to the same physical
// register in any given instruction
unsigned physReg;
if (VirtReg2PhysRegMap.find(virtualReg) != VirtReg2PhysRegMap.end()) {
physReg = VirtReg2PhysRegMap[virtualReg];
} else {
if (op.opIsDef()) {
if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
// must be same register number as the first operand
// This maps a = b + c into b += c, and saves b into a's spot
physReg = MI->getOperand(1).getAllocatedRegNum();
} else {
physReg = getFreeReg(virtualReg);
}
MachineBasicBlock::iterator J = I;
J = saveVirtRegToStack(MBB, ++J, virtualReg, physReg);
I = --J;
} else {
I = moveUseToReg(MBB, I, virtualReg, physReg);
}
VirtReg2PhysRegMap[virtualReg] = physReg;
}
MI->SetMachineOperandReg(i, physReg);
DEBUG(std::cerr << "virt: " << virtualReg <<
", phys: " << op.getAllocatedRegNum() << "\n");
}
}
clearAllRegs();
VirtReg2PhysRegMap.clear();
}
}
/// runOnMachineFunction - Register allocate the whole function
///
bool RegAllocSimple::runOnMachineFunction(MachineFunction &Fn) {
DEBUG(std::cerr << "Machine Function " << "\n");
MF = &Fn;
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB)
AllocateBasicBlock(*MBB);
// add prologue we should preserve callee-save registers...
RegInfo->emitPrologue(Fn, NumBytesAllocated);
const MachineInstrInfo &MII = TM.getInstrInfo();
// add epilogue to restore the callee-save registers
// loop over the basic block
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// check if last instruction is a RET
if (MII.isReturn(MBB->back()->getOpcode())) {
// this block has a return instruction, add epilogue
RegInfo->emitEpilogue(*MBB, NumBytesAllocated);
}
}
cleanupAfterFunction();
return false; // We never modify the LLVM itself.
}
Pass *createSimpleX86RegisterAllocator(TargetMachine &TM) {
return new RegAllocSimple(TM);
}