mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-28 15:33:16 +00:00
f4230250a1
Machine Sink uses loop depth information to select between successors BBs to sink machine instructions into, where BBs within smaller loop depths are preferable. This patch adds support for choosing between successors by using profile information from BlockFrequencyInfo instead, whenever the information is available. Tested it under SPEC2006 train (average of 30 runs for each program); ~1.5% execution speedup in average on x86-64 darwin. <rdar://problem/18021659> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@218472 91177308-0d34-0410-b5e6-96231b3b80d8
755 lines
27 KiB
C++
755 lines
27 KiB
C++
//===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass moves instructions into successor blocks when possible, so that
|
|
// they aren't executed on paths where their results aren't needed.
|
|
//
|
|
// This pass is not intended to be a replacement or a complete alternative
|
|
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
|
|
// constructs that are not exposed before lowering and instruction selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "machine-sink"
|
|
|
|
static cl::opt<bool>
|
|
SplitEdges("machine-sink-split",
|
|
cl::desc("Split critical edges during machine sinking"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
UseBlockFreqInfo("machine-sink-bfi",
|
|
cl::desc("Use block frequency info to find successors to sink"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
|
|
STATISTIC(NumSunk, "Number of machine instructions sunk");
|
|
STATISTIC(NumSplit, "Number of critical edges split");
|
|
STATISTIC(NumCoalesces, "Number of copies coalesced");
|
|
|
|
namespace {
|
|
class MachineSinking : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
MachineRegisterInfo *MRI; // Machine register information
|
|
MachineDominatorTree *DT; // Machine dominator tree
|
|
MachinePostDominatorTree *PDT; // Machine post dominator tree
|
|
MachineLoopInfo *LI;
|
|
const MachineBlockFrequencyInfo *MBFI;
|
|
AliasAnalysis *AA;
|
|
|
|
// Remember which edges have been considered for breaking.
|
|
SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
|
|
CEBCandidates;
|
|
// Remember which edges we are about to split.
|
|
// This is different from CEBCandidates since those edges
|
|
// will be split.
|
|
SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
|
|
|
|
public:
|
|
static char ID; // Pass identification
|
|
MachineSinking() : MachineFunctionPass(ID) {
|
|
initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addRequired<MachinePostDominatorTree>();
|
|
AU.addRequired<MachineLoopInfo>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addPreserved<MachinePostDominatorTree>();
|
|
AU.addPreserved<MachineLoopInfo>();
|
|
if (UseBlockFreqInfo)
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
}
|
|
|
|
void releaseMemory() override {
|
|
CEBCandidates.clear();
|
|
}
|
|
|
|
private:
|
|
bool ProcessBlock(MachineBasicBlock &MBB);
|
|
bool isWorthBreakingCriticalEdge(MachineInstr *MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To);
|
|
/// \brief Postpone the splitting of the given critical
|
|
/// edge (\p From, \p To).
|
|
///
|
|
/// We do not split the edges on the fly. Indeed, this invalidates
|
|
/// the dominance information and thus triggers a lot of updates
|
|
/// of that information underneath.
|
|
/// Instead, we postpone all the splits after each iteration of
|
|
/// the main loop. That way, the information is at least valid
|
|
/// for the lifetime of an iteration.
|
|
///
|
|
/// \return True if the edge is marked as toSplit, false otherwise.
|
|
/// False can be retruned if, for instance, this is not profitable.
|
|
bool PostponeSplitCriticalEdge(MachineInstr *MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To,
|
|
bool BreakPHIEdge);
|
|
bool SinkInstruction(MachineInstr *MI, bool &SawStore);
|
|
bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DefMBB,
|
|
bool &BreakPHIEdge, bool &LocalUse) const;
|
|
MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
bool &BreakPHIEdge);
|
|
bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccToSinkTo);
|
|
|
|
bool PerformTrivialForwardCoalescing(MachineInstr *MI,
|
|
MachineBasicBlock *MBB);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
char MachineSinking::ID = 0;
|
|
char &llvm::MachineSinkingID = MachineSinking::ID;
|
|
INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
|
|
"Machine code sinking", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
|
|
INITIALIZE_PASS_END(MachineSinking, "machine-sink",
|
|
"Machine code sinking", false, false)
|
|
|
|
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
if (!MI->isCopy())
|
|
return false;
|
|
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
|
|
!TargetRegisterInfo::isVirtualRegister(DstReg) ||
|
|
!MRI->hasOneNonDBGUse(SrcReg))
|
|
return false;
|
|
|
|
const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
|
|
const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
|
|
if (SRC != DRC)
|
|
return false;
|
|
|
|
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (DefMI->isCopyLike())
|
|
return false;
|
|
DEBUG(dbgs() << "Coalescing: " << *DefMI);
|
|
DEBUG(dbgs() << "*** to: " << *MI);
|
|
MRI->replaceRegWith(DstReg, SrcReg);
|
|
MI->eraseFromParent();
|
|
|
|
// Conservatively, clear any kill flags, since it's possible that they are no
|
|
// longer correct.
|
|
MRI->clearKillFlags(SrcReg);
|
|
|
|
++NumCoalesces;
|
|
return true;
|
|
}
|
|
|
|
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
|
|
/// occur in blocks dominated by the specified block. If any use is in the
|
|
/// definition block, then return false since it is never legal to move def
|
|
/// after uses.
|
|
bool
|
|
MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DefMBB,
|
|
bool &BreakPHIEdge,
|
|
bool &LocalUse) const {
|
|
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
|
|
"Only makes sense for vregs");
|
|
|
|
// Ignore debug uses because debug info doesn't affect the code.
|
|
if (MRI->use_nodbg_empty(Reg))
|
|
return true;
|
|
|
|
// BreakPHIEdge is true if all the uses are in the successor MBB being sunken
|
|
// into and they are all PHI nodes. In this case, machine-sink must break
|
|
// the critical edge first. e.g.
|
|
//
|
|
// BB#1: derived from LLVM BB %bb4.preheader
|
|
// Predecessors according to CFG: BB#0
|
|
// ...
|
|
// %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
|
|
// ...
|
|
// JE_4 <BB#37>, %EFLAGS<imp-use>
|
|
// Successors according to CFG: BB#37 BB#2
|
|
//
|
|
// BB#2: derived from LLVM BB %bb.nph
|
|
// Predecessors according to CFG: BB#0 BB#1
|
|
// %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
|
|
BreakPHIEdge = true;
|
|
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
|
|
MachineInstr *UseInst = MO.getParent();
|
|
unsigned OpNo = &MO - &UseInst->getOperand(0);
|
|
MachineBasicBlock *UseBlock = UseInst->getParent();
|
|
if (!(UseBlock == MBB && UseInst->isPHI() &&
|
|
UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
|
|
BreakPHIEdge = false;
|
|
break;
|
|
}
|
|
}
|
|
if (BreakPHIEdge)
|
|
return true;
|
|
|
|
for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
|
|
// Determine the block of the use.
|
|
MachineInstr *UseInst = MO.getParent();
|
|
unsigned OpNo = &MO - &UseInst->getOperand(0);
|
|
MachineBasicBlock *UseBlock = UseInst->getParent();
|
|
if (UseInst->isPHI()) {
|
|
// PHI nodes use the operand in the predecessor block, not the block with
|
|
// the PHI.
|
|
UseBlock = UseInst->getOperand(OpNo+1).getMBB();
|
|
} else if (UseBlock == DefMBB) {
|
|
LocalUse = true;
|
|
return false;
|
|
}
|
|
|
|
// Check that it dominates.
|
|
if (!DT->dominates(MBB, UseBlock))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipOptnoneFunction(*MF.getFunction()))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "******** Machine Sinking ********\n");
|
|
|
|
const TargetMachine &TM = MF.getTarget();
|
|
TII = TM.getSubtargetImpl()->getInstrInfo();
|
|
TRI = TM.getSubtargetImpl()->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
PDT = &getAnalysis<MachinePostDominatorTree>();
|
|
LI = &getAnalysis<MachineLoopInfo>();
|
|
MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
|
|
bool EverMadeChange = false;
|
|
|
|
while (1) {
|
|
bool MadeChange = false;
|
|
|
|
// Process all basic blocks.
|
|
CEBCandidates.clear();
|
|
ToSplit.clear();
|
|
for (MachineFunction::iterator I = MF.begin(), E = MF.end();
|
|
I != E; ++I)
|
|
MadeChange |= ProcessBlock(*I);
|
|
|
|
// If we have anything we marked as toSplit, split it now.
|
|
for (auto &Pair : ToSplit) {
|
|
auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
|
|
if (NewSucc != nullptr) {
|
|
DEBUG(dbgs() << " *** Splitting critical edge:"
|
|
" BB#" << Pair.first->getNumber()
|
|
<< " -- BB#" << NewSucc->getNumber()
|
|
<< " -- BB#" << Pair.second->getNumber() << '\n');
|
|
MadeChange = true;
|
|
++NumSplit;
|
|
} else
|
|
DEBUG(dbgs() << " *** Not legal to break critical edge\n");
|
|
}
|
|
// If this iteration over the code changed anything, keep iterating.
|
|
if (!MadeChange) break;
|
|
EverMadeChange = true;
|
|
}
|
|
return EverMadeChange;
|
|
}
|
|
|
|
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
|
|
// Can't sink anything out of a block that has less than two successors.
|
|
if (MBB.succ_size() <= 1 || MBB.empty()) return false;
|
|
|
|
// Don't bother sinking code out of unreachable blocks. In addition to being
|
|
// unprofitable, it can also lead to infinite looping, because in an
|
|
// unreachable loop there may be nowhere to stop.
|
|
if (!DT->isReachableFromEntry(&MBB)) return false;
|
|
|
|
bool MadeChange = false;
|
|
|
|
// Walk the basic block bottom-up. Remember if we saw a store.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
--I;
|
|
bool ProcessedBegin, SawStore = false;
|
|
do {
|
|
MachineInstr *MI = I; // The instruction to sink.
|
|
|
|
// Predecrement I (if it's not begin) so that it isn't invalidated by
|
|
// sinking.
|
|
ProcessedBegin = I == MBB.begin();
|
|
if (!ProcessedBegin)
|
|
--I;
|
|
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
|
|
if (Joined) {
|
|
MadeChange = true;
|
|
continue;
|
|
}
|
|
|
|
if (SinkInstruction(MI, SawStore))
|
|
++NumSunk, MadeChange = true;
|
|
|
|
// If we just processed the first instruction in the block, we're done.
|
|
} while (!ProcessedBegin);
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
|
|
MachineBasicBlock *From,
|
|
MachineBasicBlock *To) {
|
|
// FIXME: Need much better heuristics.
|
|
|
|
// If the pass has already considered breaking this edge (during this pass
|
|
// through the function), then let's go ahead and break it. This means
|
|
// sinking multiple "cheap" instructions into the same block.
|
|
if (!CEBCandidates.insert(std::make_pair(From, To)))
|
|
return true;
|
|
|
|
if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
|
|
return true;
|
|
|
|
// MI is cheap, we probably don't want to break the critical edge for it.
|
|
// However, if this would allow some definitions of its source operands
|
|
// to be sunk then it's probably worth it.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0)
|
|
continue;
|
|
|
|
// We don't move live definitions of physical registers,
|
|
// so sinking their uses won't enable any opportunities.
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
continue;
|
|
|
|
// If this instruction is the only user of a virtual register,
|
|
// check if breaking the edge will enable sinking
|
|
// both this instruction and the defining instruction.
|
|
if (MRI->hasOneNonDBGUse(Reg)) {
|
|
// If the definition resides in same MBB,
|
|
// claim it's likely we can sink these together.
|
|
// If definition resides elsewhere, we aren't
|
|
// blocking it from being sunk so don't break the edge.
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
if (DefMI->getParent() == MI->getParent())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
|
|
MachineBasicBlock *FromBB,
|
|
MachineBasicBlock *ToBB,
|
|
bool BreakPHIEdge) {
|
|
if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
|
|
return false;
|
|
|
|
// Avoid breaking back edge. From == To means backedge for single BB loop.
|
|
if (!SplitEdges || FromBB == ToBB)
|
|
return false;
|
|
|
|
// Check for backedges of more "complex" loops.
|
|
if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
|
|
LI->isLoopHeader(ToBB))
|
|
return false;
|
|
|
|
// It's not always legal to break critical edges and sink the computation
|
|
// to the edge.
|
|
//
|
|
// BB#1:
|
|
// v1024
|
|
// Beq BB#3
|
|
// <fallthrough>
|
|
// BB#2:
|
|
// ... no uses of v1024
|
|
// <fallthrough>
|
|
// BB#3:
|
|
// ...
|
|
// = v1024
|
|
//
|
|
// If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
|
|
//
|
|
// BB#1:
|
|
// ...
|
|
// Bne BB#2
|
|
// BB#4:
|
|
// v1024 =
|
|
// B BB#3
|
|
// BB#2:
|
|
// ... no uses of v1024
|
|
// <fallthrough>
|
|
// BB#3:
|
|
// ...
|
|
// = v1024
|
|
//
|
|
// This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
|
|
// flow. We need to ensure the new basic block where the computation is
|
|
// sunk to dominates all the uses.
|
|
// It's only legal to break critical edge and sink the computation to the
|
|
// new block if all the predecessors of "To", except for "From", are
|
|
// not dominated by "From". Given SSA property, this means these
|
|
// predecessors are dominated by "To".
|
|
//
|
|
// There is no need to do this check if all the uses are PHI nodes. PHI
|
|
// sources are only defined on the specific predecessor edges.
|
|
if (!BreakPHIEdge) {
|
|
for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
|
|
E = ToBB->pred_end(); PI != E; ++PI) {
|
|
if (*PI == FromBB)
|
|
continue;
|
|
if (!DT->dominates(ToBB, *PI))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ToSplit.insert(std::make_pair(FromBB, ToBB));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
|
|
return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
|
|
}
|
|
|
|
/// collectDebgValues - Scan instructions following MI and collect any
|
|
/// matching DBG_VALUEs.
|
|
static void collectDebugValues(MachineInstr *MI,
|
|
SmallVectorImpl<MachineInstr *> &DbgValues) {
|
|
DbgValues.clear();
|
|
if (!MI->getOperand(0).isReg())
|
|
return;
|
|
|
|
MachineBasicBlock::iterator DI = MI; ++DI;
|
|
for (MachineBasicBlock::iterator DE = MI->getParent()->end();
|
|
DI != DE; ++DI) {
|
|
if (!DI->isDebugValue())
|
|
return;
|
|
if (DI->getOperand(0).isReg() &&
|
|
DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
|
|
DbgValues.push_back(DI);
|
|
}
|
|
}
|
|
|
|
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
|
|
bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *SuccToSinkTo) {
|
|
assert (MI && "Invalid MachineInstr!");
|
|
assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
|
|
|
|
if (MBB == SuccToSinkTo)
|
|
return false;
|
|
|
|
// It is profitable if SuccToSinkTo does not post dominate current block.
|
|
if (!PDT->dominates(SuccToSinkTo, MBB))
|
|
return true;
|
|
|
|
// Check if only use in post dominated block is PHI instruction.
|
|
bool NonPHIUse = false;
|
|
for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
|
|
MachineBasicBlock *UseBlock = UseInst.getParent();
|
|
if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
|
|
NonPHIUse = true;
|
|
}
|
|
if (!NonPHIUse)
|
|
return true;
|
|
|
|
// If SuccToSinkTo post dominates then also it may be profitable if MI
|
|
// can further profitably sinked into another block in next round.
|
|
bool BreakPHIEdge = false;
|
|
// FIXME - If finding successor is compile time expensive then catch results.
|
|
if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
|
|
return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
|
|
|
|
// If SuccToSinkTo is final destination and it is a post dominator of current
|
|
// block then it is not profitable to sink MI into SuccToSinkTo block.
|
|
return false;
|
|
}
|
|
|
|
/// FindSuccToSinkTo - Find a successor to sink this instruction to.
|
|
MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
|
|
MachineBasicBlock *MBB,
|
|
bool &BreakPHIEdge) {
|
|
|
|
assert (MI && "Invalid MachineInstr!");
|
|
assert (MBB && "Invalid MachineBasicBlock!");
|
|
|
|
// Loop over all the operands of the specified instruction. If there is
|
|
// anything we can't handle, bail out.
|
|
|
|
// SuccToSinkTo - This is the successor to sink this instruction to, once we
|
|
// decide.
|
|
MachineBasicBlock *SuccToSinkTo = nullptr;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue; // Ignore non-register operands.
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
|
|
if (MO.isUse()) {
|
|
// If the physreg has no defs anywhere, it's just an ambient register
|
|
// and we can freely move its uses. Alternatively, if it's allocatable,
|
|
// it could get allocated to something with a def during allocation.
|
|
if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
|
|
return nullptr;
|
|
} else if (!MO.isDead()) {
|
|
// A def that isn't dead. We can't move it.
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Virtual register uses are always safe to sink.
|
|
if (MO.isUse()) continue;
|
|
|
|
// If it's not safe to move defs of the register class, then abort.
|
|
if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
|
|
return nullptr;
|
|
|
|
// FIXME: This picks a successor to sink into based on having one
|
|
// successor that dominates all the uses. However, there are cases where
|
|
// sinking can happen but where the sink point isn't a successor. For
|
|
// example:
|
|
//
|
|
// x = computation
|
|
// if () {} else {}
|
|
// use x
|
|
//
|
|
// the instruction could be sunk over the whole diamond for the
|
|
// if/then/else (or loop, etc), allowing it to be sunk into other blocks
|
|
// after that.
|
|
|
|
// Virtual register defs can only be sunk if all their uses are in blocks
|
|
// dominated by one of the successors.
|
|
if (SuccToSinkTo) {
|
|
// If a previous operand picked a block to sink to, then this operand
|
|
// must be sinkable to the same block.
|
|
bool LocalUse = false;
|
|
if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
|
|
BreakPHIEdge, LocalUse))
|
|
return nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, we should look at all the successors and decide which one
|
|
// we should sink to. If we have reliable block frequency information
|
|
// (frequency != 0) available, give successors with smaller frequencies
|
|
// higher priority, otherwise prioritize smaller loop depths.
|
|
SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
|
|
MBB->succ_end());
|
|
// Sort Successors according to their loop depth or block frequency info.
|
|
std::stable_sort(
|
|
Succs.begin(), Succs.end(),
|
|
[this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
|
|
uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
|
|
uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
|
|
bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
|
|
return HasBlockFreq ? LHSFreq < RHSFreq
|
|
: LI->getLoopDepth(L) < LI->getLoopDepth(R);
|
|
});
|
|
for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
|
|
E = Succs.end(); SI != E; ++SI) {
|
|
MachineBasicBlock *SuccBlock = *SI;
|
|
bool LocalUse = false;
|
|
if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
|
|
BreakPHIEdge, LocalUse)) {
|
|
SuccToSinkTo = SuccBlock;
|
|
break;
|
|
}
|
|
if (LocalUse)
|
|
// Def is used locally, it's never safe to move this def.
|
|
return nullptr;
|
|
}
|
|
|
|
// If we couldn't find a block to sink to, ignore this instruction.
|
|
if (!SuccToSinkTo)
|
|
return nullptr;
|
|
if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// It is not possible to sink an instruction into its own block. This can
|
|
// happen with loops.
|
|
if (MBB == SuccToSinkTo)
|
|
return nullptr;
|
|
|
|
// It's not safe to sink instructions to EH landing pad. Control flow into
|
|
// landing pad is implicitly defined.
|
|
if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
|
|
return nullptr;
|
|
|
|
return SuccToSinkTo;
|
|
}
|
|
|
|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
|
|
/// instruction out of its current block into a successor.
|
|
bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
|
|
// Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
|
|
// be close to the source to make it easier to coalesce.
|
|
if (AvoidsSinking(MI, MRI))
|
|
return false;
|
|
|
|
// Check if it's safe to move the instruction.
|
|
if (!MI->isSafeToMove(TII, AA, SawStore))
|
|
return false;
|
|
|
|
// FIXME: This should include support for sinking instructions within the
|
|
// block they are currently in to shorten the live ranges. We often get
|
|
// instructions sunk into the top of a large block, but it would be better to
|
|
// also sink them down before their first use in the block. This xform has to
|
|
// be careful not to *increase* register pressure though, e.g. sinking
|
|
// "x = y + z" down if it kills y and z would increase the live ranges of y
|
|
// and z and only shrink the live range of x.
|
|
|
|
bool BreakPHIEdge = false;
|
|
MachineBasicBlock *ParentBlock = MI->getParent();
|
|
MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
|
|
|
|
// If there are no outputs, it must have side-effects.
|
|
if (!SuccToSinkTo)
|
|
return false;
|
|
|
|
|
|
// If the instruction to move defines a dead physical register which is live
|
|
// when leaving the basic block, don't move it because it could turn into a
|
|
// "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
|
|
for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &MO = MI->getOperand(I);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
|
|
if (SuccToSinkTo->isLiveIn(Reg))
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
|
|
|
|
// If the block has multiple predecessors, this is a critical edge.
|
|
// Decide if we can sink along it or need to break the edge.
|
|
if (SuccToSinkTo->pred_size() > 1) {
|
|
// We cannot sink a load across a critical edge - there may be stores in
|
|
// other code paths.
|
|
bool TryBreak = false;
|
|
bool store = true;
|
|
if (!MI->isSafeToMove(TII, AA, store)) {
|
|
DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// We don't want to sink across a critical edge if we don't dominate the
|
|
// successor. We could be introducing calculations to new code paths.
|
|
if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
|
|
DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// Don't sink instructions into a loop.
|
|
if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
|
|
DEBUG(dbgs() << " *** NOTE: Loop header found\n");
|
|
TryBreak = true;
|
|
}
|
|
|
|
// Otherwise we are OK with sinking along a critical edge.
|
|
if (!TryBreak)
|
|
DEBUG(dbgs() << "Sinking along critical edge.\n");
|
|
else {
|
|
// Mark this edge as to be split.
|
|
// If the edge can actually be split, the next iteration of the main loop
|
|
// will sink MI in the newly created block.
|
|
bool Status =
|
|
PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
|
|
if (!Status)
|
|
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
|
|
"break critical edge\n");
|
|
// The instruction will not be sunk this time.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (BreakPHIEdge) {
|
|
// BreakPHIEdge is true if all the uses are in the successor MBB being
|
|
// sunken into and they are all PHI nodes. In this case, machine-sink must
|
|
// break the critical edge first.
|
|
bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
|
|
SuccToSinkTo, BreakPHIEdge);
|
|
if (!Status)
|
|
DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
|
|
"break critical edge\n");
|
|
// The instruction will not be sunk this time.
|
|
return false;
|
|
}
|
|
|
|
// Determine where to insert into. Skip phi nodes.
|
|
MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
|
|
while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
|
|
++InsertPos;
|
|
|
|
// collect matching debug values.
|
|
SmallVector<MachineInstr *, 2> DbgValuesToSink;
|
|
collectDebugValues(MI, DbgValuesToSink);
|
|
|
|
// Move the instruction.
|
|
SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
|
|
++MachineBasicBlock::iterator(MI));
|
|
|
|
// Move debug values.
|
|
for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
|
|
DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
|
|
MachineInstr *DbgMI = *DBI;
|
|
SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
|
|
++MachineBasicBlock::iterator(DbgMI));
|
|
}
|
|
|
|
// Conservatively, clear any kill flags, since it's possible that they are no
|
|
// longer correct.
|
|
MI->clearKillInfo();
|
|
|
|
return true;
|
|
}
|