mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-14 07:31:53 +00:00
63dcaeaca4
Differential Revision: https://reviews.llvm.org/D39499 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317114 91177308-0d34-0410-b5e6-96231b3b80d8
1242 lines
46 KiB
C++
1242 lines
46 KiB
C++
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
///
|
|
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
|
|
/// code. When passed an MCAsmStreamer it prints assembly and when passed
|
|
/// an MCObjectStreamer it outputs binary code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
|
|
#include "AMDGPUAsmPrinter.h"
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "InstPrinter/AMDGPUInstPrinter.h"
|
|
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
|
|
#include "R600Defines.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "R600RegisterInfo.h"
|
|
#include "SIDefines.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/Support/AMDGPUMetadata.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::AMDGPU;
|
|
|
|
// TODO: This should get the default rounding mode from the kernel. We just set
|
|
// the default here, but this could change if the OpenCL rounding mode pragmas
|
|
// are used.
|
|
//
|
|
// The denormal mode here should match what is reported by the OpenCL runtime
|
|
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
|
|
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
|
|
//
|
|
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
|
|
// precision, and leaves single precision to flush all and does not report
|
|
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
|
|
// CL_FP_DENORM for both.
|
|
//
|
|
// FIXME: It seems some instructions do not support single precision denormals
|
|
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
|
|
// and sin_f32, cos_f32 on most parts).
|
|
|
|
// We want to use these instructions, and using fp32 denormals also causes
|
|
// instructions to run at the double precision rate for the device so it's
|
|
// probably best to just report no single precision denormals.
|
|
static uint32_t getFPMode(const MachineFunction &F) {
|
|
const SISubtarget& ST = F.getSubtarget<SISubtarget>();
|
|
// TODO: Is there any real use for the flush in only / flush out only modes?
|
|
|
|
uint32_t FP32Denormals =
|
|
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
|
|
|
|
uint32_t FP64Denormals =
|
|
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
|
|
|
|
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
|
|
FP_DENORM_MODE_SP(FP32Denormals) |
|
|
FP_DENORM_MODE_DP(FP64Denormals);
|
|
}
|
|
|
|
static AsmPrinter *
|
|
createAMDGPUAsmPrinterPass(TargetMachine &tm,
|
|
std::unique_ptr<MCStreamer> &&Streamer) {
|
|
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
|
|
}
|
|
|
|
extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
|
|
TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
|
|
createAMDGPUAsmPrinterPass);
|
|
TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
|
|
createAMDGPUAsmPrinterPass);
|
|
}
|
|
|
|
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: AsmPrinter(TM, std::move(Streamer)) {
|
|
AMDGPUASI = static_cast<AMDGPUTargetMachine*>(&TM)->getAMDGPUAS();
|
|
}
|
|
|
|
StringRef AMDGPUAsmPrinter::getPassName() const {
|
|
return "AMDGPU Assembly Printer";
|
|
}
|
|
|
|
const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const {
|
|
return TM.getMCSubtargetInfo();
|
|
}
|
|
|
|
AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
|
|
if (!OutStreamer)
|
|
return nullptr;
|
|
return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
|
|
if (TM.getTargetTriple().getArch() != Triple::amdgcn)
|
|
return;
|
|
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
|
|
TM.getTargetTriple().getOS() != Triple::AMDPAL)
|
|
return;
|
|
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
|
|
HSAMetadataStream.begin(M);
|
|
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
|
|
readPALMetadata(M);
|
|
|
|
// Deprecated notes are not emitted for code object v3.
|
|
if (IsaInfo::hasCodeObjectV3(getSTI()->getFeatureBits()))
|
|
return;
|
|
|
|
// HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
|
|
getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
|
|
|
|
// HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
|
|
IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits());
|
|
getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
|
|
ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU");
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
|
|
if (TM.getTargetTriple().getArch() != Triple::amdgcn)
|
|
return;
|
|
|
|
// Following code requires TargetStreamer to be present.
|
|
if (!getTargetStreamer())
|
|
return;
|
|
|
|
// Emit ISA Version (NT_AMD_AMDGPU_ISA).
|
|
std::string ISAVersionString;
|
|
raw_string_ostream ISAVersionStream(ISAVersionString);
|
|
IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream);
|
|
getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
|
|
|
|
// Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
|
|
HSAMetadataStream.end();
|
|
getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata());
|
|
}
|
|
|
|
// Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA).
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDPAL) {
|
|
// Copy the PAL metadata from the map where we collected it into a vector,
|
|
// then write it as a .note.
|
|
PALMD::Metadata PALMetadataVector;
|
|
for (auto i : PALMetadataMap) {
|
|
PALMetadataVector.push_back(i.first);
|
|
PALMetadataVector.push_back(i.second);
|
|
}
|
|
getTargetStreamer()->EmitPALMetadata(PALMetadataVector);
|
|
}
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
|
|
const MachineBasicBlock *MBB) const {
|
|
if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
|
|
return false;
|
|
|
|
if (MBB->empty())
|
|
return true;
|
|
|
|
// If this is a block implementing a long branch, an expression relative to
|
|
// the start of the block is needed. to the start of the block.
|
|
// XXX - Is there a smarter way to check this?
|
|
return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
|
|
const AMDGPUMachineFunction *MFI = MF->getInfo<AMDGPUMachineFunction>();
|
|
if (!MFI->isEntryFunction())
|
|
return;
|
|
|
|
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
|
|
amd_kernel_code_t KernelCode;
|
|
if (STM.isAmdCodeObjectV2(*MF)) {
|
|
getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
|
|
|
|
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
|
|
getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
|
|
}
|
|
|
|
if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
|
|
return;
|
|
|
|
HSAMetadataStream.emitKernel(*MF->getFunction(),
|
|
getHSACodeProps(*MF, CurrentProgramInfo),
|
|
getHSADebugProps(*MF, CurrentProgramInfo));
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
|
|
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
|
|
if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(*MF)) {
|
|
SmallString<128> SymbolName;
|
|
getNameWithPrefix(SymbolName, MF->getFunction()),
|
|
getTargetStreamer()->EmitAMDGPUSymbolType(
|
|
SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
|
|
}
|
|
|
|
AsmPrinter::EmitFunctionEntryLabel();
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
|
|
|
|
// Group segment variables aren't emitted in HSA.
|
|
if (AMDGPU::isGroupSegment(GV))
|
|
return;
|
|
|
|
AsmPrinter::EmitGlobalVariable(GV);
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::doFinalization(Module &M) {
|
|
CallGraphResourceInfo.clear();
|
|
return AsmPrinter::doFinalization(M);
|
|
}
|
|
|
|
// For the amdpal OS type, read the amdgpu.pal.metadata supplied by the
|
|
// frontend into our PALMetadataMap, ready for per-function modification. It
|
|
// is a NamedMD containing an MDTuple containing a number of MDNodes each of
|
|
// which is an integer value, and each two integer values forms a key=value
|
|
// pair that we store as PALMetadataMap[key]=value in the map.
|
|
void AMDGPUAsmPrinter::readPALMetadata(Module &M) {
|
|
auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
|
|
if (!NamedMD || !NamedMD->getNumOperands())
|
|
return;
|
|
auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
|
|
if (!Tuple)
|
|
return;
|
|
for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
|
|
auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
|
|
auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
|
|
if (!Key || !Val)
|
|
continue;
|
|
PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue();
|
|
}
|
|
}
|
|
|
|
// Print comments that apply to both callable functions and entry points.
|
|
void AMDGPUAsmPrinter::emitCommonFunctionComments(
|
|
uint32_t NumVGPR,
|
|
uint32_t NumSGPR,
|
|
uint32_t ScratchSize,
|
|
uint64_t CodeSize) {
|
|
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
|
|
OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
|
|
OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
|
|
OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
|
|
CurrentProgramInfo = SIProgramInfo();
|
|
|
|
const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
|
|
|
|
// The starting address of all shader programs must be 256 bytes aligned.
|
|
// Regular functions just need the basic required instruction alignment.
|
|
MF.setAlignment(MFI->isEntryFunction() ? 8 : 2);
|
|
|
|
SetupMachineFunction(MF);
|
|
|
|
const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
|
|
MCContext &Context = getObjFileLowering().getContext();
|
|
if (!STM.isAmdHsaOS()) {
|
|
MCSectionELF *ConfigSection =
|
|
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(ConfigSection);
|
|
}
|
|
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
|
|
if (MFI->isEntryFunction()) {
|
|
getSIProgramInfo(CurrentProgramInfo, MF);
|
|
} else {
|
|
auto I = CallGraphResourceInfo.insert(
|
|
std::make_pair(MF.getFunction(), SIFunctionResourceInfo()));
|
|
SIFunctionResourceInfo &Info = I.first->second;
|
|
assert(I.second && "should only be called once per function");
|
|
Info = analyzeResourceUsage(MF);
|
|
}
|
|
|
|
if (STM.isAmdPalOS())
|
|
EmitPALMetadata(MF, CurrentProgramInfo);
|
|
if (!STM.isAmdHsaOS()) {
|
|
EmitProgramInfoSI(MF, CurrentProgramInfo);
|
|
}
|
|
} else {
|
|
EmitProgramInfoR600(MF);
|
|
}
|
|
|
|
DisasmLines.clear();
|
|
HexLines.clear();
|
|
DisasmLineMaxLen = 0;
|
|
|
|
EmitFunctionBody();
|
|
|
|
if (isVerbose()) {
|
|
MCSectionELF *CommentSection =
|
|
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
|
|
OutStreamer->SwitchSection(CommentSection);
|
|
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
|
|
if (!MFI->isEntryFunction()) {
|
|
OutStreamer->emitRawComment(" Function info:", false);
|
|
SIFunctionResourceInfo &Info = CallGraphResourceInfo[MF.getFunction()];
|
|
emitCommonFunctionComments(
|
|
Info.NumVGPR,
|
|
Info.getTotalNumSGPRs(MF.getSubtarget<SISubtarget>()),
|
|
Info.PrivateSegmentSize,
|
|
getFunctionCodeSize(MF));
|
|
return false;
|
|
}
|
|
|
|
OutStreamer->emitRawComment(" Kernel info:", false);
|
|
emitCommonFunctionComments(CurrentProgramInfo.NumVGPR,
|
|
CurrentProgramInfo.NumSGPR,
|
|
CurrentProgramInfo.ScratchSize,
|
|
getFunctionCodeSize(MF));
|
|
|
|
OutStreamer->emitRawComment(
|
|
" FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
|
|
OutStreamer->emitRawComment(
|
|
" IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
|
|
OutStreamer->emitRawComment(
|
|
" LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
|
|
" bytes/workgroup (compile time only)", false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
|
|
OutStreamer->emitRawComment(
|
|
" VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" NumSGPRsForWavesPerEU: " +
|
|
Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
|
|
OutStreamer->emitRawComment(
|
|
" NumVGPRsForWavesPerEU: " +
|
|
Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
|
|
|
|
OutStreamer->emitRawComment(
|
|
" ReservedVGPRFirst: " + Twine(CurrentProgramInfo.ReservedVGPRFirst),
|
|
false);
|
|
OutStreamer->emitRawComment(
|
|
" ReservedVGPRCount: " + Twine(CurrentProgramInfo.ReservedVGPRCount),
|
|
false);
|
|
|
|
if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
|
|
OutStreamer->emitRawComment(
|
|
" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
|
|
Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
|
|
OutStreamer->emitRawComment(
|
|
" DebuggerPrivateSegmentBufferSGPR: s" +
|
|
Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false);
|
|
}
|
|
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:USER_SGPR: " +
|
|
Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
|
|
Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
|
|
Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
|
|
Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
|
|
Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
|
|
OutStreamer->emitRawComment(
|
|
" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
|
|
Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
|
|
false);
|
|
} else {
|
|
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
OutStreamer->emitRawComment(
|
|
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
|
|
}
|
|
}
|
|
|
|
if (STM.dumpCode()) {
|
|
|
|
OutStreamer->SwitchSection(
|
|
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
|
|
|
|
for (size_t i = 0; i < DisasmLines.size(); ++i) {
|
|
std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
|
|
Comment += " ; " + HexLines[i] + "\n";
|
|
|
|
OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
|
|
OutStreamer->EmitBytes(StringRef(Comment));
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
|
|
unsigned MaxGPR = 0;
|
|
bool killPixel = false;
|
|
const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
|
|
const R600RegisterInfo *RI = STM.getRegisterInfo();
|
|
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() == AMDGPU::KILLGT)
|
|
killPixel = true;
|
|
unsigned numOperands = MI.getNumOperands();
|
|
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
|
|
const MachineOperand &MO = MI.getOperand(op_idx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned HWReg = RI->getHWRegIndex(MO.getReg());
|
|
|
|
// Register with value > 127 aren't GPR
|
|
if (HWReg > 127)
|
|
continue;
|
|
MaxGPR = std::max(MaxGPR, HWReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned RsrcReg;
|
|
if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
|
|
// Evergreen / Northern Islands
|
|
switch (MF.getFunction()->getCallingConv()) {
|
|
default: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
|
|
case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
|
|
case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
|
|
case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
|
|
}
|
|
} else {
|
|
// R600 / R700
|
|
switch (MF.getFunction()->getCallingConv()) {
|
|
default: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
|
|
case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
|
|
}
|
|
}
|
|
|
|
OutStreamer->EmitIntValue(RsrcReg, 4);
|
|
OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
|
|
S_STACK_SIZE(MFI->CFStackSize), 4);
|
|
OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
|
|
OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
|
|
|
|
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
|
|
OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
|
|
OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
|
|
}
|
|
}
|
|
|
|
uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIInstrInfo *TII = STM.getInstrInfo();
|
|
|
|
uint64_t CodeSize = 0;
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
// TODO: CodeSize should account for multiple functions.
|
|
|
|
// TODO: Should we count size of debug info?
|
|
if (MI.isDebugValue())
|
|
continue;
|
|
|
|
CodeSize += TII->getInstSizeInBytes(MI);
|
|
}
|
|
}
|
|
|
|
return CodeSize;
|
|
}
|
|
|
|
static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
|
|
const SIInstrInfo &TII,
|
|
unsigned Reg) {
|
|
for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
|
|
if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static unsigned getNumExtraSGPRs(const SISubtarget &ST,
|
|
bool VCCUsed,
|
|
bool FlatScrUsed) {
|
|
unsigned ExtraSGPRs = 0;
|
|
if (VCCUsed)
|
|
ExtraSGPRs = 2;
|
|
|
|
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
|
|
if (FlatScrUsed)
|
|
ExtraSGPRs = 4;
|
|
} else {
|
|
if (ST.isXNACKEnabled())
|
|
ExtraSGPRs = 4;
|
|
|
|
if (FlatScrUsed)
|
|
ExtraSGPRs = 6;
|
|
}
|
|
|
|
return ExtraSGPRs;
|
|
}
|
|
|
|
int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
|
|
const SISubtarget &ST) const {
|
|
return NumExplicitSGPR + getNumExtraSGPRs(ST, UsesVCC, UsesFlatScratch);
|
|
}
|
|
|
|
AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
|
|
const MachineFunction &MF) const {
|
|
SIFunctionResourceInfo Info;
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
|
|
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
|
|
MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
|
|
|
|
// Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
|
|
// instructions aren't used to access the scratch buffer. Inline assembly may
|
|
// need it though.
|
|
//
|
|
// If we only have implicit uses of flat_scr on flat instructions, it is not
|
|
// really needed.
|
|
if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
|
|
(!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
|
|
Info.UsesFlatScratch = false;
|
|
}
|
|
|
|
Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
|
|
Info.PrivateSegmentSize = FrameInfo.getStackSize();
|
|
|
|
|
|
Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
|
|
MRI.isPhysRegUsed(AMDGPU::VCC_HI);
|
|
|
|
// If there are no calls, MachineRegisterInfo can tell us the used register
|
|
// count easily.
|
|
// A tail call isn't considered a call for MachineFrameInfo's purposes.
|
|
if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
|
|
MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
|
|
for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
HighestVGPRReg = Reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
|
|
for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
HighestSGPRReg = Reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We found the maximum register index. They start at 0, so add one to get the
|
|
// number of registers.
|
|
Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
|
|
TRI.getHWRegIndex(HighestVGPRReg) + 1;
|
|
Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
|
|
TRI.getHWRegIndex(HighestSGPRReg) + 1;
|
|
|
|
return Info;
|
|
}
|
|
|
|
int32_t MaxVGPR = -1;
|
|
int32_t MaxSGPR = -1;
|
|
uint32_t CalleeFrameSize = 0;
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
// TODO: Check regmasks? Do they occur anywhere except calls?
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
unsigned Width = 0;
|
|
bool IsSGPR = false;
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
switch (Reg) {
|
|
case AMDGPU::EXEC:
|
|
case AMDGPU::EXEC_LO:
|
|
case AMDGPU::EXEC_HI:
|
|
case AMDGPU::SCC:
|
|
case AMDGPU::M0:
|
|
case AMDGPU::SRC_SHARED_BASE:
|
|
case AMDGPU::SRC_SHARED_LIMIT:
|
|
case AMDGPU::SRC_PRIVATE_BASE:
|
|
case AMDGPU::SRC_PRIVATE_LIMIT:
|
|
continue;
|
|
|
|
case AMDGPU::NoRegister:
|
|
assert(MI.isDebugValue());
|
|
continue;
|
|
|
|
case AMDGPU::VCC:
|
|
case AMDGPU::VCC_LO:
|
|
case AMDGPU::VCC_HI:
|
|
Info.UsesVCC = true;
|
|
continue;
|
|
|
|
case AMDGPU::FLAT_SCR:
|
|
case AMDGPU::FLAT_SCR_LO:
|
|
case AMDGPU::FLAT_SCR_HI:
|
|
continue;
|
|
|
|
case AMDGPU::TBA:
|
|
case AMDGPU::TBA_LO:
|
|
case AMDGPU::TBA_HI:
|
|
case AMDGPU::TMA:
|
|
case AMDGPU::TMA_LO:
|
|
case AMDGPU::TMA_HI:
|
|
llvm_unreachable("trap handler registers should not be used");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (AMDGPU::SReg_32RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 1;
|
|
} else if (AMDGPU::VGPR_32RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 1;
|
|
} else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
|
|
assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
|
|
"trap handler registers should not be used");
|
|
IsSGPR = true;
|
|
Width = 2;
|
|
} else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 2;
|
|
} else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 3;
|
|
} else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 4;
|
|
} else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 4;
|
|
} else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 8;
|
|
} else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 8;
|
|
} else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
|
|
IsSGPR = true;
|
|
Width = 16;
|
|
} else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
|
|
IsSGPR = false;
|
|
Width = 16;
|
|
} else {
|
|
llvm_unreachable("Unknown register class");
|
|
}
|
|
unsigned HWReg = TRI.getHWRegIndex(Reg);
|
|
int MaxUsed = HWReg + Width - 1;
|
|
if (IsSGPR) {
|
|
MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
|
|
} else {
|
|
MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
|
|
}
|
|
}
|
|
|
|
if (MI.isCall()) {
|
|
// Pseudo used just to encode the underlying global. Is there a better
|
|
// way to track this?
|
|
|
|
const MachineOperand *CalleeOp
|
|
= TII->getNamedOperand(MI, AMDGPU::OpName::callee);
|
|
const Function *Callee = cast<Function>(CalleeOp->getGlobal());
|
|
if (Callee->isDeclaration()) {
|
|
// If this is a call to an external function, we can't do much. Make
|
|
// conservative guesses.
|
|
|
|
// 48 SGPRs - vcc, - flat_scr, -xnack
|
|
int MaxSGPRGuess = 47 - getNumExtraSGPRs(ST, true,
|
|
ST.hasFlatAddressSpace());
|
|
MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
|
|
MaxVGPR = std::max(MaxVGPR, 23);
|
|
|
|
CalleeFrameSize = std::max(CalleeFrameSize, 16384u);
|
|
Info.UsesVCC = true;
|
|
Info.UsesFlatScratch = ST.hasFlatAddressSpace();
|
|
Info.HasDynamicallySizedStack = true;
|
|
} else {
|
|
// We force CodeGen to run in SCC order, so the callee's register
|
|
// usage etc. should be the cumulative usage of all callees.
|
|
auto I = CallGraphResourceInfo.find(Callee);
|
|
assert(I != CallGraphResourceInfo.end() &&
|
|
"callee should have been handled before caller");
|
|
|
|
MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
|
|
MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
|
|
CalleeFrameSize
|
|
= std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
|
|
Info.UsesVCC |= I->second.UsesVCC;
|
|
Info.UsesFlatScratch |= I->second.UsesFlatScratch;
|
|
Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
|
|
Info.HasRecursion |= I->second.HasRecursion;
|
|
}
|
|
|
|
if (!Callee->doesNotRecurse())
|
|
Info.HasRecursion = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Info.NumExplicitSGPR = MaxSGPR + 1;
|
|
Info.NumVGPR = MaxVGPR + 1;
|
|
Info.PrivateSegmentSize += CalleeFrameSize;
|
|
|
|
return Info;
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
|
|
const MachineFunction &MF) {
|
|
SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
|
|
|
|
ProgInfo.NumVGPR = Info.NumVGPR;
|
|
ProgInfo.NumSGPR = Info.NumExplicitSGPR;
|
|
ProgInfo.ScratchSize = Info.PrivateSegmentSize;
|
|
ProgInfo.VCCUsed = Info.UsesVCC;
|
|
ProgInfo.FlatUsed = Info.UsesFlatScratch;
|
|
ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
|
|
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SIInstrInfo *TII = STM.getInstrInfo();
|
|
const SIRegisterInfo *RI = &TII->getRegisterInfo();
|
|
|
|
unsigned ExtraSGPRs = getNumExtraSGPRs(STM,
|
|
ProgInfo.VCCUsed,
|
|
ProgInfo.FlatUsed);
|
|
unsigned ExtraVGPRs = STM.getReservedNumVGPRs(MF);
|
|
|
|
// Check the addressable register limit before we add ExtraSGPRs.
|
|
if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
|
|
!STM.hasSGPRInitBug()) {
|
|
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
|
|
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
|
|
// This can happen due to a compiler bug or when using inline asm.
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
|
|
"addressable scalar registers",
|
|
ProgInfo.NumSGPR, DS_Error,
|
|
DK_ResourceLimit,
|
|
MaxAddressableNumSGPRs);
|
|
Ctx.diagnose(Diag);
|
|
ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
|
|
}
|
|
}
|
|
|
|
// Account for extra SGPRs and VGPRs reserved for debugger use.
|
|
ProgInfo.NumSGPR += ExtraSGPRs;
|
|
ProgInfo.NumVGPR += ExtraVGPRs;
|
|
|
|
// Adjust number of registers used to meet default/requested minimum/maximum
|
|
// number of waves per execution unit request.
|
|
ProgInfo.NumSGPRsForWavesPerEU = std::max(
|
|
std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
|
|
ProgInfo.NumVGPRsForWavesPerEU = std::max(
|
|
std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
|
|
|
|
if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
|
|
STM.hasSGPRInitBug()) {
|
|
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
|
|
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
|
|
// This can happen due to a compiler bug or when using inline asm to use
|
|
// the registers which are usually reserved for vcc etc.
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(),
|
|
"scalar registers",
|
|
ProgInfo.NumSGPR, DS_Error,
|
|
DK_ResourceLimit,
|
|
MaxAddressableNumSGPRs);
|
|
Ctx.diagnose(Diag);
|
|
ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
|
|
ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
|
|
}
|
|
}
|
|
|
|
if (STM.hasSGPRInitBug()) {
|
|
ProgInfo.NumSGPR =
|
|
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
ProgInfo.NumSGPRsForWavesPerEU =
|
|
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
|
|
}
|
|
|
|
if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "user SGPRs",
|
|
MFI->getNumUserSGPRs(), DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
|
|
LLVMContext &Ctx = MF.getFunction()->getContext();
|
|
DiagnosticInfoResourceLimit Diag(*MF.getFunction(), "local memory",
|
|
MFI->getLDSSize(), DS_Error);
|
|
Ctx.diagnose(Diag);
|
|
}
|
|
|
|
// SGPRBlocks is actual number of SGPR blocks minus 1.
|
|
ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU,
|
|
STM.getSGPREncodingGranule());
|
|
ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / STM.getSGPREncodingGranule() - 1;
|
|
|
|
// VGPRBlocks is actual number of VGPR blocks minus 1.
|
|
ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU,
|
|
STM.getVGPREncodingGranule());
|
|
ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / STM.getVGPREncodingGranule() - 1;
|
|
|
|
// Record first reserved VGPR and number of reserved VGPRs.
|
|
ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? ProgInfo.NumVGPR : 0;
|
|
ProgInfo.ReservedVGPRCount = STM.getReservedNumVGPRs(MF);
|
|
|
|
// Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
|
|
// DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
|
|
// attribute was requested.
|
|
if (STM.debuggerEmitPrologue()) {
|
|
ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
|
|
RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
|
|
ProgInfo.DebuggerPrivateSegmentBufferSGPR =
|
|
RI->getHWRegIndex(MFI->getScratchRSrcReg());
|
|
}
|
|
|
|
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
|
|
// register.
|
|
ProgInfo.FloatMode = getFPMode(MF);
|
|
|
|
ProgInfo.IEEEMode = STM.enableIEEEBit(MF);
|
|
|
|
// Make clamp modifier on NaN input returns 0.
|
|
ProgInfo.DX10Clamp = STM.enableDX10Clamp();
|
|
|
|
unsigned LDSAlignShift;
|
|
if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
|
|
// LDS is allocated in 64 dword blocks.
|
|
LDSAlignShift = 8;
|
|
} else {
|
|
// LDS is allocated in 128 dword blocks.
|
|
LDSAlignShift = 9;
|
|
}
|
|
|
|
unsigned LDSSpillSize =
|
|
MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
|
|
|
|
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
|
|
ProgInfo.LDSBlocks =
|
|
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
|
|
|
|
// Scratch is allocated in 256 dword blocks.
|
|
unsigned ScratchAlignShift = 10;
|
|
// We need to program the hardware with the amount of scratch memory that
|
|
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
|
|
// scratch memory used per thread.
|
|
ProgInfo.ScratchBlocks =
|
|
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
|
|
1ULL << ScratchAlignShift) >>
|
|
ScratchAlignShift;
|
|
|
|
ProgInfo.ComputePGMRSrc1 =
|
|
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
|
|
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
|
|
S_00B848_PRIORITY(ProgInfo.Priority) |
|
|
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
|
|
S_00B848_PRIV(ProgInfo.Priv) |
|
|
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
|
|
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
|
|
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
|
|
|
|
// 0 = X, 1 = XY, 2 = XYZ
|
|
unsigned TIDIGCompCnt = 0;
|
|
if (MFI->hasWorkItemIDZ())
|
|
TIDIGCompCnt = 2;
|
|
else if (MFI->hasWorkItemIDY())
|
|
TIDIGCompCnt = 1;
|
|
|
|
ProgInfo.ComputePGMRSrc2 =
|
|
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
|
|
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
|
|
S_00B84C_TRAP_HANDLER(STM.isTrapHandlerEnabled()) |
|
|
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
|
|
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
|
|
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
|
|
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
|
|
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
|
|
S_00B84C_EXCP_EN_MSB(0) |
|
|
// For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
|
|
S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
|
|
S_00B84C_EXCP_EN(0);
|
|
}
|
|
|
|
static unsigned getRsrcReg(CallingConv::ID CallConv) {
|
|
switch (CallConv) {
|
|
default: LLVM_FALLTHROUGH;
|
|
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
|
|
case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
|
|
case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
|
|
case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
|
|
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
|
|
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
|
|
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
|
|
const SIProgramInfo &CurrentProgramInfo) {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned RsrcReg = getRsrcReg(MF.getFunction()->getCallingConv());
|
|
|
|
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
|
|
OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
|
|
|
|
OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4);
|
|
|
|
OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
|
|
OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4);
|
|
|
|
OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
|
|
OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
|
|
|
|
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
|
|
// 0" comment but I don't see a corresponding field in the register spec.
|
|
} else {
|
|
OutStreamer->EmitIntValue(RsrcReg, 4);
|
|
OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
|
|
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
|
|
unsigned Rsrc2Val = 0;
|
|
if (STM.isVGPRSpillingEnabled(*MF.getFunction())) {
|
|
OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
|
|
OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
|
|
if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
|
|
Rsrc2Val = S_00B84C_SCRATCH_EN(CurrentProgramInfo.ScratchBlocks > 0);
|
|
}
|
|
if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
|
|
OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
|
|
OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4);
|
|
OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
|
|
OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
|
|
Rsrc2Val |= S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
|
|
}
|
|
if (Rsrc2Val) {
|
|
OutStreamer->EmitIntValue(RsrcReg + 4 /*rsrc2*/, 4);
|
|
OutStreamer->EmitIntValue(Rsrc2Val, 4);
|
|
}
|
|
}
|
|
|
|
OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
|
|
OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
|
|
OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
|
|
OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
|
|
}
|
|
|
|
// This is the equivalent of EmitProgramInfoSI above, but for when the OS type
|
|
// is AMDPAL. It stores each compute/SPI register setting and other PAL
|
|
// metadata items into the PALMetadataMap, combining with any provided by the
|
|
// frontend as LLVM metadata. Once all functions are written, PALMetadataMap is
|
|
// then written as a single block in the .note section.
|
|
void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
|
|
const SIProgramInfo &CurrentProgramInfo) {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
// Given the calling convention, calculate the register number for rsrc1. In
|
|
// principle the register number could change in future hardware, but we know
|
|
// it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
|
|
// we can use the same fixed value that .AMDGPU.config has for Mesa. Note
|
|
// that we use a register number rather than a byte offset, so we need to
|
|
// divide by 4.
|
|
unsigned Rsrc1Reg = getRsrcReg(MF.getFunction()->getCallingConv()) / 4;
|
|
unsigned Rsrc2Reg = Rsrc1Reg + 1;
|
|
// Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
|
|
// with a constant offset to access any non-register shader-specific PAL
|
|
// metadata key.
|
|
unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE;
|
|
switch (MF.getFunction()->getCallingConv()) {
|
|
case CallingConv::AMDGPU_PS:
|
|
ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE;
|
|
break;
|
|
case CallingConv::AMDGPU_VS:
|
|
ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE;
|
|
break;
|
|
case CallingConv::AMDGPU_GS:
|
|
ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE;
|
|
break;
|
|
case CallingConv::AMDGPU_ES:
|
|
ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE;
|
|
break;
|
|
case CallingConv::AMDGPU_HS:
|
|
ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE;
|
|
break;
|
|
case CallingConv::AMDGPU_LS:
|
|
ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE;
|
|
break;
|
|
}
|
|
unsigned NumUsedVgprsKey = ScratchSizeKey +
|
|
PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE;
|
|
unsigned NumUsedSgprsKey = ScratchSizeKey +
|
|
PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE;
|
|
PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU;
|
|
PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU;
|
|
if (AMDGPU::isCompute(MF.getFunction()->getCallingConv())) {
|
|
PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1;
|
|
PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2;
|
|
// ScratchSize is in bytes, 16 aligned.
|
|
PALMetadataMap[ScratchSizeKey] |=
|
|
alignTo(CurrentProgramInfo.ScratchSize, 16);
|
|
} else {
|
|
PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
|
|
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks);
|
|
if (CurrentProgramInfo.ScratchBlocks > 0)
|
|
PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1);
|
|
// ScratchSize is in bytes, 16 aligned.
|
|
PALMetadataMap[ScratchSizeKey] |=
|
|
alignTo(CurrentProgramInfo.ScratchSize, 16);
|
|
}
|
|
if (MF.getFunction()->getCallingConv() == CallingConv::AMDGPU_PS) {
|
|
PALMetadataMap[Rsrc2Reg] |=
|
|
S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
|
|
PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable();
|
|
PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr();
|
|
}
|
|
}
|
|
|
|
// This is supposed to be log2(Size)
|
|
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMD_ELEMENT_4_BYTES;
|
|
case 8:
|
|
return AMD_ELEMENT_8_BYTES;
|
|
case 16:
|
|
return AMD_ELEMENT_16_BYTES;
|
|
default:
|
|
llvm_unreachable("invalid private_element_size");
|
|
}
|
|
}
|
|
|
|
void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
|
|
const SIProgramInfo &CurrentProgramInfo,
|
|
const MachineFunction &MF) const {
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
|
|
AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits());
|
|
|
|
Out.compute_pgm_resource_registers =
|
|
CurrentProgramInfo.ComputePGMRSrc1 |
|
|
(CurrentProgramInfo.ComputePGMRSrc2 << 32);
|
|
Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
|
|
|
|
if (CurrentProgramInfo.DynamicCallStack)
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
|
|
|
|
AMD_HSA_BITS_SET(Out.code_properties,
|
|
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
|
|
getElementByteSizeValue(STM.getMaxPrivateElementSize()));
|
|
|
|
if (MFI->hasPrivateSegmentBuffer()) {
|
|
Out.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
|
|
}
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (MFI->hasQueuePtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
|
|
|
|
if (MFI->hasKernargSegmentPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
|
|
|
|
if (MFI->hasDispatchID())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
|
|
|
|
if (MFI->hasFlatScratchInit())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
|
|
|
|
if (MFI->hasGridWorkgroupCountX()) {
|
|
Out.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
|
|
}
|
|
|
|
if (MFI->hasGridWorkgroupCountY()) {
|
|
Out.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
|
|
}
|
|
|
|
if (MFI->hasGridWorkgroupCountZ()) {
|
|
Out.code_properties |=
|
|
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
|
|
}
|
|
|
|
if (MFI->hasDispatchPtr())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
|
|
|
|
if (STM.debuggerSupported())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
|
|
|
|
if (STM.isXNACKEnabled())
|
|
Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
|
|
|
|
// FIXME: Should use getKernArgSize
|
|
Out.kernarg_segment_byte_size =
|
|
STM.getKernArgSegmentSize(MF, MFI->getABIArgOffset());
|
|
Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
|
|
Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
|
|
Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
|
|
Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
|
|
Out.reserved_vgpr_first = CurrentProgramInfo.ReservedVGPRFirst;
|
|
Out.reserved_vgpr_count = CurrentProgramInfo.ReservedVGPRCount;
|
|
|
|
// These alignment values are specified in powers of two, so alignment =
|
|
// 2^n. The minimum alignment is 2^4 = 16.
|
|
Out.kernarg_segment_alignment = std::max((size_t)4,
|
|
countTrailingZeros(MFI->getMaxKernArgAlign()));
|
|
|
|
if (STM.debuggerEmitPrologue()) {
|
|
Out.debug_wavefront_private_segment_offset_sgpr =
|
|
CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
|
|
Out.debug_private_segment_buffer_sgpr =
|
|
CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR;
|
|
}
|
|
}
|
|
|
|
AMDGPU::HSAMD::Kernel::CodeProps::Metadata AMDGPUAsmPrinter::getHSACodeProps(
|
|
const MachineFunction &MF,
|
|
const SIProgramInfo &ProgramInfo) const {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
|
|
HSAMD::Kernel::CodeProps::Metadata HSACodeProps;
|
|
|
|
HSACodeProps.mKernargSegmentSize =
|
|
STM.getKernArgSegmentSize(MF, MFI.getABIArgOffset());
|
|
HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize;
|
|
HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize;
|
|
HSACodeProps.mKernargSegmentAlign =
|
|
std::max(uint32_t(4), MFI.getMaxKernArgAlign());
|
|
HSACodeProps.mWavefrontSize = STM.getWavefrontSize();
|
|
HSACodeProps.mNumSGPRs = CurrentProgramInfo.NumSGPR;
|
|
HSACodeProps.mNumVGPRs = CurrentProgramInfo.NumVGPR;
|
|
HSACodeProps.mMaxFlatWorkGroupSize = MFI.getMaxFlatWorkGroupSize();
|
|
HSACodeProps.mIsDynamicCallStack = ProgramInfo.DynamicCallStack;
|
|
HSACodeProps.mIsXNACKEnabled = STM.isXNACKEnabled();
|
|
|
|
return HSACodeProps;
|
|
}
|
|
|
|
AMDGPU::HSAMD::Kernel::DebugProps::Metadata AMDGPUAsmPrinter::getHSADebugProps(
|
|
const MachineFunction &MF,
|
|
const SIProgramInfo &ProgramInfo) const {
|
|
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
|
|
HSAMD::Kernel::DebugProps::Metadata HSADebugProps;
|
|
|
|
if (!STM.debuggerSupported())
|
|
return HSADebugProps;
|
|
|
|
HSADebugProps.mDebuggerABIVersion.push_back(1);
|
|
HSADebugProps.mDebuggerABIVersion.push_back(0);
|
|
HSADebugProps.mReservedNumVGPRs = ProgramInfo.ReservedVGPRCount;
|
|
HSADebugProps.mReservedFirstVGPR = ProgramInfo.ReservedVGPRFirst;
|
|
|
|
if (STM.debuggerEmitPrologue()) {
|
|
HSADebugProps.mPrivateSegmentBufferSGPR =
|
|
ProgramInfo.DebuggerPrivateSegmentBufferSGPR;
|
|
HSADebugProps.mWavefrontPrivateSegmentOffsetSGPR =
|
|
ProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
|
|
}
|
|
|
|
return HSADebugProps;
|
|
}
|
|
|
|
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
|
|
unsigned AsmVariant,
|
|
const char *ExtraCode, raw_ostream &O) {
|
|
// First try the generic code, which knows about modifiers like 'c' and 'n'.
|
|
if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O))
|
|
return false;
|
|
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0)
|
|
return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
case 'r':
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// TODO: Should be able to support other operand types like globals.
|
|
const MachineOperand &MO = MI->getOperand(OpNo);
|
|
if (MO.isReg()) {
|
|
AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
|
|
*MF->getSubtarget().getRegisterInfo());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|