llvm/lib/Target/CellSPU/SPUInstrInfo.td
Dan Gohman 735afe14ee Remove ISD::DEBUG_LOC and ISD::DBG_LABEL, which are no longer used.
Note that "hasDotLocAndDotFile"-style debug info was already broken;
people wanting this functionality should implement it in the
AsmPrinter/DwarfWriter code.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@89711 91177308-0d34-0410-b5e6-96231b3b80d8
2009-11-23 23:20:51 +00:00

4602 lines
161 KiB
TableGen

//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Cell SPU Instructions:
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO Items (not urgent today, but would be nice, low priority)
//
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
// in 16-bit and 32-bit constants and reduce instruction count.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Pseudo instructions:
//===----------------------------------------------------------------------===//
let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
"${:comment} ADJCALLSTACKDOWN",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt),
"${:comment} ADJCALLSTACKUP",
[(callseq_end timm:$amt)]>;
}
//===----------------------------------------------------------------------===//
// Loads:
// NB: The ordering is actually important, since the instruction selection
// will try each of the instructions in sequence, i.e., the D-form first with
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
// finally the X-form with the register-register.
//===----------------------------------------------------------------------===//
let canFoldAsLoad = 1 in {
class LoadDFormVec<ValueType vectype>
: RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
"lqd\t$rT, $src",
LoadStore,
[(set (vectype VECREG:$rT), (load dform_addr:$src))]>
{ }
class LoadDForm<RegisterClass rclass>
: RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
"lqd\t$rT, $src",
LoadStore,
[(set rclass:$rT, (load dform_addr:$src))]>
{ }
multiclass LoadDForms
{
def v16i8: LoadDFormVec<v16i8>;
def v8i16: LoadDFormVec<v8i16>;
def v4i32: LoadDFormVec<v4i32>;
def v2i64: LoadDFormVec<v2i64>;
def v4f32: LoadDFormVec<v4f32>;
def v2f64: LoadDFormVec<v2f64>;
def v2i32: LoadDFormVec<v2i32>;
def r128: LoadDForm<GPRC>;
def r64: LoadDForm<R64C>;
def r32: LoadDForm<R32C>;
def f32: LoadDForm<R32FP>;
def f64: LoadDForm<R64FP>;
def r16: LoadDForm<R16C>;
def r8: LoadDForm<R8C>;
}
class LoadAFormVec<ValueType vectype>
: RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src",
LoadStore,
[(set (vectype VECREG:$rT), (load aform_addr:$src))]>
{ }
class LoadAForm<RegisterClass rclass>
: RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
"lqa\t$rT, $src",
LoadStore,
[(set rclass:$rT, (load aform_addr:$src))]>
{ }
multiclass LoadAForms
{
def v16i8: LoadAFormVec<v16i8>;
def v8i16: LoadAFormVec<v8i16>;
def v4i32: LoadAFormVec<v4i32>;
def v2i64: LoadAFormVec<v2i64>;
def v4f32: LoadAFormVec<v4f32>;
def v2f64: LoadAFormVec<v2f64>;
def v2i32: LoadAFormVec<v2i32>;
def r128: LoadAForm<GPRC>;
def r64: LoadAForm<R64C>;
def r32: LoadAForm<R32C>;
def f32: LoadAForm<R32FP>;
def f64: LoadAForm<R64FP>;
def r16: LoadAForm<R16C>;
def r8: LoadAForm<R8C>;
}
class LoadXFormVec<ValueType vectype>
: RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src",
LoadStore,
[(set (vectype VECREG:$rT), (load xform_addr:$src))]>
{ }
class LoadXForm<RegisterClass rclass>
: RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
"lqx\t$rT, $src",
LoadStore,
[(set rclass:$rT, (load xform_addr:$src))]>
{ }
multiclass LoadXForms
{
def v16i8: LoadXFormVec<v16i8>;
def v8i16: LoadXFormVec<v8i16>;
def v4i32: LoadXFormVec<v4i32>;
def v2i64: LoadXFormVec<v2i64>;
def v4f32: LoadXFormVec<v4f32>;
def v2f64: LoadXFormVec<v2f64>;
def v2i32: LoadXFormVec<v2i32>;
def r128: LoadXForm<GPRC>;
def r64: LoadXForm<R64C>;
def r32: LoadXForm<R32C>;
def f32: LoadXForm<R32FP>;
def f64: LoadXForm<R64FP>;
def r16: LoadXForm<R16C>;
def r8: LoadXForm<R8C>;
}
defm LQA : LoadAForms;
defm LQD : LoadDForms;
defm LQX : LoadXForms;
/* Load quadword, PC relative: Not much use at this point in time.
Might be of use later for relocatable code. It's effectively the
same as LQA, but uses PC-relative addressing.
def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
"lqr\t$rT, $disp", LoadStore,
[(set VECREG:$rT, (load iaddr:$disp))]>;
*/
}
//===----------------------------------------------------------------------===//
// Stores:
//===----------------------------------------------------------------------===//
class StoreDFormVec<ValueType vectype>
: RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
"stqd\t$rT, $src",
LoadStore,
[(store (vectype VECREG:$rT), dform_addr:$src)]>
{ }
class StoreDForm<RegisterClass rclass>
: RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
"stqd\t$rT, $src",
LoadStore,
[(store rclass:$rT, dform_addr:$src)]>
{ }
multiclass StoreDForms
{
def v16i8: StoreDFormVec<v16i8>;
def v8i16: StoreDFormVec<v8i16>;
def v4i32: StoreDFormVec<v4i32>;
def v2i64: StoreDFormVec<v2i64>;
def v4f32: StoreDFormVec<v4f32>;
def v2f64: StoreDFormVec<v2f64>;
def v2i32: StoreDFormVec<v2i32>;
def r128: StoreDForm<GPRC>;
def r64: StoreDForm<R64C>;
def r32: StoreDForm<R32C>;
def f32: StoreDForm<R32FP>;
def f64: StoreDForm<R64FP>;
def r16: StoreDForm<R16C>;
def r8: StoreDForm<R8C>;
}
class StoreAFormVec<ValueType vectype>
: RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src",
LoadStore,
[(store (vectype VECREG:$rT), aform_addr:$src)]>;
class StoreAForm<RegisterClass rclass>
: RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
"stqa\t$rT, $src",
LoadStore,
[(store rclass:$rT, aform_addr:$src)]>;
multiclass StoreAForms
{
def v16i8: StoreAFormVec<v16i8>;
def v8i16: StoreAFormVec<v8i16>;
def v4i32: StoreAFormVec<v4i32>;
def v2i64: StoreAFormVec<v2i64>;
def v4f32: StoreAFormVec<v4f32>;
def v2f64: StoreAFormVec<v2f64>;
def v2i32: StoreAFormVec<v2i32>;
def r128: StoreAForm<GPRC>;
def r64: StoreAForm<R64C>;
def r32: StoreAForm<R32C>;
def f32: StoreAForm<R32FP>;
def f64: StoreAForm<R64FP>;
def r16: StoreAForm<R16C>;
def r8: StoreAForm<R8C>;
}
class StoreXFormVec<ValueType vectype>
: RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src",
LoadStore,
[(store (vectype VECREG:$rT), xform_addr:$src)]>
{ }
class StoreXForm<RegisterClass rclass>
: RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
"stqx\t$rT, $src",
LoadStore,
[(store rclass:$rT, xform_addr:$src)]>
{ }
multiclass StoreXForms
{
def v16i8: StoreXFormVec<v16i8>;
def v8i16: StoreXFormVec<v8i16>;
def v4i32: StoreXFormVec<v4i32>;
def v2i64: StoreXFormVec<v2i64>;
def v4f32: StoreXFormVec<v4f32>;
def v2f64: StoreXFormVec<v2f64>;
def v2i32: StoreXFormVec<v2i32>;
def r128: StoreXForm<GPRC>;
def r64: StoreXForm<R64C>;
def r32: StoreXForm<R32C>;
def f32: StoreXForm<R32FP>;
def f64: StoreXForm<R64FP>;
def r16: StoreXForm<R16C>;
def r8: StoreXForm<R8C>;
}
defm STQD : StoreDForms;
defm STQA : StoreAForms;
defm STQX : StoreXForms;
/* Store quadword, PC relative: Not much use at this point in time. Might
be useful for relocatable code.
def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
"stqr\t$rT, $disp", LoadStore,
[(store VECREG:$rT, iaddr:$disp)]>;
*/
//===----------------------------------------------------------------------===//
// Generate Controls for Insertion:
//===----------------------------------------------------------------------===//
def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"cbd\t$rT, $src", ShuffleOp,
[(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
"cbx\t$rT, $src", ShuffleOp,
[(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"chd\t$rT, $src", ShuffleOp,
[(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
"chx\t$rT, $src", ShuffleOp,
[(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"cwd\t$rT, $src", ShuffleOp,
[(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
"cwx\t$rT, $src", ShuffleOp,
[(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"cwd\t$rT, $src", ShuffleOp,
[(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
"cwx\t$rT, $src", ShuffleOp,
[(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"cdd\t$rT, $src", ShuffleOp,
[(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
"cdx\t$rT, $src", ShuffleOp,
[(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
"cdd\t$rT, $src", ShuffleOp,
[(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
"cdx\t$rT, $src", ShuffleOp,
[(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
//===----------------------------------------------------------------------===//
// Constant formation:
//===----------------------------------------------------------------------===//
def ILHv8i16:
RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
"ilh\t$rT, $val", ImmLoad,
[(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
def ILHr16:
RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
"ilh\t$rT, $val", ImmLoad,
[(set R16C:$rT, immSExt16:$val)]>;
// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
// the right constant")
def ILHr8:
RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
"ilh\t$rT, $val", ImmLoad,
[(set R8C:$rT, immSExt8:$val)]>;
// IL does sign extension!
class ILInst<dag OOL, dag IOL, list<dag> pattern>:
RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
ImmLoad, pattern>;
class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
ILInst<(outs VECREG:$rT), (ins immtype:$val),
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
ILInst<(outs rclass:$rT), (ins immtype:$val),
[(set rclass:$rT, xform:$val)]>;
multiclass ImmediateLoad
{
def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
// TODO: Need v2f64, v4f32
def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
}
defm IL : ImmediateLoad;
class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
ImmLoad, pattern>;
class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
ILHUInst<(outs rclass:$rT), (ins immtype:$val),
[(set rclass:$rT, xform:$val)]>;
multiclass ImmLoadHalfwordUpper
{
def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
// Loads the high portion of an address
def hi: ILHURegInst<R32C, symbolHi, hi16>;
// Used in custom lowering constant SFP loads:
def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
}
defm ILHU : ImmLoadHalfwordUpper;
// Immediate load address (can also be used to load 18-bit unsigned constants,
// see the zext 16->32 pattern)
class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
LoadNOP, pattern>;
class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
ILAInst<(outs VECREG:$rT), (ins immtype:$val),
[(set (vectype VECREG:$rT), (vectype xform:$val))]>;
class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
ILAInst<(outs rclass:$rT), (ins immtype:$val),
[(set rclass:$rT, xform:$val)]>;
multiclass ImmLoadAddress
{
def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
def r64: ILARegInst<R64C, u18imm_i64, imm18>;
def r32: ILARegInst<R32C, u18imm, imm18>;
def f32: ILARegInst<R32FP, f18imm, fpimm18>;
def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
def hi: ILARegInst<R32C, symbolHi, imm18>;
def lo: ILARegInst<R32C, symbolLo, imm18>;
def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
[/* no pattern */]>;
}
defm ILA : ImmLoadAddress;
// Immediate OR, Halfword Lower: The "other" part of loading large constants
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
// Note that these are really two operand instructions, but they're encoded
// as three operands with the first two arguments tied-to each other.
class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
ImmLoad, pattern>,
RegConstraint<"$rS = $rT">,
NoEncode<"$rS">;
class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
[/* no pattern */]>;
class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
[/* no pattern */]>;
multiclass ImmOrHalfwordLower
{
def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
def r32: IOHLRegInst<R32C, i32imm>;
def f32: IOHLRegInst<R32FP, f32imm>;
def lo: IOHLRegInst<R32C, symbolLo>;
}
defm IOHL: ImmOrHalfwordLower;
// Form select mask for bytes using immediate, used in conjunction with the
// SELB instruction:
class FSMBIVec<ValueType vectype>:
RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
"fsmbi\t$rT, $val",
SelectOp,
[(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
multiclass FormSelectMaskBytesImm
{
def v16i8: FSMBIVec<v16i8>;
def v8i16: FSMBIVec<v8i16>;
def v4i32: FSMBIVec<v4i32>;
def v2i64: FSMBIVec<v2i64>;
}
defm FSMBI : FormSelectMaskBytesImm;
// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
pattern>;
class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
class FSMBVecInst<ValueType vectype>:
FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
[(set (vectype VECREG:$rT),
(SPUselmask (vectype VECREG:$rA)))]>;
multiclass FormSelectMaskBits {
def v16i8_r16: FSMBRegInst<R16C, v16i8>;
def v16i8: FSMBVecInst<v16i8>;
}
defm FSMB: FormSelectMaskBits;
// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
// only 8-bits wide (even though it's input as 16-bits here)
class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
pattern>;
class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
class FSMHVecInst<ValueType vectype>:
FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
[(set (vectype VECREG:$rT),
(SPUselmask (vectype VECREG:$rA)))]>;
multiclass FormSelectMaskHalfword {
def v8i16_r16: FSMHRegInst<R16C, v8i16>;
def v8i16: FSMHVecInst<v8i16>;
}
defm FSMH: FormSelectMaskHalfword;
// fsm: Form select mask for words. Like the other fsm* instructions,
// only the lower 4 bits of $rA are significant.
class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
pattern>;
class FSMRegInst<ValueType vectype, RegisterClass rclass>:
FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
[(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
class FSMVecInst<ValueType vectype>:
FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
[(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
multiclass FormSelectMaskWord {
def v4i32: FSMVecInst<v4i32>;
def r32 : FSMRegInst<v4i32, R32C>;
def r16 : FSMRegInst<v4i32, R16C>;
}
defm FSM : FormSelectMaskWord;
// Special case when used for i64 math operations
multiclass FormSelectMaskWord64 {
def r32 : FSMRegInst<v2i64, R32C>;
def r16 : FSMRegInst<v2i64, R16C>;
}
defm FSM64 : FormSelectMaskWord64;
//===----------------------------------------------------------------------===//
// Integer and Logical Operations:
//===----------------------------------------------------------------------===//
def AHv8i16:
RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"ah\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
(AHv8i16 VECREG:$rA, VECREG:$rB)>;
def AHr16:
RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"ah\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
def AHIvec:
RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ahi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
v8i16SExt10Imm:$val))]>;
def AHIr16:
RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"ahi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
// v4i32, i32 add instruction:
class AInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00000011000, OOL, IOL,
"a\t$rT, $rA, $rB", IntegerOp,
pattern>;
class AVecInst<ValueType vectype>:
AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
(vectype VECREG:$rB)))]>;
class ARegInst<RegisterClass rclass>:
AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
multiclass AddInstruction {
def v4i32: AVecInst<v4i32>;
def v16i8: AVecInst<v16i8>;
def r32: ARegInst<R32C>;
}
defm A : AddInstruction;
class AIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b00111000, OOL, IOL,
"ai\t$rT, $rA, $val", IntegerOp,
pattern>;
class AIVecInst<ValueType vectype, PatLeaf immpred>:
AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[/* no pattern */]>;
class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
[(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
// This is used to add epsilons to floating point numbers in the f32 fdiv code:
class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
[/* no pattern */]>;
multiclass AddImmediate {
def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
def r32: AIRegInst<R32C, i32ImmSExt10>;
def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
def f32: AIFPInst<R32FP, i32ImmSExt10>;
}
defm AI : AddImmediate;
def SFHvec:
RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"sfh\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def SFHr16:
RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"sfh\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>;
def SFHIvec:
RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"sfhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
(v8i16 VECREG:$rA)))]>;
def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"sfhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB),
"sf\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"sf\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>;
def SFIvec:
RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"sfi\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
(v4i32 VECREG:$rA)))]>;
def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
(ins R32C:$rA, s10imm_i32:$val),
"sfi\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
// ADDX: only available in vector form, doesn't match a pattern.
class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00000010110, OOL, IOL,
"addx\t$rT, $rA, $rB",
IntegerOp, pattern>;
class ADDXVecInst<ValueType vectype>:
ADDXInst<(outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
[/* no pattern */]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
class ADDXRegInst<RegisterClass rclass>:
ADDXInst<(outs rclass:$rT),
(ins rclass:$rA, rclass:$rB, rclass:$rCarry),
[/* no pattern */]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
multiclass AddExtended {
def v2i64 : ADDXVecInst<v2i64>;
def v4i32 : ADDXVecInst<v4i32>;
def r64 : ADDXRegInst<R64C>;
def r32 : ADDXRegInst<R32C>;
}
defm ADDX : AddExtended;
// CG: Generate carry for add
class CGInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01000011000, OOL, IOL,
"cg\t$rT, $rA, $rB",
IntegerOp, pattern>;
class CGVecInst<ValueType vectype>:
CGInst<(outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB),
[/* no pattern */]>;
class CGRegInst<RegisterClass rclass>:
CGInst<(outs rclass:$rT),
(ins rclass:$rA, rclass:$rB),
[/* no pattern */]>;
multiclass CarryGenerate {
def v2i64 : CGVecInst<v2i64>;
def v4i32 : CGVecInst<v4i32>;
def r64 : CGRegInst<R64C>;
def r32 : CGRegInst<R32C>;
}
defm CG : CarryGenerate;
// SFX: Subract from, extended. This is used in conjunction with BG to subtract
// with carry (borrow, in this case)
class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10000010110, OOL, IOL,
"sfx\t$rT, $rA, $rB",
IntegerOp, pattern>;
class SFXVecInst<ValueType vectype>:
SFXInst<(outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
[/* no pattern */]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
class SFXRegInst<RegisterClass rclass>:
SFXInst<(outs rclass:$rT),
(ins rclass:$rA, rclass:$rB, rclass:$rCarry),
[/* no pattern */]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
multiclass SubtractExtended {
def v2i64 : SFXVecInst<v2i64>;
def v4i32 : SFXVecInst<v4i32>;
def r64 : SFXRegInst<R64C>;
def r32 : SFXRegInst<R32C>;
}
defm SFX : SubtractExtended;
// BG: only available in vector form, doesn't match a pattern.
class BGInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01000010000, OOL, IOL,
"bg\t$rT, $rA, $rB",
IntegerOp, pattern>;
class BGVecInst<ValueType vectype>:
BGInst<(outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB),
[/* no pattern */]>;
class BGRegInst<RegisterClass rclass>:
BGInst<(outs rclass:$rT),
(ins rclass:$rA, rclass:$rB),
[/* no pattern */]>;
multiclass BorrowGenerate {
def v4i32 : BGVecInst<v4i32>;
def v2i64 : BGVecInst<v2i64>;
def r64 : BGRegInst<R64C>;
def r32 : BGRegInst<R32C>;
}
defm BG : BorrowGenerate;
// BGX: Borrow generate, extended.
def BGXvec:
RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"bgx\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// Halfword multiply variants:
// N.B: These can be used to build up larger quantities (16x16 -> 32)
def MPYv8i16:
RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYr16:
RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
[(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
// Unsigned 16-bit multiply:
class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00110011110, OOL, IOL,
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
pattern>;
def MPYUv4i32:
MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[/* no pattern */]>;
def MPYUr16:
MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
[(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
def MPYUr32:
MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[/* no pattern */]>;
// mpyi: multiply 16 x s10imm -> 32 result.
class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b00101110, OOL, IOL,
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
pattern>;
def MPYIvec:
MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v8i16 VECREG:$rT),
(mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
def MPYIr16:
MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
[(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
// mpyui: same issues as other multiplies, plus, this doesn't match a
// pattern... but may be used during target DAG selection or lowering
class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b10101110, OOL, IOL,
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
pattern>;
def MPYUIvec:
MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[]>;
def MPYUIr16:
MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
[]>;
// mpya: 16 x 16 + 16 -> 32 bit result
class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
RRRForm<0b0011, OOL, IOL,
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
pattern>;
def MPYAv4i32:
MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
[(set (v4i32 VECREG:$rT),
(add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))),
(v4i32 VECREG:$rC)))]>;
def MPYAr32:
MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
[(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
R32C:$rC))]>;
def MPYAr32_sext:
MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
[(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
R32C:$rC))]>;
def MPYAr32_sextinreg:
MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
[(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
(sext_inreg R32C:$rB, i16)),
R32C:$rC))]>;
// mpyh: multiply high, used to synthesize 32-bit multiplies
class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10100011110, OOL, IOL,
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
pattern>;
def MPYHv4i32:
MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[/* no pattern */]>;
def MPYHr32:
MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[/* no pattern */]>;
// mpys: multiply high and shift right (returns the top half of
// a 16-bit multiply, sign extended to 32 bits.)
class MPYSInst<dag OOL, dag IOL>:
RRForm<0b11100011110, OOL, IOL,
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYSv4i32:
MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
def MPYSr16:
MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
// mpyhh: multiply high-high (returns the 32-bit result from multiplying
// the top 16 bits of the $rA, $rB)
class MPYHHInst<dag OOL, dag IOL>:
RRForm<0b01100011110, OOL, IOL,
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYHHv8i16:
MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
def MPYHHr32:
MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
// mpyhha: Multiply high-high, add to $rT:
class MPYHHAInst<dag OOL, dag IOL>:
RRForm<0b01100010110, OOL, IOL,
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYHHAvec:
MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
def MPYHHAr32:
MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
// mpyhhu: Multiply high-high, unsigned, e.g.:
//
// +-------+-------+ +-------+-------+ +---------+
// | a0 . a1 | x | b0 . b1 | = | a0 x b0 |
// +-------+-------+ +-------+-------+ +---------+
//
// where a0, b0 are the upper 16 bits of the 32-bit word
class MPYHHUInst<dag OOL, dag IOL>:
RRForm<0b01110011110, OOL, IOL,
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYHHUv4i32:
MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
def MPYHHUr32:
MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
// mpyhhau: Multiply high-high, unsigned
class MPYHHAUInst<dag OOL, dag IOL>:
RRForm<0b01110010110, OOL, IOL,
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
[/* no pattern */]>;
def MPYHHAUvec:
MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
def MPYHHAUr32:
MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// clz: Count leading zeroes
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
IntegerOp, pattern>;
class CLZRegInst<RegisterClass rclass>:
CLZInst<(outs rclass:$rT), (ins rclass:$rA),
[(set rclass:$rT, (ctlz rclass:$rA))]>;
class CLZVecInst<ValueType vectype>:
CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
[(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
multiclass CountLeadingZeroes {
def v4i32 : CLZVecInst<v4i32>;
def r32 : CLZRegInst<R32C>;
}
defm CLZ : CountLeadingZeroes;
// cntb: Count ones in bytes (aka "population count")
//
// NOTE: This instruction is really a vector instruction, but the custom
// lowering code uses it in unorthodox ways to support CTPOP for other
// data types!
def CNTBv16i8:
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
def CNTBv8i16 :
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
def CNTBv4i32 :
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
// gbb: Gather the low order bits from each byte in $rA into a single 16-bit
// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
// slots 1-3.
//
// Note: This instruction "pairs" with the fsmb instruction for all of the
// various types defined here.
//
// Note 2: The "VecInst" and "RegInst" forms refer to the result being either
// a vector or register.
class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
class GBBRegInst<RegisterClass rclass, ValueType vectype>:
GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
class GBBVecInst<ValueType vectype>:
GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
multiclass GatherBitsFromBytes {
def v16i8_r32: GBBRegInst<R32C, v16i8>;
def v16i8_r16: GBBRegInst<R16C, v16i8>;
def v16i8: GBBVecInst<v16i8>;
}
defm GBB: GatherBitsFromBytes;
// gbh: Gather all low order bits from each halfword in $rA into a single
// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
// and slots 1-3 also set to 0.
//
// See notes for GBBInst, above.
class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
pattern>;
class GBHRegInst<RegisterClass rclass, ValueType vectype>:
GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
class GBHVecInst<ValueType vectype>:
GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
multiclass GatherBitsHalfword {
def v8i16_r32: GBHRegInst<R32C, v8i16>;
def v8i16_r16: GBHRegInst<R16C, v8i16>;
def v8i16: GBHVecInst<v8i16>;
}
defm GBH: GatherBitsHalfword;
// gb: Gather all low order bits from each word in $rA into a single
// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
// as well as slots 1-3.
//
// See notes for gbb, above.
class GBInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
pattern>;
class GBRegInst<RegisterClass rclass, ValueType vectype>:
GBInst<(outs rclass:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
class GBVecInst<ValueType vectype>:
GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
[/* no pattern */]>;
multiclass GatherBitsWord {
def v4i32_r32: GBRegInst<R32C, v4i32>;
def v4i32_r16: GBRegInst<R16C, v4i32>;
def v4i32: GBVecInst<v4i32>;
}
defm GB: GatherBitsWord;
// avgb: average bytes
def AVGB:
RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"avgb\t$rT, $rA, $rB", ByteOp,
[]>;
// absdb: absolute difference of bytes
def ABSDB:
RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"absdb\t$rT, $rA, $rB", ByteOp,
[]>;
// sumb: sum bytes into halfwords
def SUMB:
RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"sumb\t$rT, $rA, $rB", ByteOp,
[]>;
// Sign extension operations:
class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b01101101010, OOL, IOL,
"xsbh\t$rDst, $rSrc",
IntegerOp, pattern>;
class XSBHVecInst<ValueType vectype>:
XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
[(set (v8i16 VECREG:$rDst), (sext (vectype VECREG:$rSrc)))]>;
class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
pattern>;
multiclass ExtendByteHalfword {
def v16i8: XSBHVecInst<v8i16>;
def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
[(set R16C:$rDst, (sext R8C:$rSrc))]>;
def r16: XSBHInRegInst<R16C,
[(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
// 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
// quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
// pattern below). Intentionally doesn't match a pattern because we want the
// sext 8->32 pattern to do the work for us, namely because we need the extra
// XSHWr32.
def r32: XSBHInRegInst<R32C, [/* no pattern */]>;
// Same as the 32-bit version, but for i64
def r64: XSBHInRegInst<R64C, [/* no pattern */]>;
}
defm XSBH : ExtendByteHalfword;
// Sign extend halfwords to words:
class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
IntegerOp, pattern>;
class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
[(set (out_vectype VECREG:$rDest),
(sext (in_vectype VECREG:$rSrc)))]>;
class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
pattern>;
class XSHWRegInst<RegisterClass rclass>:
XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
[(set rclass:$rDest, (sext R16C:$rSrc))]>;
multiclass ExtendHalfwordWord {
def v4i32: XSHWVecInst<v4i32, v8i16>;
def r16: XSHWRegInst<R32C>;
def r32: XSHWInRegInst<R32C,
[(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
def r64: XSHWInRegInst<R64C, [/* no pattern */]>;
}
defm XSHW : ExtendHalfwordWord;
// Sign-extend words to doublewords (32->64 bits)
class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
IntegerOp, pattern>;
class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
[(set (out_vectype VECREG:$rDst),
(sext (out_vectype VECREG:$rSrc)))]>;
class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
[(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
multiclass ExtendWordToDoubleWord {
def v2i64: XSWDVecInst<v4i32, v2i64>;
def r64: XSWDRegInst<R32C, R64C>;
def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
[(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
}
defm XSWD : ExtendWordToDoubleWord;
// AND operations
class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
IntegerOp, pattern>;
class ANDVecInst<ValueType vectype>:
ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
(vectype VECREG:$rB)))]>;
class ANDRegInst<RegisterClass rclass>:
ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
multiclass BitwiseAnd
{
def v16i8: ANDVecInst<v16i8>;
def v8i16: ANDVecInst<v8i16>;
def v4i32: ANDVecInst<v4i32>;
def v2i64: ANDVecInst<v2i64>;
def r128: ANDRegInst<GPRC>;
def r64: ANDRegInst<R64C>;
def r32: ANDRegInst<R32C>;
def r16: ANDRegInst<R16C>;
def r8: ANDRegInst<R8C>;
//===---------------------------------------------
// Special instructions to perform the fabs instruction
def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
[/* Intentionally does not match a pattern */]>;
def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
[/* Intentionally does not match a pattern */]>;
def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[/* Intentionally does not match a pattern */]>;
//===---------------------------------------------
// Hacked form of AND to zero-extend 16-bit quantities to 32-bit
// quantities -- see 16->32 zext pattern.
//
// This pattern is somewhat artificial, since it might match some
// compiler generated pattern but it is unlikely to do so.
def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
[(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
}
defm AND : BitwiseAnd;
// N.B.: vnot_conv is one of those special target selection pattern fragments,
// in which we expect there to be a bit_convert on the constant. Bear in mind
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
// constant -1 vector.)
class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
IntegerOp, pattern>;
class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(and (vectype VECREG:$rA),
(vnot_frag (vectype VECREG:$rB))))]>;
class ANDCRegInst<RegisterClass rclass>:
ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
multiclass AndComplement
{
def v16i8: ANDCVecInst<v16i8>;
def v8i16: ANDCVecInst<v8i16>;
def v4i32: ANDCVecInst<v4i32>;
def v2i64: ANDCVecInst<v2i64>;
def r128: ANDCRegInst<GPRC>;
def r64: ANDCRegInst<R64C>;
def r32: ANDCRegInst<R32C>;
def r16: ANDCRegInst<R16C>;
def r8: ANDCRegInst<R8C>;
// Sometimes, the xor pattern has a bitcast constant:
def v16i8_conv: ANDCVecInst<v16i8, vnot_conv>;
}
defm ANDC : AndComplement;
class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass AndByteImm
{
def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
[(set (v16i8 VECREG:$rT),
(and (v16i8 VECREG:$rA),
(v16i8 v16i8U8Imm:$val)))]>;
def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
[(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
}
defm ANDBI : AndByteImm;
class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass AndHalfwordImm
{
def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v8i16 VECREG:$rT),
(and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
[(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
// Zero-extend i8 to i16:
def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
[(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
}
defm ANDHI : AndHalfwordImm;
class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
IntegerOp, pattern>;
multiclass AndWordImm
{
def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v4i32 VECREG:$rT),
(and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
// Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
// pattern below.
def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
[(set R32C:$rT,
(and (zext R8C:$rA), i32ImmSExt10:$val))]>;
// Hacked form of ANDI to zero-extend i16 quantities to i32. See the
// zext 16->32 pattern below.
//
// Note that this pattern is somewhat artificial, since it might match
// something the compiler generates but is unlikely to occur in practice.
def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
[(set R32C:$rT,
(and (zext R16C:$rA), i32ImmSExt10:$val))]>;
}
defm ANDI : AndWordImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Bitwise OR group:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Bitwise "or" (N.B.: These are also register-register copy instructions...)
class ORInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
IntegerOp, pattern>;
class ORVecInst<ValueType vectype>:
ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
(vectype VECREG:$rB)))]>;
class ORRegInst<RegisterClass rclass>:
ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
// ORCvtForm: OR conversion form
//
// This is used to "convert" the preferred slot to its vector equivalent, as
// well as convert a vector back to its preferred slot.
//
// These are effectively no-ops, but need to exist for proper type conversion
// and type coercion.
class ORCvtForm<dag OOL, dag IOL, list<dag> pattern = [/* no pattern */]>
: SPUInstr<OOL, IOL, "or\t$rT, $rA, $rA", IntegerOp> {
bits<7> RA;
bits<7> RT;
let Pattern = pattern;
let Inst{0-10} = 0b10000010000;
let Inst{11-17} = RA;
let Inst{18-24} = RA;
let Inst{25-31} = RT;
}
class ORPromoteScalar<RegisterClass rclass>:
ORCvtForm<(outs VECREG:$rT), (ins rclass:$rA)>;
class ORExtractElt<RegisterClass rclass>:
ORCvtForm<(outs rclass:$rT), (ins VECREG:$rA)>;
/* class ORCvtRegGPRC<RegisterClass rclass>:
ORCvtForm<(outs GPRC:$rT), (ins rclass:$rA)>; */
/* class ORCvtGPRCReg<RegisterClass rclass>:
ORCvtForm<(outs rclass:$rT), (ins GPRC:$rA)>; */
class ORCvtFormR32Reg<RegisterClass rclass, list<dag> pattern = [ ]>:
ORCvtForm<(outs rclass:$rT), (ins R32C:$rA), pattern>;
class ORCvtFormRegR32<RegisterClass rclass, list<dag> pattern = [ ]>:
ORCvtForm<(outs R32C:$rT), (ins rclass:$rA), pattern>;
class ORCvtFormR64Reg<RegisterClass rclass, list<dag> pattern = [ ]>:
ORCvtForm<(outs rclass:$rT), (ins R64C:$rA), pattern>;
class ORCvtFormRegR64<RegisterClass rclass, list<dag> pattern = [ ]>:
ORCvtForm<(outs R64C:$rT), (ins rclass:$rA), pattern>;
class ORCvtGPRCVec:
ORCvtForm<(outs VECREG:$rT), (ins GPRC:$rA)>;
class ORCvtVecGPRC:
ORCvtForm<(outs GPRC:$rT), (ins VECREG:$rA)>;
multiclass BitwiseOr
{
def v16i8: ORVecInst<v16i8>;
def v8i16: ORVecInst<v8i16>;
def v4i32: ORVecInst<v4i32>;
def v2i64: ORVecInst<v2i64>;
def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v4f32 VECREG:$rT),
(v4f32 (bitconvert (or (v4i32 VECREG:$rA),
(v4i32 VECREG:$rB)))))]>;
def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v2f64 VECREG:$rT),
(v2f64 (bitconvert (or (v2i64 VECREG:$rA),
(v2i64 VECREG:$rB)))))]>;
def r128: ORRegInst<GPRC>;
def r64: ORRegInst<R64C>;
def r32: ORRegInst<R32C>;
def r16: ORRegInst<R16C>;
def r8: ORRegInst<R8C>;
// OR instructions used to copy f32 and f64 registers.
def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
[/* no pattern */]>;
def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
[/* no pattern */]>;
// scalar->vector promotion, prefslot2vec:
def v16i8_i8: ORPromoteScalar<R8C>;
def v8i16_i16: ORPromoteScalar<R16C>;
def v4i32_i32: ORPromoteScalar<R32C>;
def v2i64_i64: ORPromoteScalar<R64C>;
def v4f32_f32: ORPromoteScalar<R32FP>;
def v2f64_f64: ORPromoteScalar<R64FP>;
// vector->scalar demotion, vec2prefslot:
def i8_v16i8: ORExtractElt<R8C>;
def i16_v8i16: ORExtractElt<R16C>;
def i32_v4i32: ORExtractElt<R32C>;
def i64_v2i64: ORExtractElt<R64C>;
def f32_v4f32: ORExtractElt<R32FP>;
def f64_v2f64: ORExtractElt<R64FP>;
// Conversion from vector to GPRC
def i128_vec: ORCvtVecGPRC;
// Conversion from GPRC to vector
def vec_i128: ORCvtGPRCVec;
/*
// Conversion from register to GPRC
def i128_r64: ORCvtRegGPRC<R64C>;
def i128_f64: ORCvtRegGPRC<R64FP>;
def i128_r32: ORCvtRegGPRC<R32C>;
def i128_f32: ORCvtRegGPRC<R32FP>;
def i128_r16: ORCvtRegGPRC<R16C>;
def i128_r8: ORCvtRegGPRC<R8C>;
// Conversion from GPRC to register
def r64_i128: ORCvtGPRCReg<R64C>;
def f64_i128: ORCvtGPRCReg<R64FP>;
def r32_i128: ORCvtGPRCReg<R32C>;
def f32_i128: ORCvtGPRCReg<R32FP>;
def r16_i128: ORCvtGPRCReg<R16C>;
def r8_i128: ORCvtGPRCReg<R8C>;
*/
/*
// Conversion from register to R32C:
def r32_r16: ORCvtFormRegR32<R16C>;
def r32_r8: ORCvtFormRegR32<R8C>;
// Conversion from R32C to register
def r32_r16: ORCvtFormR32Reg<R16C>;
def r32_r8: ORCvtFormR32Reg<R8C>;
*/
// Conversion from R64C to register:
def r32_r64: ORCvtFormR64Reg<R32C>;
// def r16_r64: ORCvtFormR64Reg<R16C>;
// def r8_r64: ORCvtFormR64Reg<R8C>;
// Conversion to R64C from register:
def r64_r32: ORCvtFormRegR64<R32C>;
// def r64_r16: ORCvtFormRegR64<R16C>;
// def r64_r8: ORCvtFormRegR64<R8C>;
// bitconvert patterns:
def r32_f32: ORCvtFormR32Reg<R32FP,
[(set R32FP:$rT, (bitconvert R32C:$rA))]>;
def f32_r32: ORCvtFormRegR32<R32FP,
[(set R32C:$rT, (bitconvert R32FP:$rA))]>;
def r64_f64: ORCvtFormR64Reg<R64FP,
[(set R64FP:$rT, (bitconvert R64C:$rA))]>;
def f64_r64: ORCvtFormRegR64<R64FP,
[(set R64C:$rT, (bitconvert R64FP:$rA))]>;
}
defm OR : BitwiseOr;
// scalar->vector promotion patterns (preferred slot to vector):
def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
(ORv16i8_i8 R8C:$rA)>;
def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
(ORv8i16_i16 R16C:$rA)>;
def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
(ORv4i32_i32 R32C:$rA)>;
def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
(ORv2i64_i64 R64C:$rA)>;
def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
(ORv4f32_f32 R32FP:$rA)>;
def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
(ORv2f64_f64 R64FP:$rA)>;
// ORi*_v*: Used to extract vector element 0 (the preferred slot), otherwise
// known as converting the vector back to its preferred slot
def : Pat<(SPUvec2prefslot (v16i8 VECREG:$rA)),
(ORi8_v16i8 VECREG:$rA)>;
def : Pat<(SPUvec2prefslot (v8i16 VECREG:$rA)),
(ORi16_v8i16 VECREG:$rA)>;
def : Pat<(SPUvec2prefslot (v4i32 VECREG:$rA)),
(ORi32_v4i32 VECREG:$rA)>;
def : Pat<(SPUvec2prefslot (v2i64 VECREG:$rA)),
(ORi64_v2i64 VECREG:$rA)>;
def : Pat<(SPUvec2prefslot (v4f32 VECREG:$rA)),
(ORf32_v4f32 VECREG:$rA)>;
def : Pat<(SPUvec2prefslot (v2f64 VECREG:$rA)),
(ORf64_v2f64 VECREG:$rA)>;
// Load Register: This is an assembler alias for a bitwise OR of a register
// against itself. It's here because it brings some clarity to assembly
// language output.
let hasCtrlDep = 1 in {
class LRInst<dag OOL, dag IOL>
: SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
bits<7> RA;
bits<7> RT;
let Pattern = [/*no pattern*/];
let Inst{0-10} = 0b10000010000; /* It's an OR operation */
let Inst{11-17} = RA;
let Inst{18-24} = RA;
let Inst{25-31} = RT;
}
class LRVecInst<ValueType vectype>:
LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
class LRRegInst<RegisterClass rclass>:
LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
multiclass LoadRegister {
def v2i64: LRVecInst<v2i64>;
def v2f64: LRVecInst<v2f64>;
def v4i32: LRVecInst<v4i32>;
def v4f32: LRVecInst<v4f32>;
def v8i16: LRVecInst<v8i16>;
def v16i8: LRVecInst<v16i8>;
def r128: LRRegInst<GPRC>;
def r64: LRRegInst<R64C>;
def f64: LRRegInst<R64FP>;
def r32: LRRegInst<R32C>;
def f32: LRRegInst<R32FP>;
def r16: LRRegInst<R16C>;
def r8: LRRegInst<R8C>;
}
defm LR: LoadRegister;
}
// ORC: Bitwise "or" with complement (c = a | ~b)
class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
IntegerOp, pattern>;
class ORCVecInst<ValueType vectype>:
ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
(vnot (vectype VECREG:$rB))))]>;
class ORCRegInst<RegisterClass rclass>:
ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
multiclass BitwiseOrComplement
{
def v16i8: ORCVecInst<v16i8>;
def v8i16: ORCVecInst<v8i16>;
def v4i32: ORCVecInst<v4i32>;
def v2i64: ORCVecInst<v2i64>;
def r128: ORCRegInst<GPRC>;
def r64: ORCRegInst<R64C>;
def r32: ORCRegInst<R32C>;
def r16: ORCRegInst<R16C>;
def r8: ORCRegInst<R8C>;
}
defm ORC : BitwiseOrComplement;
// OR byte immediate
class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
IntegerOp, pattern>;
class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
[(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
(vectype immpred:$val)))]>;
multiclass BitwiseOrByteImm
{
def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
[(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
}
defm ORBI : BitwiseOrByteImm;
// OR halfword immediate
class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
IntegerOp, pattern>;
class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
immpred:$val))]>;
multiclass BitwiseOrHalfwordImm
{
def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
[(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
// Specialized ORHI form used to promote 8-bit registers to 16-bit
def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
[(set R16C:$rT, (or (anyext R8C:$rA),
i16ImmSExt10:$val))]>;
}
defm ORHI : BitwiseOrHalfwordImm;
class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
IntegerOp, pattern>;
class ORIVecInst<ValueType vectype, PatLeaf immpred>:
ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
[(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
immpred:$val))]>;
// Bitwise "or" with immediate
multiclass BitwiseOrImm
{
def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, u10imm_i32:$val),
[(set R32C:$rT, (or R32C:$rA, i32ImmUns10:$val))]>;
// i16i32: hacked version of the ori instruction to extend 16-bit quantities
// to 32-bit quantities. used exclusively to match "anyext" conversions (vide
// infra "anyext 16->32" pattern.)
def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (or (anyext R16C:$rA),
i32ImmSExt10:$val))]>;
// i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
// to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
// infra "anyext 16->32" pattern.)
def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (or (anyext R8C:$rA),
i32ImmSExt10:$val))]>;
}
defm ORI : BitwiseOrImm;
// ORX: "or" across the vector: or's $rA's word slots leaving the result in
// $rT[0], slots 1-3 are zeroed.
//
// FIXME: Needs to match an intrinsic pattern.
def ORXv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"orx\t$rT, $rA, $rB", IntegerOp,
[]>;
// XOR:
class XORInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
IntegerOp, pattern>;
class XORVecInst<ValueType vectype>:
XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
(vectype VECREG:$rB)))]>;
class XORRegInst<RegisterClass rclass>:
XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
multiclass BitwiseExclusiveOr
{
def v16i8: XORVecInst<v16i8>;
def v8i16: XORVecInst<v8i16>;
def v4i32: XORVecInst<v4i32>;
def v2i64: XORVecInst<v2i64>;
def r128: XORRegInst<GPRC>;
def r64: XORRegInst<R64C>;
def r32: XORRegInst<R32C>;
def r16: XORRegInst<R16C>;
def r8: XORRegInst<R8C>;
// XOR instructions used to negate f32 and f64 quantities.
def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
[/* no pattern */]>;
def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
[/* no pattern */]>;
def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[/* no pattern, see fneg{32,64} */]>;
}
defm XOR : BitwiseExclusiveOr;
//==----------------------------------------------------------
class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
IntegerOp, pattern>;
multiclass XorByteImm
{
def v16i8:
XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
def r8:
XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
[(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
}
defm XORBI : XorByteImm;
def XORHIv8i16:
RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
"xorhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
v8i16SExt10Imm:$val))]>;
def XORHIr16:
RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"xorhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
def XORIv4i32:
RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
"xori\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
v4i32SExt10Imm:$val))]>;
def XORIr32:
RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
"xori\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
// NAND:
class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
IntegerOp, pattern>;
class NANDVecInst<ValueType vectype>:
NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
(vectype VECREG:$rB))))]>;
class NANDRegInst<RegisterClass rclass>:
NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
multiclass BitwiseNand
{
def v16i8: NANDVecInst<v16i8>;
def v8i16: NANDVecInst<v8i16>;
def v4i32: NANDVecInst<v4i32>;
def v2i64: NANDVecInst<v2i64>;
def r128: NANDRegInst<GPRC>;
def r64: NANDRegInst<R64C>;
def r32: NANDRegInst<R32C>;
def r16: NANDRegInst<R16C>;
def r8: NANDRegInst<R8C>;
}
defm NAND : BitwiseNand;
// NOR:
class NORInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
IntegerOp, pattern>;
class NORVecInst<ValueType vectype>:
NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
(vectype VECREG:$rB))))]>;
class NORRegInst<RegisterClass rclass>:
NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
multiclass BitwiseNor
{
def v16i8: NORVecInst<v16i8>;
def v8i16: NORVecInst<v8i16>;
def v4i32: NORVecInst<v4i32>;
def v2i64: NORVecInst<v2i64>;
def r128: NORRegInst<GPRC>;
def r64: NORRegInst<R64C>;
def r32: NORRegInst<R32C>;
def r16: NORRegInst<R16C>;
def r8: NORRegInst<R8C>;
}
defm NOR : BitwiseNor;
// Select bits:
class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
IntegerOp, pattern>;
class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
[(set (vectype VECREG:$rT),
(or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
(and (vnot_frag (vectype VECREG:$rC)),
(vectype VECREG:$rA))))]>;
class SELBVecVCondInst<ValueType vectype>:
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
[(set (vectype VECREG:$rT),
(select (vectype VECREG:$rC),
(vectype VECREG:$rB),
(vectype VECREG:$rA)))]>;
class SELBVecCondInst<ValueType vectype>:
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
[(set (vectype VECREG:$rT),
(select R32C:$rC,
(vectype VECREG:$rB),
(vectype VECREG:$rA)))]>;
class SELBRegInst<RegisterClass rclass>:
SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
[(set rclass:$rT,
(or (and rclass:$rB, rclass:$rC),
(and rclass:$rA, (not rclass:$rC))))]>;
class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
[(set rclass:$rT,
(select rcond:$rC, rclass:$rB, rclass:$rA))]>;
multiclass SelectBits
{
def v16i8: SELBVecInst<v16i8>;
def v8i16: SELBVecInst<v8i16>;
def v4i32: SELBVecInst<v4i32>;
def v2i64: SELBVecInst<v2i64, vnot_conv>;
def r128: SELBRegInst<GPRC>;
def r64: SELBRegInst<R64C>;
def r32: SELBRegInst<R32C>;
def r16: SELBRegInst<R16C>;
def r8: SELBRegInst<R8C>;
def v16i8_cond: SELBVecCondInst<v16i8>;
def v8i16_cond: SELBVecCondInst<v8i16>;
def v4i32_cond: SELBVecCondInst<v4i32>;
def v2i64_cond: SELBVecCondInst<v2i64>;
def v16i8_vcond: SELBVecCondInst<v16i8>;
def v8i16_vcond: SELBVecCondInst<v8i16>;
def v4i32_vcond: SELBVecCondInst<v4i32>;
def v2i64_vcond: SELBVecCondInst<v2i64>;
def v4f32_cond:
SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
[(set (v4f32 VECREG:$rT),
(select (v4i32 VECREG:$rC),
(v4f32 VECREG:$rB),
(v4f32 VECREG:$rA)))]>;
// SELBr64_cond is defined in SPU64InstrInfo.td
def r32_cond: SELBRegCondInst<R32C, R32C>;
def f32_cond: SELBRegCondInst<R32C, R32FP>;
def r16_cond: SELBRegCondInst<R16C, R16C>;
def r8_cond: SELBRegCondInst<R8C, R8C>;
}
defm SELB : SelectBits;
class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
(inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : SPUselbPatVec<v16i8, SELBv16i8>;
def : SPUselbPatVec<v8i16, SELBv8i16>;
def : SPUselbPatVec<v4i32, SELBv4i32>;
def : SPUselbPatVec<v2i64, SELBv2i64>;
class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
(inst rclass:$rA, rclass:$rB, rclass:$rC)>;
def : SPUselbPatReg<R8C, SELBr8>;
def : SPUselbPatReg<R16C, SELBr16>;
def : SPUselbPatReg<R32C, SELBr32>;
def : SPUselbPatReg<R64C, SELBr64>;
// EQV: Equivalence (1 for each same bit, otherwise 0)
//
// Note: There are a lot of ways to match this bit operator and these patterns
// attempt to be as exhaustive as possible.
class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
IntegerOp, pattern>;
class EQVVecInst<ValueType vectype>:
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
(and (vnot (vectype VECREG:$rA)),
(vnot (vectype VECREG:$rB)))))]>;
class EQVRegInst<RegisterClass rclass>:
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
(and (not rclass:$rA), (not rclass:$rB))))]>;
class EQVVecPattern1<ValueType vectype>:
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
class EQVRegPattern1<RegisterClass rclass>:
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
class EQVVecPattern2<ValueType vectype>:
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
(vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
class EQVRegPattern2<RegisterClass rclass>:
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT,
(or (and rclass:$rA, rclass:$rB),
(not (or rclass:$rA, rclass:$rB))))]>;
class EQVVecPattern3<ValueType vectype>:
EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
class EQVRegPattern3<RegisterClass rclass>:
EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
multiclass BitEquivalence
{
def v16i8: EQVVecInst<v16i8>;
def v8i16: EQVVecInst<v8i16>;
def v4i32: EQVVecInst<v4i32>;
def v2i64: EQVVecInst<v2i64>;
def v16i8_1: EQVVecPattern1<v16i8>;
def v8i16_1: EQVVecPattern1<v8i16>;
def v4i32_1: EQVVecPattern1<v4i32>;
def v2i64_1: EQVVecPattern1<v2i64>;
def v16i8_2: EQVVecPattern2<v16i8>;
def v8i16_2: EQVVecPattern2<v8i16>;
def v4i32_2: EQVVecPattern2<v4i32>;
def v2i64_2: EQVVecPattern2<v2i64>;
def v16i8_3: EQVVecPattern3<v16i8>;
def v8i16_3: EQVVecPattern3<v8i16>;
def v4i32_3: EQVVecPattern3<v4i32>;
def v2i64_3: EQVVecPattern3<v2i64>;
def r128: EQVRegInst<GPRC>;
def r64: EQVRegInst<R64C>;
def r32: EQVRegInst<R32C>;
def r16: EQVRegInst<R16C>;
def r8: EQVRegInst<R8C>;
def r128_1: EQVRegPattern1<GPRC>;
def r64_1: EQVRegPattern1<R64C>;
def r32_1: EQVRegPattern1<R32C>;
def r16_1: EQVRegPattern1<R16C>;
def r8_1: EQVRegPattern1<R8C>;
def r128_2: EQVRegPattern2<GPRC>;
def r64_2: EQVRegPattern2<R64C>;
def r32_2: EQVRegPattern2<R32C>;
def r16_2: EQVRegPattern2<R16C>;
def r8_2: EQVRegPattern2<R8C>;
def r128_3: EQVRegPattern3<GPRC>;
def r64_3: EQVRegPattern3<R64C>;
def r32_3: EQVRegPattern3<R32C>;
def r16_3: EQVRegPattern3<R16C>;
def r8_3: EQVRegPattern3<R8C>;
}
defm EQV: BitEquivalence;
//===----------------------------------------------------------------------===//
// Vector shuffle...
//===----------------------------------------------------------------------===//
// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
// the SPUISD::SHUFB opcode.
//===----------------------------------------------------------------------===//
class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
IntegerOp, pattern>;
class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
[(set (resultvec VECREG:$rT),
(SPUshuffle (resultvec VECREG:$rA),
(resultvec VECREG:$rB),
(maskvec VECREG:$rC)))]>;
class SHUFBGPRCInst:
SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
[/* no pattern */]>;
multiclass ShuffleBytes
{
def v16i8 : SHUFBVecInst<v16i8, v16i8>;
def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
def v8i16 : SHUFBVecInst<v8i16, v16i8>;
def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
def v4i32 : SHUFBVecInst<v4i32, v16i8>;
def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
def v2i64 : SHUFBVecInst<v2i64, v16i8>;
def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
def v4f32 : SHUFBVecInst<v4f32, v16i8>;
def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
def v2f64 : SHUFBVecInst<v2f64, v16i8>;
def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
def gprc : SHUFBGPRCInst;
}
defm SHUFB : ShuffleBytes;
//===----------------------------------------------------------------------===//
// Shift and rotate group:
//===----------------------------------------------------------------------===//
class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
RotateShift, pattern>;
class SHLHVecInst<ValueType vectype>:
SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
[(set (vectype VECREG:$rT),
(SPUvec_shl (vectype VECREG:$rA), R16C:$rB))]>;
multiclass ShiftLeftHalfword
{
def v8i16: SHLHVecInst<v8i16>;
def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
[(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
[(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
}
defm SHLH : ShiftLeftHalfword;
//===----------------------------------------------------------------------===//
class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
RotateShift, pattern>;
class SHLHIVecInst<ValueType vectype>:
SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
[(set (vectype VECREG:$rT),
(SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
multiclass ShiftLeftHalfwordImm
{
def v8i16: SHLHIVecInst<v8i16>;
def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
[(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
}
defm SHLHI : ShiftLeftHalfwordImm;
def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
(SHLHIv8i16 VECREG:$rA, uimm7:$val)>;
def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
(SHLHIr16 R16C:$rA, uimm7:$val)>;
//===----------------------------------------------------------------------===//
class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
RotateShift, pattern>;
multiclass ShiftLeftWord
{
def v4i32:
SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
[(set (v4i32 VECREG:$rT),
(SPUvec_shl (v4i32 VECREG:$rA), R16C:$rB))]>;
def r32:
SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
}
defm SHL: ShiftLeftWord;
//===----------------------------------------------------------------------===//
class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
RotateShift, pattern>;
multiclass ShiftLeftWordImm
{
def v4i32:
SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
[(set (v4i32 VECREG:$rT),
(SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
def r32:
SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
[(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
}
defm SHLI : ShiftLeftWordImm;
//===----------------------------------------------------------------------===//
// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
// register) to the left. Vector form is here to ensure type correctness.
//
// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
// of 7 bits is actually possible.
//
// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
// to shift i64 and i128. SHLQBI is the residual left over after shifting by
// bytes with SHLQBY.
class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
RotateShift, pattern>;
class SHLQBIVecInst<ValueType vectype>:
SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[(set (vectype VECREG:$rT),
(SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
class SHLQBIRegInst<RegisterClass rclass>:
SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[/* no pattern */]>;
multiclass ShiftLeftQuadByBits
{
def v16i8: SHLQBIVecInst<v16i8>;
def v8i16: SHLQBIVecInst<v8i16>;
def v4i32: SHLQBIVecInst<v4i32>;
def v4f32: SHLQBIVecInst<v4f32>;
def v2i64: SHLQBIVecInst<v2i64>;
def v2f64: SHLQBIVecInst<v2f64>;
def r128: SHLQBIRegInst<GPRC>;
}
defm SHLQBI : ShiftLeftQuadByBits;
// See note above on SHLQBI. In this case, the predicate actually does then
// enforcement, whereas with SHLQBI, we have to "take it on faith."
class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
RotateShift, pattern>;
class SHLQBIIVecInst<ValueType vectype>:
SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
[(set (vectype VECREG:$rT),
(SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
multiclass ShiftLeftQuadByBitsImm
{
def v16i8 : SHLQBIIVecInst<v16i8>;
def v8i16 : SHLQBIIVecInst<v8i16>;
def v4i32 : SHLQBIIVecInst<v4i32>;
def v4f32 : SHLQBIIVecInst<v4f32>;
def v2i64 : SHLQBIIVecInst<v2i64>;
def v2f64 : SHLQBIIVecInst<v2f64>;
}
defm SHLQBII : ShiftLeftQuadByBitsImm;
// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
// not by bits. See notes above on SHLQBI.
class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
RotateShift, pattern>;
class SHLQBYVecInst<ValueType vectype>:
SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[(set (vectype VECREG:$rT),
(SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
multiclass ShiftLeftQuadBytes
{
def v16i8: SHLQBYVecInst<v16i8>;
def v8i16: SHLQBYVecInst<v8i16>;
def v4i32: SHLQBYVecInst<v4i32>;
def v4f32: SHLQBYVecInst<v4f32>;
def v2i64: SHLQBYVecInst<v2i64>;
def v2f64: SHLQBYVecInst<v2f64>;
def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
[(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
}
defm SHLQBY: ShiftLeftQuadBytes;
class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
RotateShift, pattern>;
class SHLQBYIVecInst<ValueType vectype>:
SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
[(set (vectype VECREG:$rT),
(SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
multiclass ShiftLeftQuadBytesImm
{
def v16i8: SHLQBYIVecInst<v16i8>;
def v8i16: SHLQBYIVecInst<v8i16>;
def v4i32: SHLQBYIVecInst<v4i32>;
def v4f32: SHLQBYIVecInst<v4f32>;
def v2i64: SHLQBYIVecInst<v2i64>;
def v2f64: SHLQBYIVecInst<v2f64>;
def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
[(set GPRC:$rT,
(SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
}
defm SHLQBYI : ShiftLeftQuadBytesImm;
class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
RotateShift, pattern>;
class SHLQBYBIVecInst<ValueType vectype>:
SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* no pattern */]>;
class SHLQBYBIRegInst<RegisterClass rclass>:
SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[/* no pattern */]>;
multiclass ShiftLeftQuadBytesBitCount
{
def v16i8: SHLQBYBIVecInst<v16i8>;
def v8i16: SHLQBYBIVecInst<v8i16>;
def v4i32: SHLQBYBIVecInst<v4i32>;
def v4f32: SHLQBYBIVecInst<v4f32>;
def v2i64: SHLQBYBIVecInst<v2i64>;
def v2f64: SHLQBYBIVecInst<v2f64>;
def r128: SHLQBYBIRegInst<GPRC>;
}
defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate halfword:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTHVecInst<ValueType vectype>:
ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(SPUvec_rotl VECREG:$rA, VECREG:$rB))]>;
class ROTHRegInst<RegisterClass rclass>:
ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
[(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
multiclass RotateLeftHalfword
{
def v8i16: ROTHVecInst<v8i16>;
def r16: ROTHRegInst<R16C>;
}
defm ROTH: RotateLeftHalfword;
def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
[(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate halfword, immediate:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTHIVecInst<ValueType vectype>:
ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
[(set (vectype VECREG:$rT),
(SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
multiclass RotateLeftHalfwordImm
{
def v8i16: ROTHIVecInst<v8i16>;
def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
[(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
[(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
}
defm ROTHI: RotateLeftHalfwordImm;
def : Pat<(SPUvec_rotl VECREG:$rA, (i32 uimm7:$val)),
(ROTHIv8i16 VECREG:$rA, imm:$val)>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate word:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTVecInst<ValueType vectype>:
ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[(set (vectype VECREG:$rT),
(SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
class ROTRegInst<RegisterClass rclass>:
ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[(set rclass:$rT,
(rotl rclass:$rA, R32C:$rB))]>;
multiclass RotateLeftWord
{
def v4i32: ROTVecInst<v4i32>;
def r32: ROTRegInst<R32C>;
}
defm ROT: RotateLeftWord;
// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
// 32-bit register
def ROTr32_r16_anyext:
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
(ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
def ROTr32_r8_anyext:
ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
[(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
(ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate word, immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
[(set (vectype VECREG:$rT),
(SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
[(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
multiclass RotateLeftWordImm
{
def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>;
def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
}
defm ROTI : RotateLeftWordImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad by byte (count)
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTQBYVecInst<ValueType vectype>:
ROTQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[(set (vectype VECREG:$rT),
(SPUrotbytes_left (vectype VECREG:$rA), R32C:$rB))]>;
multiclass RotateQuadLeftByBytes
{
def v16i8: ROTQBYVecInst<v16i8>;
def v8i16: ROTQBYVecInst<v8i16>;
def v4i32: ROTQBYVecInst<v4i32>;
def v4f32: ROTQBYVecInst<v4f32>;
def v2i64: ROTQBYVecInst<v2i64>;
def v2f64: ROTQBYVecInst<v2f64>;
}
defm ROTQBY: RotateQuadLeftByBytes;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad by byte (count), immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTQBYIVecInst<ValueType vectype>:
ROTQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
[(set (vectype VECREG:$rT),
(SPUrotbytes_left (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
multiclass RotateQuadByBytesImm
{
def v16i8: ROTQBYIVecInst<v16i8>;
def v8i16: ROTQBYIVecInst<v8i16>;
def v4i32: ROTQBYIVecInst<v4i32>;
def v4f32: ROTQBYIVecInst<v4f32>;
def v2i64: ROTQBYIVecInst<v2i64>;
def vfi64: ROTQBYIVecInst<v2f64>;
}
defm ROTQBYI: RotateQuadByBytesImm;
// See ROTQBY note above.
class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b00110011100, OOL, IOL,
"rotqbybi\t$rT, $rA, $shift",
RotateShift, pattern>;
class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
[(set (vectype VECREG:$rT),
(SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
multiclass RotateQuadByBytesByBitshift {
def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
}
defm ROTQBYBI : RotateQuadByBytesByBitshift;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// See ROTQBY note above.
//
// Assume that the user of this instruction knows to shift the rotate count
// into bit 29
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTQBIVecInst<ValueType vectype>:
ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* no pattern yet */]>;
class ROTQBIRegInst<RegisterClass rclass>:
ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[/* no pattern yet */]>;
multiclass RotateQuadByBitCount
{
def v16i8: ROTQBIVecInst<v16i8>;
def v8i16: ROTQBIVecInst<v8i16>;
def v4i32: ROTQBIVecInst<v4i32>;
def v2i64: ROTQBIVecInst<v2i64>;
def r128: ROTQBIRegInst<GPRC>;
def r64: ROTQBIRegInst<R64C>;
}
defm ROTQBI: RotateQuadByBitCount;
class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
PatLeaf pred>:
ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
[/* no pattern yet */]>;
class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
PatLeaf pred>:
ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
[/* no pattern yet */]>;
multiclass RotateQuadByBitCountImm
{
def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
}
defm ROTQBII : RotateQuadByBitCountImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// ROTHM v8i16 form:
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
// so this only matches a synthetically generated/lowered code
// fragment.
// NOTE(2): $rB must be negated before the right rotate!
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
RotateShift, pattern>;
def ROTHMv8i16:
ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R32C:$rB),
(ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R16C:$rB),
(ROTHMv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), R8C:$rB),
(ROTHMv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
// Note: This instruction doesn't match a pattern because rB must be negated
// for the instruction to work. Thus, the pattern below the instruction!
def ROTHMr16:
ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
[/* see patterns below - $rB must be negated! */]>;
def : Pat<(srl R16C:$rA, R32C:$rB),
(ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(srl R16C:$rA, R16C:$rB),
(ROTHMr16 R16C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(srl R16C:$rA, R8C:$rB),
(ROTHMr16 R16C:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
// that the immediate can be complemented, so that the user doesn't have to
// worry about it.
class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
RotateShift, pattern>;
def ROTHMIv8i16:
ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
[/* no pattern */]>;
def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
def ROTHMIr16:
ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
[/* no pattern */]>;
def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
// ROTM v4i32 form: See the ROTHM v8i16 comments.
class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
RotateShift, pattern>;
def ROTMv4i32:
ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_srl VECREG:$rA, R32C:$rB),
(ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_srl VECREG:$rA, R16C:$rB),
(ROTMv4i32 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_srl VECREG:$rA, R8C:$rB),
(ROTMv4i32 VECREG:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
def ROTMr32:
ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[/* see patterns below - $rB must be negated */]>;
def : Pat<(srl R32C:$rA, R32C:$rB),
(ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(srl R32C:$rA, R16C:$rB),
(ROTMr32 R32C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(srl R32C:$rA, R8C:$rB),
(ROTMr32 R32C:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
// ROTMI v4i32 form: See the comment for ROTHM v8i16.
def ROTMIv4i32:
RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
"rotmi\t$rT, $rA, $val", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_srl VECREG:$rA, (i16 uimm7:$val)),
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
def : Pat<(SPUvec_srl VECREG:$rA, (i8 uimm7:$val)),
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
// ROTMI r32 form: know how to complement the immediate value.
def ROTMIr32:
RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
"rotmi\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
def : Pat<(srl R32C:$rA, (i16 imm:$val)),
(ROTMIr32 R32C:$rA, uimm7:$val)>;
def : Pat<(srl R32C:$rA, (i8 imm:$val)),
(ROTMIr32 R32C:$rA, uimm7:$val)>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// ROTQMBY: This is a vector form merely so that when used in an
// instruction pattern, type checking will succeed. This instruction assumes
// that the user knew to negate $rB.
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTQMBYVecInst<ValueType vectype>:
ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* no pattern, $rB must be negated */]>;
class ROTQMBYRegInst<RegisterClass rclass>:
ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[/* no pattern */]>;
multiclass RotateQuadBytes
{
def v16i8: ROTQMBYVecInst<v16i8>;
def v8i16: ROTQMBYVecInst<v8i16>;
def v4i32: ROTQMBYVecInst<v4i32>;
def v2i64: ROTQMBYVecInst<v2i64>;
def r128: ROTQMBYRegInst<GPRC>;
def r64: ROTQMBYRegInst<R64C>;
}
defm ROTQMBY : RotateQuadBytes;
class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTQMBYIVecInst<ValueType vectype>:
ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
[/* no pattern */]>;
class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
PatLeaf pred>:
ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
[/* no pattern */]>;
// 128-bit zero extension form:
class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
[/* no pattern */]>;
multiclass RotateQuadBytesImm
{
def v16i8: ROTQMBYIVecInst<v16i8>;
def v8i16: ROTQMBYIVecInst<v8i16>;
def v4i32: ROTQMBYIVecInst<v4i32>;
def v2i64: ROTQMBYIVecInst<v2i64>;
def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
}
defm ROTQMBYI : RotateQuadBytesImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate right and mask by bit count
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTQMBYBIVecInst<ValueType vectype>:
ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* no pattern, */]>;
multiclass RotateMaskQuadByBitCount
{
def v16i8: ROTQMBYBIVecInst<v16i8>;
def v8i16: ROTQMBYBIVecInst<v8i16>;
def v4i32: ROTQMBYBIVecInst<v4i32>;
def v2i64: ROTQMBYBIVecInst<v2i64>;
}
defm ROTQMBYBI: RotateMaskQuadByBitCount;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad and mask by bits
// Note that the rotate amount has to be negated
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
RotateShift, pattern>;
class ROTQMBIVecInst<ValueType vectype>:
ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
[/* no pattern */]>;
class ROTQMBIRegInst<RegisterClass rclass>:
ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
[/* no pattern */]>;
multiclass RotateMaskQuadByBits
{
def v16i8: ROTQMBIVecInst<v16i8>;
def v8i16: ROTQMBIVecInst<v8i16>;
def v4i32: ROTQMBIVecInst<v4i32>;
def v2i64: ROTQMBIVecInst<v2i64>;
def r128: ROTQMBIRegInst<GPRC>;
def r64: ROTQMBIRegInst<R64C>;
}
defm ROTQMBI: RotateMaskQuadByBits;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Rotate quad and mask by bits, immediate
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTQMBIIVecInst<ValueType vectype>:
ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
[/* no pattern */]>;
class ROTQMBIIRegInst<RegisterClass rclass>:
ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
[/* no pattern */]>;
multiclass RotateMaskQuadByBitsImm
{
def v16i8: ROTQMBIIVecInst<v16i8>;
def v8i16: ROTQMBIIVecInst<v8i16>;
def v4i32: ROTQMBIIVecInst<v4i32>;
def v2i64: ROTQMBIIVecInst<v2i64>;
def r128: ROTQMBIIRegInst<GPRC>;
def r64: ROTQMBIIRegInst<R64C>;
}
defm ROTQMBII: RotateMaskQuadByBitsImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
def ROTMAHv8i16:
RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotmah\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
(ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
(ROTMAHv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
(ROTMAHv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
def ROTMAHr16:
RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
"rotmah\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(sra R16C:$rA, R32C:$rB),
(ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(sra R16C:$rA, R16C:$rB),
(ROTMAHr16 R16C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(sra R16C:$rA, R8C:$rB),
(ROTMAHr16 R16C:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
def ROTMAHIv8i16:
RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
"rotmahi\t$rT, $rA, $val", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
def ROTMAHIr16:
RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
"rotmahi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
def : Pat<(sra R16C:$rA, (i32 imm:$val)),
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
def : Pat<(sra R16C:$rA, (i8 imm:$val)),
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
def ROTMAv4i32:
RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotma\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_sra VECREG:$rA, R32C:$rB),
(ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_sra VECREG:$rA, R16C:$rB),
(ROTMAv4i32 (v4i32 VECREG:$rA),
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_sra VECREG:$rA, R8C:$rB),
(ROTMAv4i32 (v4i32 VECREG:$rA),
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
def ROTMAr32:
RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"rotma\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(sra R32C:$rA, R32C:$rB),
(ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(sra R32C:$rA, R16C:$rB),
(ROTMAr32 R32C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(sra R32C:$rA, R8C:$rB),
(ROTMAr32 R32C:$rA,
(SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01011110000, OOL, IOL,
"rotmai\t$rT, $rA, $val",
RotateShift, pattern>;
class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
[(set (vectype VECREG:$rT),
(SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
[(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
multiclass RotateMaskAlgebraicImm {
def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
}
defm ROTMAI : RotateMaskAlgebraicImm;
//===----------------------------------------------------------------------===//
// Branch and conditionals:
//===----------------------------------------------------------------------===//
let isTerminator = 1, isBarrier = 1 in {
// Halt If Equal (r32 preferred slot only, no vector form)
def HEQr32:
RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
"heq\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HEQIr32 :
RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
"heqi\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
// HGT/HGTI: These instructions use signed arithmetic for the comparison,
// contrasting with HLGT/HLGTI, which use unsigned comparison:
def HGTr32:
RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
"hgt\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HGTIr32:
RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
"hgti\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
def HLGTr32:
RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
"hlgt\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HLGTIr32:
RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
"hlgti\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
}
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// Comparison operators for i8, i16 and i32:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpEqualByte
{
def v16i8 :
CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r8 :
CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
[(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
}
class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpEqualByteImm
{
def v16i8 :
CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
[(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
v16i8SExt8Imm:$val))]>;
def r8:
CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
[(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
}
class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpEqualHalfword
{
def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
[(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
}
class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpEqualHalfwordImm
{
def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v8i16 VECREG:$rT),
(seteq (v8i16 VECREG:$rA),
(v8i16 v8i16SExt10Imm:$val)))]>;
def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
[(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
}
class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpEqualWord
{
def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v4i32 VECREG:$rT),
(seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
}
class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpEqualWordImm
{
def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v4i32 VECREG:$rT),
(seteq (v4i32 VECREG:$rA),
(v4i32 v4i32SExt16Imm:$val)))]>;
def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
}
class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpGtrByte
{
def v16i8 :
CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r8 :
CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
[(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
}
class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpGtrByteImm
{
def v16i8 :
CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
[(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
v16i8SExt8Imm:$val))]>;
def r8:
CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
[(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
}
class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpGtrHalfword
{
def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
[(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
}
class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpGtrHalfwordImm
{
def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v8i16 VECREG:$rT),
(setgt (v8i16 VECREG:$rA),
(v8i16 v8i16SExt10Imm:$val)))]>;
def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
[(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
}
class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpGtrWord
{
def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v4i32 VECREG:$rT),
(setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
}
class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpGtrWordImm
{
def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v4i32 VECREG:$rT),
(setgt (v4i32 VECREG:$rA),
(v4i32 v4i32SExt16Imm:$val)))]>;
def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
// CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v4i32 VECREG:$rT),
(setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
(v4i32 v4i32SExt16Imm:$val)))]>;
def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
[/* no pattern */]>;
}
class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpLGtrByte
{
def v16i8 :
CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r8 :
CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
[(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
}
class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpLGtrByteImm
{
def v16i8 :
CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
[(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
v16i8SExt8Imm:$val))]>;
def r8:
CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
[(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
}
class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpLGtrHalfword
{
def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
[(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
}
class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpLGtrHalfwordImm
{
def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v8i16 VECREG:$rT),
(setugt (v8i16 VECREG:$rA),
(v8i16 v8i16SExt10Imm:$val)))]>;
def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
[(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
}
class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
ByteOp, pattern>;
multiclass CmpLGtrWord
{
def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (v4i32 VECREG:$rT),
(setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
[(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
}
class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
ByteOp, pattern>;
multiclass CmpLGtrWordImm
{
def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
[(set (v4i32 VECREG:$rT),
(setugt (v4i32 VECREG:$rA),
(v4i32 v4i32SExt16Imm:$val)))]>;
def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
[(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
}
defm CEQB : CmpEqualByte;
defm CEQBI : CmpEqualByteImm;
defm CEQH : CmpEqualHalfword;
defm CEQHI : CmpEqualHalfwordImm;
defm CEQ : CmpEqualWord;
defm CEQI : CmpEqualWordImm;
defm CGTB : CmpGtrByte;
defm CGTBI : CmpGtrByteImm;
defm CGTH : CmpGtrHalfword;
defm CGTHI : CmpGtrHalfwordImm;
defm CGT : CmpGtrWord;
defm CGTI : CmpGtrWordImm;
defm CLGTB : CmpLGtrByte;
defm CLGTBI : CmpLGtrByteImm;
defm CLGTH : CmpLGtrHalfword;
defm CLGTHI : CmpLGtrHalfwordImm;
defm CLGT : CmpLGtrWord;
defm CLGTI : CmpLGtrWordImm;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// For SETCC primitives not supported above (setlt, setle, setge, etc.)
// define a pattern to generate the right code, as a binary operator
// (in a manner of speaking.)
//
// Notes:
// 1. This only matches the setcc set of conditionals. Special pattern
// matching is used for select conditionals.
//
// 2. The "DAG" versions of these classes is almost exclusively used for
// i64 comparisons. See the tblgen fundamentals documentation for what
// ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
// class for where ResultInstrs originates.
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
SPUInstr xorinst, SPUInstr cmpare>:
Pat<(cond rclass:$rA, rclass:$rB),
(xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
Pat<(cond rclass:$rA, (inttype immpred:$imm)),
(xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>;
def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>;
def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
Pat<(cond rclass:$rA, rclass:$rB),
(binop (cmpOp1 rclass:$rA, rclass:$rB),
(cmpOp2 rclass:$rA, rclass:$rB))>;
class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
ValueType immtype,
SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
Pat<(cond rclass:$rA, (immtype immpred:$imm)),
(binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
(cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
def : Pat<(setle R8C:$rA, R8C:$rB),
(XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
def : Pat<(setle R8C:$rA, immU8:$imm),
(XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
ORr16, CGTHIr16, CEQHIr16>;
def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
def : Pat<(setle R16C:$rA, R16C:$rB),
(XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
(XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
ORr32, CGTIr32, CEQIr32>;
def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
def : Pat<(setle R32C:$rA, R32C:$rB),
(XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
(XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
def : Pat<(setule R8C:$rA, R8C:$rB),
(XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
def : Pat<(setule R8C:$rA, immU8:$imm),
(XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
ORr16, CLGTHIr16, CEQHIr16>;
def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
CLGTHIr16, CEQHIr16>;
def : Pat<(setule R16C:$rA, R16C:$rB),
(XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
(XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
ORr32, CLGTIr32, CEQIr32>;
def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
def : Pat<(setule R32C:$rA, R32C:$rB),
(XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
(XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
// select conditional patterns:
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
SPUInstr selinstr, SPUInstr cmpare>:
Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
rclass:$rTrue, rclass:$rFalse),
(selinstr rclass:$rTrue, rclass:$rFalse,
(cmpare rclass:$rA, rclass:$rB))>;
class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
rclass:$rTrue, rclass:$rFalse),
(selinstr rclass:$rTrue, rclass:$rFalse,
(cmpare rclass:$rA, immpred:$imm))>;
def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
SPUInstr cmpOp2>:
Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
rclass:$rTrue, rclass:$rFalse),
(selinstr rclass:$rFalse, rclass:$rTrue,
(binop (cmpOp1 rclass:$rA, rclass:$rB),
(cmpOp2 rclass:$rA, rclass:$rB)))>;
class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
ValueType inttype,
SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
SPUInstr cmpOp2>:
Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
rclass:$rTrue, rclass:$rFalse),
(selinstr rclass:$rFalse, rclass:$rTrue,
(binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
(cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
SELBr8, ORr8, CGTBIr8, CEQBIr8>;
def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
SELBr16, ORr16, CGTHIr16, CEQHIr16>;
def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
SELBr32, ORr32, CGTIr32, CEQIr32>;
def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
SELBr32, ORr32, CLGTIr32, CEQIr32>;
//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
let isCall = 1,
// All calls clobber the non-callee-saved registers:
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
// All of these instructions use $lr (aka $0)
Uses = [R0] in {
// Branch relative and set link: Used if we actually know that the target
// is within [-32768, 32767] bytes of the target
def BRSL:
BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
"brsl\t$$lr, $func",
[(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
// Branch absolute and set link: Used if we actually know that the target
// is an absolute address
def BRASL:
BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
"brasl\t$$lr, $func",
[(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
// Branch indirect and set link if external data. These instructions are not
// actually generated, matched by an intrinsic:
def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
// Branch indirect and set link. This is the "X-form" address version of a
// function call
def BISL:
BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
}
// Support calls to external symbols:
def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
(BRSL texternalsym:$func)>;
def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
(BRASL texternalsym:$func)>;
// Unconditional branches:
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
let isBarrier = 1 in {
def BR :
UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
"br\t$dest",
[(br bb:$dest)]>;
// Unconditional, absolute address branch
def BRA:
UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
"bra\t$dest",
[/* no pattern */]>;
// Indirect branch
def BI:
BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
}
// Conditional branches:
class BRNZInst<dag IOL, list<dag> pattern>:
RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
BranchResolv, pattern>;
class BRNZRegInst<RegisterClass rclass>:
BRNZInst<(ins rclass:$rCond, brtarget:$dest),
[(brcond rclass:$rCond, bb:$dest)]>;
class BRNZVecInst<ValueType vectype>:
BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
[(brcond (vectype VECREG:$rCond), bb:$dest)]>;
multiclass BranchNotZero {
def v4i32 : BRNZVecInst<v4i32>;
def r32 : BRNZRegInst<R32C>;
}
defm BRNZ : BranchNotZero;
class BRZInst<dag IOL, list<dag> pattern>:
RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
BranchResolv, pattern>;
class BRZRegInst<RegisterClass rclass>:
BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
class BRZVecInst<ValueType vectype>:
BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
multiclass BranchZero {
def v4i32: BRZVecInst<v4i32>;
def r32: BRZRegInst<R32C>;
}
defm BRZ: BranchZero;
// Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
// be useful:
/*
class BINZInst<dag IOL, list<dag> pattern>:
BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
class BINZRegInst<RegisterClass rclass>:
BINZInst<(ins rclass:$rA, brtarget:$dest),
[(brcond rclass:$rA, R32C:$dest)]>;
class BINZVecInst<ValueType vectype>:
BINZInst<(ins VECREG:$rA, R32C:$dest),
[(brcond (vectype VECREG:$rA), R32C:$dest)]>;
multiclass BranchNotZeroIndirect {
def v4i32: BINZVecInst<v4i32>;
def r32: BINZRegInst<R32C>;
}
defm BINZ: BranchNotZeroIndirect;
class BIZInst<dag IOL, list<dag> pattern>:
BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
class BIZRegInst<RegisterClass rclass>:
BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
class BIZVecInst<ValueType vectype>:
BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
multiclass BranchZeroIndirect {
def v4i32: BIZVecInst<v4i32>;
def r32: BIZRegInst<R32C>;
}
defm BIZ: BranchZeroIndirect;
*/
class BRHNZInst<dag IOL, list<dag> pattern>:
RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
pattern>;
class BRHNZRegInst<RegisterClass rclass>:
BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
[(brcond rclass:$rCond, bb:$dest)]>;
class BRHNZVecInst<ValueType vectype>:
BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
multiclass BranchNotZeroHalfword {
def v8i16: BRHNZVecInst<v8i16>;
def r16: BRHNZRegInst<R16C>;
}
defm BRHNZ: BranchNotZeroHalfword;
class BRHZInst<dag IOL, list<dag> pattern>:
RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
pattern>;
class BRHZRegInst<RegisterClass rclass>:
BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
class BRHZVecInst<ValueType vectype>:
BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
multiclass BranchZeroHalfword {
def v8i16: BRHZVecInst<v8i16>;
def r16: BRHZRegInst<R16C>;
}
defm BRHZ: BranchZeroHalfword;
}
//===----------------------------------------------------------------------===//
// setcc and brcond patterns:
//===----------------------------------------------------------------------===//
def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
(BRHZr16 R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
(BRHNZr16 R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
(BRZr32 R32C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
(BRNZr32 R32C:$rA, bb:$dest)>;
multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
(brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
(brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
(brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}
defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
(brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
(brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
(brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}
defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
SPUInstr orinst32, SPUInstr brinst32>
{
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
bb:$dest)>;
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
(brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
(CEQHr16 R16C:$rA, R16:$rB)),
bb:$dest)>;
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
(brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
bb:$dest)>;
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
(brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
(CEQr32 R32C:$rA, R32C:$rB)),
bb:$dest)>;
}
defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
{
def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
(brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
(brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
(brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
}
defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
SPUInstr orinst32, SPUInstr brinst32>
{
def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
(CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
bb:$dest)>;
def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
(brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
(CEQHr16 R16C:$rA, R16:$rB)),
bb:$dest)>;
def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
(brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
(CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
bb:$dest)>;
def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
(brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
(CEQr32 R32C:$rA, R32C:$rB)),
bb:$dest)>;
}
defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
let isTerminator = 1, isBarrier = 1 in {
let isReturn = 1 in {
def RET:
RETForm<"bi\t$$lr", [(retflag)]>;
}
}
//===----------------------------------------------------------------------===//
// Single precision floating point instructions
//===----------------------------------------------------------------------===//
class FAInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
SPrecFP, pattern>;
class FAVecInst<ValueType vectype>:
FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
multiclass SFPAdd
{
def v4f32: FAVecInst<v4f32>;
def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
[(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
}
defm FA : SFPAdd;
class FSInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
SPrecFP, pattern>;
class FSVecInst<ValueType vectype>:
FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
[(set (vectype VECREG:$rT),
(fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
multiclass SFPSub
{
def v4f32: FSVecInst<v4f32>;
def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
[(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
}
defm FS : SFPSub;
// Floating point reciprocal estimate
class FRESTInst<dag OOL, dag IOL>:
RRForm_1<0b00110111000, OOL, IOL,
"frest\t$rT, $rA", SPrecFP,
[/* no pattern */]>;
def FRESTv4f32 :
FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
def FRESTf32 :
FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
// Floating point interpolate (used in conjunction with reciprocal estimate)
def FIv4f32 :
RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fi\t$rT, $rA, $rB", SPrecFP,
[/* no pattern */]>;
def FIf32 :
RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fi\t$rT, $rA, $rB", SPrecFP,
[/* no pattern */]>;
//--------------------------------------------------------------------------
// Basic single precision floating point comparisons:
//
// Note: There is no support on SPU for single precision NaN. Consequently,
// ordered and unordered comparisons are the same.
//--------------------------------------------------------------------------
def FCEQf32 :
RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fceq\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
(FCEQf32 R32FP:$rA, R32FP:$rB)>;
def FCMEQf32 :
RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcmeq\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
(FCMEQf32 R32FP:$rA, R32FP:$rB)>;
def FCGTf32 :
RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcgt\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
def : Pat<(setugt R32FP:$rA, R32FP:$rB),
(FCGTf32 R32FP:$rA, R32FP:$rB)>;
def FCMGTf32 :
RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcmgt\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
def : Pat<(setugt (fabs R32FP:$rA), (fabs R32FP:$rB)),
(FCMGTf32 R32FP:$rA, R32FP:$rB)>;
//--------------------------------------------------------------------------
// Single precision floating point comparisons and SETCC equivalents:
//--------------------------------------------------------------------------
def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
def : Pat<(setule R32FP:$rA, R32FP:$rB),
(XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
def : Pat<(setole R32FP:$rA, R32FP:$rB),
(XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
// FP Status and Control Register Write
// Why isn't rT a don't care in the ISA?
// Should we create a special RRForm_3 for this guy and zero out the rT?
def FSCRWf32 :
RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
"fscrwr\t$rA", SPrecFP,
[/* This instruction requires an intrinsic. Note: rT is unused. */]>;
// FP Status and Control Register Read
def FSCRRf32 :
RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
"fscrrd\t$rT", SPrecFP,
[/* This instruction requires an intrinsic */]>;
// llvm instruction space
// How do these map onto cell instructions?
// fdiv rA rB
// frest rC rB # c = 1/b (both lines)
// fi rC rB rC
// fm rD rA rC # d = a * 1/b
// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
// fma rB rB rC rD # b = b * c + d
// = -(d *b -a) * c + d
// = a * c - c ( a *b *c - a)
// fcopysign (???)
// Library calls:
// These llvm instructions will actually map to library calls.
// All that's needed, then, is to check that the appropriate library is
// imported and do a brsl to the proper function name.
// frem # fmod(x, y): x - (x/y) * y
// (Note: fmod(double, double), fmodf(float,float)
// fsqrt?
// fsin?
// fcos?
// Unimplemented SPU instruction space
// floating reciprocal absolute square root estimate (frsqest)
// The following are probably just intrinsics
// status and control register write
// status and control register read
//--------------------------------------
// Floating point multiply instructions
//--------------------------------------
def FMv4f32:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fm\t$rT, $rA, $rB", SPrecFP,
[(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA),
(v4f32 VECREG:$rB)))]>;
def FMf32 :
RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fm\t$rT, $rA, $rB", SPrecFP,
[(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
// Floating point multiply and add
// e.g. d = c + (a * b)
def FMAv4f32:
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fadd (v4f32 VECREG:$rC),
(fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
def FMAf32:
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
// FP multiply and subtract
// Subtracts value in rC from product
// res = a * b - c
def FMSv4f32 :
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
(v4f32 VECREG:$rC)))]>;
def FMSf32 :
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT,
(fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
// Floating Negative Mulitply and Subtract
// Subtracts product from value in rC
// res = fneg(fms a b c)
// = - (a * b - c)
// = c - a * b
// NOTE: subtraction order
// fsub a b = a - b
// fs a b = b - a?
def FNMSf32 :
RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
def FNMSv4f32 :
RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fsub (v4f32 VECREG:$rC),
(fmul (v4f32 VECREG:$rA),
(v4f32 VECREG:$rB))))]>;
//--------------------------------------
// Floating Point Conversions
// Signed conversions:
def CSiFv4f32:
CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"csflt\t$rT, $rA, 0", SPrecFP,
[(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
// Convert signed integer to floating point
def CSiFf32 :
CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
"csflt\t$rT, $rA, 0", SPrecFP,
[(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
// Convert unsigned into to float
def CUiFv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cuflt\t$rT, $rA, 0", SPrecFP,
[(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
def CUiFf32 :
CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
"cuflt\t$rT, $rA, 0", SPrecFP,
[(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
// Convert float to unsigned int
// Assume that scale = 0
def CFUiv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cfltu\t$rT, $rA, 0", SPrecFP,
[(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
def CFUif32 :
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
"cfltu\t$rT, $rA, 0", SPrecFP,
[(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
// Convert float to signed int
// Assume that scale = 0
def CFSiv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cflts\t$rT, $rA, 0", SPrecFP,
[(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
def CFSif32 :
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
"cflts\t$rT, $rA, 0", SPrecFP,
[(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
//===----------------------------------------------------------------------==//
// Single<->Double precision conversions
//===----------------------------------------------------------------------==//
// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
// v4f32, output is v2f64--which goes in the name?)
// Floating point extend single to double
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
// are ignored).
def FESDvec :
RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
"fesd\t$rT, $rA", SPrecFP,
[(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>;
def FESDf32 :
RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
"fesd\t$rT, $rA", SPrecFP,
[(set R64FP:$rT, (fextend R32FP:$rA))]>;
// Floating point round double to single
//def FRDSvec :
// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
// "frds\t$rT, $rA,", SPrecFP,
// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
def FRDSf64 :
RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
"frds\t$rT, $rA", SPrecFP,
[(set R32FP:$rT, (fround R64FP:$rA))]>;
//ToDo include anyextend?
//===----------------------------------------------------------------------==//
// Double precision floating point instructions
//===----------------------------------------------------------------------==//
def FAf64 :
RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfa\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
def FAv2f64 :
RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfa\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FSf64 :
RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfs\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
def FSv2f64 :
RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfs\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FMf64 :
RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfm\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
def FMv2f64:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfm\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FMAf64:
RRForm<0b00111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfma\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMAv2f64:
RRForm<0b00111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfma\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fadd (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMSf64 :
RRForm<0b10111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfms\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMSv2f64 :
RRForm<0b10111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfms\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
(v2f64 VECREG:$rC)))]>;
// DFNMS: - (a * b - c)
// - (a * b) + c => c - (a * b)
class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
DPrecFP, pattern>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
class DFNMSVecInst<list<dag> pattern>:
DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
pattern>;
class DFNMSRegInst<list<dag> pattern>:
DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
pattern>;
multiclass DFMultiplySubtract
{
def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT),
(fsub (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA),
(v2f64 VECREG:$rB))))]>;
def f64 : DFNMSRegInst<[(set R64FP:$rT,
(fsub R64FP:$rC,
(fmul R64FP:$rA, R64FP:$rB)))]>;
}
defm DFNMS : DFMultiplySubtract;
// - (a * b + c)
// - (a * b) - c
def FNMAf64 :
RRForm<0b11111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfnma\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FNMAv2f64 :
RRForm<0b11111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfnma\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fneg (fadd (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA),
(v2f64 VECREG:$rB)))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
//===----------------------------------------------------------------------==//
// Floating point negation and absolute value
//===----------------------------------------------------------------------==//
def : Pat<(fneg (v4f32 VECREG:$rA)),
(XORfnegvec (v4f32 VECREG:$rA),
(v4f32 (ILHUv4i32 0x8000)))>;
def : Pat<(fneg R32FP:$rA),
(XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
// Floating point absolute value
// Note: f64 fabs is custom-selected.
def : Pat<(fabs R32FP:$rA),
(ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
def : Pat<(fabs (v4f32 VECREG:$rA)),
(ANDfabsvec (v4f32 VECREG:$rA),
(IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
//===----------------------------------------------------------------------===//
// Hint for branch instructions:
//===----------------------------------------------------------------------===//
/* def HBR : SPUInstr<(outs), (ins), "hbr\t" */
//===----------------------------------------------------------------------===//
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
// in the odd pipeline)
//===----------------------------------------------------------------------===//
def ENOP : SPUInstr<(outs), (ins), "enop", ExecNOP> {
let Pattern = [];
let Inst{0-10} = 0b10000000010;
let Inst{11-17} = 0;
let Inst{18-24} = 0;
let Inst{25-31} = 0;
}
def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
let Pattern = [];
let Inst{0-10} = 0b10000000000;
let Inst{11-17} = 0;
let Inst{18-24} = 0;
let Inst{25-31} = 0;
}
//===----------------------------------------------------------------------===//
// Bit conversions (type conversions between vector/packed types)
// NOTE: Promotions are handled using the XS* instructions.
//===----------------------------------------------------------------------===//
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
(ORi128_vec VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
(v16i8 (ORvec_i128 GPRC:$src))>;
def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
(v8i16 (ORvec_i128 GPRC:$src))>;
def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
(v4i32 (ORvec_i128 GPRC:$src))>;
def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
(v2i64 (ORvec_i128 GPRC:$src))>;
def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
(v4f32 (ORvec_i128 GPRC:$src))>;
def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
(v2f64 (ORvec_i128 GPRC:$src))>;
//===----------------------------------------------------------------------===//
// Instruction patterns:
//===----------------------------------------------------------------------===//
// General 32-bit constants:
def : Pat<(i32 imm:$imm),
(IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Single precision float constants:
def : Pat<(f32 fpimm:$imm),
(IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
// General constant 32-bit vectors
def : Pat<(v4i32 v4i32Imm:$imm),
(IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
(LO16_vec v4i32Imm:$imm))>;
// 8-bit constants
def : Pat<(i8 imm:$imm),
(ILHr8 imm:$imm)>;
//===----------------------------------------------------------------------===//
// Zero/Any/Sign extensions
//===----------------------------------------------------------------------===//
// sext 8->32: Sign extend bytes to words
def : Pat<(sext_inreg R32C:$rSrc, i8),
(XSHWr32 (XSBHr32 R32C:$rSrc))>;
def : Pat<(i32 (sext R8C:$rSrc)),
(XSHWr16 (XSBHr8 R8C:$rSrc))>;
// sext 8->64: Sign extend bytes to double word
def : Pat<(sext_inreg R64C:$rSrc, i8),
(XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
def : Pat<(i64 (sext R8C:$rSrc)),
(XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
// zext 8->16: Zero extend bytes to halfwords
def : Pat<(i16 (zext R8C:$rSrc)),
(ANDHIi8i16 R8C:$rSrc, 0xff)>;
// zext 8->32: Zero extend bytes to words
def : Pat<(i32 (zext R8C:$rSrc)),
(ANDIi8i32 R8C:$rSrc, 0xff)>;
// zext 8->64: Zero extend bytes to double words
def : Pat<(i64 (zext R8C:$rSrc)),
(ORi64_v2i64 (SELBv4i32 (ROTQMBYv4i32
(ORv4i32_i32 (ANDIi8i32 R8C:$rSrc, 0xff)),
0x4),
(ILv4i32 0x0),
(FSMBIv4i32 0x0f0f)))>;
// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
def : Pat<(i16 (anyext R8C:$rSrc)),
(ORHIi8i16 R8C:$rSrc, 0)>;
// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
def : Pat<(i32 (anyext R8C:$rSrc)),
(ORIi8i32 R8C:$rSrc, 0)>;
// sext 16->64: Sign extend halfword to double word
def : Pat<(sext_inreg R64C:$rSrc, i16),
(XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
def : Pat<(sext R16C:$rSrc),
(XSWDr64 (XSHWr16 R16C:$rSrc))>;
// zext 16->32: Zero extend halfwords to words
def : Pat<(i32 (zext R16C:$rSrc)),
(ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
(ANDIi16i32 R16C:$rSrc, 0xf)>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
(ANDIi16i32 R16C:$rSrc, 0xff)>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
(ANDIi16i32 R16C:$rSrc, 0xfff)>;
// anyext 16->32: Extend 16->32 bits, irrespective of sign
def : Pat<(i32 (anyext R16C:$rSrc)),
(ORIi16i32 R16C:$rSrc, 0)>;
//===----------------------------------------------------------------------===//
// Truncates:
// These truncates are for the SPU's supported types (i8, i16, i32). i64 and
// above are custom lowered.
//===----------------------------------------------------------------------===//
def : Pat<(i8 (trunc GPRC:$src)),
(ORi8_v16i8
(SHUFBgprc GPRC:$src, GPRC:$src,
(IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)))>;
def : Pat<(i8 (trunc R64C:$src)),
(ORi8_v16i8
(SHUFBv2i64_m32
(ORv2i64_i64 R64C:$src),
(ORv2i64_i64 R64C:$src),
(IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)))>;
def : Pat<(i8 (trunc R32C:$src)),
(ORi8_v16i8
(SHUFBv4i32_m32
(ORv4i32_i32 R32C:$src),
(ORv4i32_i32 R32C:$src),
(IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>;
def : Pat<(i8 (trunc R16C:$src)),
(ORi8_v16i8
(SHUFBv4i32_m32
(ORv8i16_i16 R16C:$src),
(ORv8i16_i16 R16C:$src),
(IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)))>;
def : Pat<(i16 (trunc GPRC:$src)),
(ORi16_v8i16
(SHUFBgprc GPRC:$src, GPRC:$src,
(IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)))>;
def : Pat<(i16 (trunc R64C:$src)),
(ORi16_v8i16
(SHUFBv2i64_m32
(ORv2i64_i64 R64C:$src),
(ORv2i64_i64 R64C:$src),
(IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)))>;
def : Pat<(i16 (trunc R32C:$src)),
(ORi16_v8i16
(SHUFBv4i32_m32
(ORv4i32_i32 R32C:$src),
(ORv4i32_i32 R32C:$src),
(IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)))>;
def : Pat<(i32 (trunc GPRC:$src)),
(ORi32_v4i32
(SHUFBgprc GPRC:$src, GPRC:$src,
(IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)))>;
def : Pat<(i32 (trunc R64C:$src)),
(ORi32_v4i32
(SHUFBv2i64_m32
(ORv2i64_i64 R64C:$src),
(ORv2i64_i64 R64C:$src),
(IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)))>;
//===----------------------------------------------------------------------===//
// Address generation: SPU, like PPC, has to split addresses into high and
// low parts in order to load them into a register.
//===----------------------------------------------------------------------===//
def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>;
def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>;
def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
(SPUlo tglobaladdr:$in, 0)),
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
(SPUlo texternalsym:$in, 0)),
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
(SPUlo tjumptable:$in, 0)),
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
(SPUlo tconstpool:$in, 0)),
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
(IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
(IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
(IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
(IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
// Intrinsics:
include "CellSDKIntrinsics.td"
// Various math operator instruction sequences
include "SPUMathInstr.td"
// 64-bit "instructions"/support
include "SPU64InstrInfo.td"
// 128-bit "instructions"/support
include "SPU128InstrInfo.td"