llvm/lib/Target/ARM64/ARM64InstrAtomics.td
Tim Northover 7b837d8c75 ARM64: initial backend import
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@205090 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-29 10:18:08 +00:00

294 lines
12 KiB
TableGen

//===- ARM64InstrAtomics.td - ARM64 Atomic codegen support -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// ARM64 Atomic operand code-gen constructs.
//
//===----------------------------------------------------------------------===//
//===----------------------------------
// Atomic fences
//===----------------------------------
def : Pat<(atomic_fence (i64 4), (imm)), (DMB (i32 0x9))>;
def : Pat<(atomic_fence (imm), (imm)), (DMB (i32 0xb))>;
//===----------------------------------
// Atomic loads
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A atomic load operation that actually needs acquire semantics.
class acquiring_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
assert(Ordering != AcquireRelease && "unexpected load ordering");
return Ordering == Acquire || Ordering == SequentiallyConsistent;
}]>;
// An atomic load operation that does not need either acquire or release
// semantics.
class relaxed_load<PatFrag base>
: PatFrag<(ops node:$ptr), (base node:$ptr), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Monotonic || Ordering == Unordered;
}]>;
// 8-bit loads
def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_8> ro_indexed8:$addr),
(LDRBBro ro_indexed8:$addr)>;
def : Pat<(relaxed_load<atomic_load_8> am_indexed8:$addr),
(LDRBBui am_indexed8:$addr)>;
def : Pat<(relaxed_load<atomic_load_8> am_unscaled8:$addr),
(LDURBBi am_unscaled8:$addr)>;
// 16-bit loads
def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_16> ro_indexed16:$addr),
(LDRHHro ro_indexed16:$addr)>;
def : Pat<(relaxed_load<atomic_load_16> am_indexed16:$addr),
(LDRHHui am_indexed16:$addr)>;
def : Pat<(relaxed_load<atomic_load_16> am_unscaled16:$addr),
(LDURHHi am_unscaled16:$addr)>;
// 32-bit loads
def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_32> ro_indexed32:$addr),
(LDRWro ro_indexed32:$addr)>;
def : Pat<(relaxed_load<atomic_load_32> am_indexed32:$addr),
(LDRWui am_indexed32:$addr)>;
def : Pat<(relaxed_load<atomic_load_32> am_unscaled32:$addr),
(LDURWi am_unscaled32:$addr)>;
// 64-bit loads
def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_64> ro_indexed64:$addr),
(LDRXro ro_indexed64:$addr)>;
def : Pat<(relaxed_load<atomic_load_64> am_indexed64:$addr),
(LDRXui am_indexed64:$addr)>;
def : Pat<(relaxed_load<atomic_load_64> am_unscaled64:$addr),
(LDURXi am_unscaled64:$addr)>;
//===----------------------------------
// Atomic stores
//===----------------------------------
// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.
// A store operation that actually needs release semantics.
class releasing_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
assert(Ordering != AcquireRelease && "unexpected store ordering");
return Ordering == Release || Ordering == SequentiallyConsistent;
}]>;
// An atomic store operation that doesn't actually need to be atomic on ARM64.
class relaxed_store<PatFrag base>
: PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val), [{
AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getOrdering();
return Ordering == Monotonic || Ordering == Unordered;
}]>;
// 8-bit stores
def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
(STLRB GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8> ro_indexed8:$ptr, GPR32:$val),
(STRBBro GPR32:$val, ro_indexed8:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8> am_indexed8:$ptr, GPR32:$val),
(STRBBui GPR32:$val, am_indexed8:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8> am_unscaled8:$ptr, GPR32:$val),
(STURBBi GPR32:$val, am_unscaled8:$ptr)>;
// 16-bit stores
def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
(STLRH GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> ro_indexed16:$ptr, GPR32:$val),
(STRHHro GPR32:$val, ro_indexed16:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> am_indexed16:$ptr, GPR32:$val),
(STRHHui GPR32:$val, am_indexed16:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> am_unscaled16:$ptr, GPR32:$val),
(STURHHi GPR32:$val, am_unscaled16:$ptr)>;
// 32-bit stores
def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
(STLRW GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> ro_indexed32:$ptr, GPR32:$val),
(STRWro GPR32:$val, ro_indexed32:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> am_indexed32:$ptr, GPR32:$val),
(STRWui GPR32:$val, am_indexed32:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> am_unscaled32:$ptr, GPR32:$val),
(STURWi GPR32:$val, am_unscaled32:$ptr)>;
// 64-bit stores
def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
(STLRX GPR64:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> ro_indexed64:$ptr, GPR64:$val),
(STRXro GPR64:$val, ro_indexed64:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> am_indexed64:$ptr, GPR64:$val),
(STRXui GPR64:$val, am_indexed64:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> am_unscaled64:$ptr, GPR64:$val),
(STURXi GPR64:$val, am_unscaled64:$ptr)>;
//===----------------------------------
// Atomic read-modify-write operations
//===----------------------------------
// More complicated operations need lots of C++ support, so we just create
// skeletons here for the C++ code to refer to.
let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1 in {
multiclass AtomicSizes {
def _I8 : Pseudo<(outs GPR32:$dst),
(ins GPR64sp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I16 : Pseudo<(outs GPR32:$dst),
(ins GPR64sp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I32 : Pseudo<(outs GPR32:$dst),
(ins GPR64sp:$ptr, GPR32:$incr, i32imm:$ordering), []>;
def _I64 : Pseudo<(outs GPR64:$dst),
(ins GPR64sp:$ptr, GPR64:$incr, i32imm:$ordering), []>;
def _I128 : Pseudo<(outs GPR64:$dstlo, GPR64:$dsthi),
(ins GPR64sp:$ptr, GPR64:$incrlo, GPR64:$incrhi,
i32imm:$ordering), []>;
}
}
defm ATOMIC_LOAD_ADD : AtomicSizes;
defm ATOMIC_LOAD_SUB : AtomicSizes;
defm ATOMIC_LOAD_AND : AtomicSizes;
defm ATOMIC_LOAD_OR : AtomicSizes;
defm ATOMIC_LOAD_XOR : AtomicSizes;
defm ATOMIC_LOAD_NAND : AtomicSizes;
defm ATOMIC_SWAP : AtomicSizes;
let Defs = [CPSR] in {
// These operations need a CMP to calculate the correct value
defm ATOMIC_LOAD_MIN : AtomicSizes;
defm ATOMIC_LOAD_MAX : AtomicSizes;
defm ATOMIC_LOAD_UMIN : AtomicSizes;
defm ATOMIC_LOAD_UMAX : AtomicSizes;
}
class AtomicCmpSwap<RegisterClass GPRData>
: Pseudo<(outs GPRData:$dst),
(ins GPR64sp:$ptr, GPRData:$old, GPRData:$new,
i32imm:$ordering), []> {
let usesCustomInserter = 1;
let hasCtrlDep = 1;
let mayLoad = 1;
let mayStore = 1;
let Defs = [CPSR];
}
def ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap<GPR32>;
def ATOMIC_CMP_SWAP_I64 : AtomicCmpSwap<GPR64>;
def ATOMIC_CMP_SWAP_I128
: Pseudo<(outs GPR64:$dstlo, GPR64:$dsthi),
(ins GPR64sp:$ptr, GPR64:$oldlo, GPR64:$oldhi,
GPR64:$newlo, GPR64:$newhi, i32imm:$ordering), []> {
let usesCustomInserter = 1;
let hasCtrlDep = 1;
let mayLoad = 1;
let mayStore = 1;
let Defs = [CPSR];
}
//===----------------------------------
// Low-level exclusive operations
//===----------------------------------
// Load-exclusives.
def ldxr_1 : PatFrag<(ops node:$ptr), (int_arm64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def ldxr_2 : PatFrag<(ops node:$ptr), (int_arm64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def ldxr_4 : PatFrag<(ops node:$ptr), (int_arm64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def ldxr_8 : PatFrag<(ops node:$ptr), (int_arm64_ldxr node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(ldxr_1 am_noindex:$addr),
(SUBREG_TO_REG (i64 0), (LDXRB am_noindex:$addr), sub_32)>;
def : Pat<(ldxr_2 am_noindex:$addr),
(SUBREG_TO_REG (i64 0), (LDXRH am_noindex:$addr), sub_32)>;
def : Pat<(ldxr_4 am_noindex:$addr),
(SUBREG_TO_REG (i64 0), (LDXRW am_noindex:$addr), sub_32)>;
def : Pat<(ldxr_8 am_noindex:$addr), (LDXRX am_noindex:$addr)>;
def : Pat<(and (ldxr_1 am_noindex:$addr), 0xff),
(SUBREG_TO_REG (i64 0), (LDXRB am_noindex:$addr), sub_32)>;
def : Pat<(and (ldxr_2 am_noindex:$addr), 0xffff),
(SUBREG_TO_REG (i64 0), (LDXRH am_noindex:$addr), sub_32)>;
def : Pat<(and (ldxr_4 am_noindex:$addr), 0xffffffff),
(SUBREG_TO_REG (i64 0), (LDXRW am_noindex:$addr), sub_32)>;
// Store-exclusives.
def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
(int_arm64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]>;
def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
(int_arm64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]>;
def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
(int_arm64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]>;
def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
(int_arm64_stxr node:$val, node:$ptr), [{
return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]>;
def : Pat<(stxr_1 GPR64:$val, am_noindex:$addr),
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
def : Pat<(stxr_2 GPR64:$val, am_noindex:$addr),
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
def : Pat<(stxr_4 GPR64:$val, am_noindex:$addr),
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
def : Pat<(stxr_8 GPR64:$val, am_noindex:$addr),
(STXRX GPR64:$val, am_noindex:$addr)>;
def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), am_noindex:$addr),
(STXRB GPR32:$val, am_noindex:$addr)>;
def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), am_noindex:$addr),
(STXRH GPR32:$val, am_noindex:$addr)>;
def : Pat<(stxr_4 (zext GPR32:$val), am_noindex:$addr),
(STXRW GPR32:$val, am_noindex:$addr)>;
def : Pat<(stxr_1 (and GPR64:$val, 0xff), am_noindex:$addr),
(STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
def : Pat<(stxr_2 (and GPR64:$val, 0xffff), am_noindex:$addr),
(STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), am_noindex:$addr),
(STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), am_noindex:$addr)>;
// And clear exclusive.
def : Pat<(int_arm64_clrex), (CLREX 0xf)>;