llvm/lib/CodeGen/PBQP/HeuristicSolver.h
Dan Gohman fb76fe0929 Fix various doxygen warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96779 91177308-0d34-0410-b5e6-96231b3b80d8
2010-02-22 04:10:52 +00:00

608 lines
19 KiB
C++

//===-- HeuristicSolver.h - Heuristic PBQP Solver --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Heuristic PBQP solver. This solver is able to perform optimal reductions for
// nodes of degree 0, 1 or 2. For nodes of degree >2 a plugable heuristic is
// used to select a node for reduction.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
#include "Graph.h"
#include "Solution.h"
#include <vector>
#include <limits>
namespace PBQP {
/// \brief Heuristic PBQP solver implementation.
///
/// This class should usually be created (and destroyed) indirectly via a call
/// to HeuristicSolver<HImpl>::solve(Graph&).
/// See the comments for HeuristicSolver.
///
/// HeuristicSolverImpl provides the R0, R1 and R2 reduction rules,
/// backpropagation phase, and maintains the internal copy of the graph on
/// which the reduction is carried out (the original being kept to facilitate
/// backpropagation).
template <typename HImpl>
class HeuristicSolverImpl {
private:
typedef typename HImpl::NodeData HeuristicNodeData;
typedef typename HImpl::EdgeData HeuristicEdgeData;
typedef std::list<Graph::EdgeItr> SolverEdges;
public:
/// \brief Iterator type for edges in the solver graph.
typedef SolverEdges::iterator SolverEdgeItr;
private:
class NodeData {
public:
NodeData() : solverDegree(0) {}
HeuristicNodeData& getHeuristicData() { return hData; }
SolverEdgeItr addSolverEdge(Graph::EdgeItr eItr) {
++solverDegree;
return solverEdges.insert(solverEdges.end(), eItr);
}
void removeSolverEdge(SolverEdgeItr seItr) {
--solverDegree;
solverEdges.erase(seItr);
}
SolverEdgeItr solverEdgesBegin() { return solverEdges.begin(); }
SolverEdgeItr solverEdgesEnd() { return solverEdges.end(); }
unsigned getSolverDegree() const { return solverDegree; }
void clearSolverEdges() {
solverDegree = 0;
solverEdges.clear();
}
private:
HeuristicNodeData hData;
unsigned solverDegree;
SolverEdges solverEdges;
};
class EdgeData {
public:
HeuristicEdgeData& getHeuristicData() { return hData; }
void setN1SolverEdgeItr(SolverEdgeItr n1SolverEdgeItr) {
this->n1SolverEdgeItr = n1SolverEdgeItr;
}
SolverEdgeItr getN1SolverEdgeItr() { return n1SolverEdgeItr; }
void setN2SolverEdgeItr(SolverEdgeItr n2SolverEdgeItr){
this->n2SolverEdgeItr = n2SolverEdgeItr;
}
SolverEdgeItr getN2SolverEdgeItr() { return n2SolverEdgeItr; }
private:
HeuristicEdgeData hData;
SolverEdgeItr n1SolverEdgeItr, n2SolverEdgeItr;
};
Graph &g;
HImpl h;
Solution s;
std::vector<Graph::NodeItr> stack;
typedef std::list<NodeData> NodeDataList;
NodeDataList nodeDataList;
typedef std::list<EdgeData> EdgeDataList;
EdgeDataList edgeDataList;
public:
/// \brief Construct a heuristic solver implementation to solve the given
/// graph.
/// @param g The graph representing the problem instance to be solved.
HeuristicSolverImpl(Graph &g) : g(g), h(*this) {}
/// \brief Get the graph being solved by this solver.
/// @return The graph representing the problem instance being solved by this
/// solver.
Graph& getGraph() { return g; }
/// \brief Get the heuristic data attached to the given node.
/// @param nItr Node iterator.
/// @return The heuristic data attached to the given node.
HeuristicNodeData& getHeuristicNodeData(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).getHeuristicData();
}
/// \brief Get the heuristic data attached to the given edge.
/// @param eItr Edge iterator.
/// @return The heuristic data attached to the given node.
HeuristicEdgeData& getHeuristicEdgeData(Graph::EdgeItr eItr) {
return getSolverEdgeData(eItr).getHeuristicData();
}
/// \brief Begin iterator for the set of edges adjacent to the given node in
/// the solver graph.
/// @param nItr Node iterator.
/// @return Begin iterator for the set of edges adjacent to the given node
/// in the solver graph.
SolverEdgeItr solverEdgesBegin(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).solverEdgesBegin();
}
/// \brief End iterator for the set of edges adjacent to the given node in
/// the solver graph.
/// @param nItr Node iterator.
/// @return End iterator for the set of edges adjacent to the given node in
/// the solver graph.
SolverEdgeItr solverEdgesEnd(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).solverEdgesEnd();
}
/// \brief Remove a node from the solver graph.
/// @param eItr Edge iterator for edge to be removed.
///
/// Does <i>not</i> notify the heuristic of the removal. That should be
/// done manually if necessary.
void removeSolverEdge(Graph::EdgeItr eItr) {
EdgeData &eData = getSolverEdgeData(eItr);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
n1Data.removeSolverEdge(eData.getN1SolverEdgeItr());
n2Data.removeSolverEdge(eData.getN2SolverEdgeItr());
}
/// \brief Compute a solution to the PBQP problem instance with which this
/// heuristic solver was constructed.
/// @return A solution to the PBQP problem.
///
/// Performs the full PBQP heuristic solver algorithm, including setup,
/// calls to the heuristic (which will call back to the reduction rules in
/// this class), and cleanup.
Solution computeSolution() {
setup();
h.setup();
h.reduce();
backpropagate();
h.cleanup();
cleanup();
return s;
}
/// \brief Add to the end of the stack.
/// @param nItr Node iterator to add to the reduction stack.
void pushToStack(Graph::NodeItr nItr) {
getSolverNodeData(nItr).clearSolverEdges();
stack.push_back(nItr);
}
/// \brief Returns the solver degree of the given node.
/// @param nItr Node iterator for which degree is requested.
/// @return Node degree in the <i>solver</i> graph (not the original graph).
unsigned getSolverDegree(Graph::NodeItr nItr) {
return getSolverNodeData(nItr).getSolverDegree();
}
/// \brief Set the solution of the given node.
/// @param nItr Node iterator to set solution for.
/// @param selection Selection for node.
void setSolution(const Graph::NodeItr &nItr, unsigned selection) {
s.setSelection(nItr, selection);
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
aeEnd = g.adjEdgesEnd(nItr);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr(*aeItr);
Graph::NodeItr anItr(g.getEdgeOtherNode(eItr, nItr));
getSolverNodeData(anItr).addSolverEdge(eItr);
}
}
/// \brief Apply rule R0.
/// @param nItr Node iterator for node to apply R0 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR0(Graph::NodeItr nItr) {
assert(getSolverNodeData(nItr).getSolverDegree() == 0 &&
"R0 applied to node with degree != 0.");
// Nothing to do. Just push the node onto the reduction stack.
pushToStack(nItr);
}
/// \brief Apply rule R1.
/// @param xnItr Node iterator for node to apply R1 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR1(Graph::NodeItr xnItr) {
NodeData &nd = getSolverNodeData(xnItr);
assert(nd.getSolverDegree() == 1 &&
"R1 applied to node with degree != 1.");
Graph::EdgeItr eItr = *nd.solverEdgesBegin();
const Matrix &eCosts = g.getEdgeCosts(eItr);
const Vector &xCosts = g.getNodeCosts(xnItr);
// Duplicate a little to avoid transposing matrices.
if (xnItr == g.getEdgeNode1(eItr)) {
Graph::NodeItr ynItr = g.getEdgeNode2(eItr);
Vector &yCosts = g.getNodeCosts(ynItr);
for (unsigned j = 0; j < yCosts.getLength(); ++j) {
PBQPNum min = eCosts[0][j] + xCosts[0];
for (unsigned i = 1; i < xCosts.getLength(); ++i) {
PBQPNum c = eCosts[i][j] + xCosts[i];
if (c < min)
min = c;
}
yCosts[j] += min;
}
h.handleRemoveEdge(eItr, ynItr);
} else {
Graph::NodeItr ynItr = g.getEdgeNode1(eItr);
Vector &yCosts = g.getNodeCosts(ynItr);
for (unsigned i = 0; i < yCosts.getLength(); ++i) {
PBQPNum min = eCosts[i][0] + xCosts[0];
for (unsigned j = 1; j < xCosts.getLength(); ++j) {
PBQPNum c = eCosts[i][j] + xCosts[j];
if (c < min)
min = c;
}
yCosts[i] += min;
}
h.handleRemoveEdge(eItr, ynItr);
}
removeSolverEdge(eItr);
assert(nd.getSolverDegree() == 0 &&
"Degree 1 with edge removed should be 0.");
pushToStack(xnItr);
}
/// \brief Apply rule R2.
/// @param xnItr Node iterator for node to apply R2 to.
///
/// Node will be automatically pushed to the solver stack.
void applyR2(Graph::NodeItr xnItr) {
assert(getSolverNodeData(xnItr).getSolverDegree() == 2 &&
"R2 applied to node with degree != 2.");
NodeData &nd = getSolverNodeData(xnItr);
const Vector &xCosts = g.getNodeCosts(xnItr);
SolverEdgeItr aeItr = nd.solverEdgesBegin();
Graph::EdgeItr yxeItr = *aeItr,
zxeItr = *(++aeItr);
Graph::NodeItr ynItr = g.getEdgeOtherNode(yxeItr, xnItr),
znItr = g.getEdgeOtherNode(zxeItr, xnItr);
bool flipEdge1 = (g.getEdgeNode1(yxeItr) == xnItr),
flipEdge2 = (g.getEdgeNode1(zxeItr) == xnItr);
const Matrix *yxeCosts = flipEdge1 ?
new Matrix(g.getEdgeCosts(yxeItr).transpose()) :
&g.getEdgeCosts(yxeItr);
const Matrix *zxeCosts = flipEdge2 ?
new Matrix(g.getEdgeCosts(zxeItr).transpose()) :
&g.getEdgeCosts(zxeItr);
unsigned xLen = xCosts.getLength(),
yLen = yxeCosts->getRows(),
zLen = zxeCosts->getRows();
Matrix delta(yLen, zLen);
for (unsigned i = 0; i < yLen; ++i) {
for (unsigned j = 0; j < zLen; ++j) {
PBQPNum min = (*yxeCosts)[i][0] + (*zxeCosts)[j][0] + xCosts[0];
for (unsigned k = 1; k < xLen; ++k) {
PBQPNum c = (*yxeCosts)[i][k] + (*zxeCosts)[j][k] + xCosts[k];
if (c < min) {
min = c;
}
}
delta[i][j] = min;
}
}
if (flipEdge1)
delete yxeCosts;
if (flipEdge2)
delete zxeCosts;
Graph::EdgeItr yzeItr = g.findEdge(ynItr, znItr);
bool addedEdge = false;
if (yzeItr == g.edgesEnd()) {
yzeItr = g.addEdge(ynItr, znItr, delta);
addedEdge = true;
} else {
Matrix &yzeCosts = g.getEdgeCosts(yzeItr);
h.preUpdateEdgeCosts(yzeItr);
if (ynItr == g.getEdgeNode1(yzeItr)) {
yzeCosts += delta;
} else {
yzeCosts += delta.transpose();
}
}
bool nullCostEdge = tryNormaliseEdgeMatrix(yzeItr);
if (!addedEdge) {
// If we modified the edge costs let the heuristic know.
h.postUpdateEdgeCosts(yzeItr);
}
if (nullCostEdge) {
// If this edge ended up null remove it.
if (!addedEdge) {
// We didn't just add it, so we need to notify the heuristic
// and remove it from the solver.
h.handleRemoveEdge(yzeItr, ynItr);
h.handleRemoveEdge(yzeItr, znItr);
removeSolverEdge(yzeItr);
}
g.removeEdge(yzeItr);
} else if (addedEdge) {
// If the edge was added, and non-null, finish setting it up, add it to
// the solver & notify heuristic.
edgeDataList.push_back(EdgeData());
g.setEdgeData(yzeItr, &edgeDataList.back());
addSolverEdge(yzeItr);
h.handleAddEdge(yzeItr);
}
h.handleRemoveEdge(yxeItr, ynItr);
removeSolverEdge(yxeItr);
h.handleRemoveEdge(zxeItr, znItr);
removeSolverEdge(zxeItr);
pushToStack(xnItr);
}
private:
NodeData& getSolverNodeData(Graph::NodeItr nItr) {
return *static_cast<NodeData*>(g.getNodeData(nItr));
}
EdgeData& getSolverEdgeData(Graph::EdgeItr eItr) {
return *static_cast<EdgeData*>(g.getEdgeData(eItr));
}
void addSolverEdge(Graph::EdgeItr eItr) {
EdgeData &eData = getSolverEdgeData(eItr);
NodeData &n1Data = getSolverNodeData(g.getEdgeNode1(eItr)),
&n2Data = getSolverNodeData(g.getEdgeNode2(eItr));
eData.setN1SolverEdgeItr(n1Data.addSolverEdge(eItr));
eData.setN2SolverEdgeItr(n2Data.addSolverEdge(eItr));
}
void setup() {
if (h.solverRunSimplify()) {
simplify();
}
// Create node data objects.
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) {
nodeDataList.push_back(NodeData());
g.setNodeData(nItr, &nodeDataList.back());
}
// Create edge data objects.
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) {
edgeDataList.push_back(EdgeData());
g.setEdgeData(eItr, &edgeDataList.back());
addSolverEdge(eItr);
}
}
void simplify() {
disconnectTrivialNodes();
eliminateIndependentEdges();
}
// Eliminate trivial nodes.
void disconnectTrivialNodes() {
unsigned numDisconnected = 0;
for (Graph::NodeItr nItr = g.nodesBegin(), nEnd = g.nodesEnd();
nItr != nEnd; ++nItr) {
if (g.getNodeCosts(nItr).getLength() == 1) {
std::vector<Graph::EdgeItr> edgesToRemove;
for (Graph::AdjEdgeItr aeItr = g.adjEdgesBegin(nItr),
aeEnd = g.adjEdgesEnd(nItr);
aeItr != aeEnd; ++aeItr) {
Graph::EdgeItr eItr = *aeItr;
if (g.getEdgeNode1(eItr) == nItr) {
Graph::NodeItr otherNodeItr = g.getEdgeNode2(eItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(eItr).getRowAsVector(0);
}
else {
Graph::NodeItr otherNodeItr = g.getEdgeNode1(eItr);
g.getNodeCosts(otherNodeItr) +=
g.getEdgeCosts(eItr).getColAsVector(0);
}
edgesToRemove.push_back(eItr);
}
if (!edgesToRemove.empty())
++numDisconnected;
while (!edgesToRemove.empty()) {
g.removeEdge(edgesToRemove.back());
edgesToRemove.pop_back();
}
}
}
}
void eliminateIndependentEdges() {
std::vector<Graph::EdgeItr> edgesToProcess;
unsigned numEliminated = 0;
for (Graph::EdgeItr eItr = g.edgesBegin(), eEnd = g.edgesEnd();
eItr != eEnd; ++eItr) {
edgesToProcess.push_back(eItr);
}
while (!edgesToProcess.empty()) {
if (tryToEliminateEdge(edgesToProcess.back()))
++numEliminated;
edgesToProcess.pop_back();
}
}
bool tryToEliminateEdge(Graph::EdgeItr eItr) {
if (tryNormaliseEdgeMatrix(eItr)) {
g.removeEdge(eItr);
return true;
}
return false;
}
bool tryNormaliseEdgeMatrix(Graph::EdgeItr &eItr) {
const PBQPNum infinity = std::numeric_limits<PBQPNum>::infinity();
Matrix &edgeCosts = g.getEdgeCosts(eItr);
Vector &uCosts = g.getNodeCosts(g.getEdgeNode1(eItr)),
&vCosts = g.getNodeCosts(g.getEdgeNode2(eItr));
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
PBQPNum rowMin = infinity;
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
if (vCosts[c] != infinity && edgeCosts[r][c] < rowMin)
rowMin = edgeCosts[r][c];
}
uCosts[r] += rowMin;
if (rowMin != infinity) {
edgeCosts.subFromRow(r, rowMin);
}
else {
edgeCosts.setRow(r, 0);
}
}
for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
PBQPNum colMin = infinity;
for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
if (uCosts[r] != infinity && edgeCosts[r][c] < colMin)
colMin = edgeCosts[r][c];
}
vCosts[c] += colMin;
if (colMin != infinity) {
edgeCosts.subFromCol(c, colMin);
}
else {
edgeCosts.setCol(c, 0);
}
}
return edgeCosts.isZero();
}
void backpropagate() {
while (!stack.empty()) {
computeSolution(stack.back());
stack.pop_back();
}
}
void computeSolution(Graph::NodeItr nItr) {
NodeData &nodeData = getSolverNodeData(nItr);
Vector v(g.getNodeCosts(nItr));
// Solve based on existing solved edges.
for (SolverEdgeItr solvedEdgeItr = nodeData.solverEdgesBegin(),
solvedEdgeEnd = nodeData.solverEdgesEnd();
solvedEdgeItr != solvedEdgeEnd; ++solvedEdgeItr) {
Graph::EdgeItr eItr(*solvedEdgeItr);
Matrix &edgeCosts = g.getEdgeCosts(eItr);
if (nItr == g.getEdgeNode1(eItr)) {
Graph::NodeItr adjNode(g.getEdgeNode2(eItr));
unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getColAsVector(adjSolution);
}
else {
Graph::NodeItr adjNode(g.getEdgeNode1(eItr));
unsigned adjSolution = s.getSelection(adjNode);
v += edgeCosts.getRowAsVector(adjSolution);
}
}
setSolution(nItr, v.minIndex());
}
void cleanup() {
h.cleanup();
nodeDataList.clear();
edgeDataList.clear();
}
};
/// \brief PBQP heuristic solver class.
///
/// Given a PBQP Graph g representing a PBQP problem, you can find a solution
/// by calling
/// <tt>Solution s = HeuristicSolver<H>::solve(g);</tt>
///
/// The choice of heuristic for the H parameter will affect both the solver
/// speed and solution quality. The heuristic should be chosen based on the
/// nature of the problem being solved.
/// Currently the only solver included with LLVM is the Briggs heuristic for
/// register allocation.
template <typename HImpl>
class HeuristicSolver {
public:
static Solution solve(Graph &g) {
HeuristicSolverImpl<HImpl> hs(g);
return hs.computeSolution();
}
};
}
#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H