mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-06 15:21:37 +00:00

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2207 91177308-0d34-0410-b5e6-96231b3b80d8
340 lines
10 KiB
C++
340 lines
10 KiB
C++
//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
|
|
//
|
|
// This pass is used to promote memory references to be register references. A
|
|
// simple example of the transformation performed by this pass is:
|
|
//
|
|
// FROM CODE TO CODE
|
|
// %X = alloca int, uint 1 ret int 42
|
|
// store int 42, int *%X
|
|
// %Y = load int* %X
|
|
// ret int %Y
|
|
//
|
|
// To do this transformation, a simple analysis is done to ensure it is safe.
|
|
// Currently this just loops over all alloca instructions, looking for
|
|
// instructions that are only used in simple load and stores.
|
|
//
|
|
// After this, the code is transformed by...something magical :)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/PromoteMemoryToRegister.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/ConstantVals.h"
|
|
|
|
using namespace std;
|
|
|
|
|
|
using cfg::DominanceFrontier;
|
|
|
|
namespace {
|
|
|
|
//instance of the promoter -- to keep all the local function data.
|
|
// gets re-created for each function processed
|
|
class PromoteInstance
|
|
{
|
|
protected:
|
|
vector<AllocaInst*> Allocas; // the alloca instruction..
|
|
map<Instruction *, int> AllocaLookup; //reverse mapping of above
|
|
|
|
vector<vector<BasicBlock *> > WriteSets; // index corresponds to Allocas
|
|
vector<vector<BasicBlock *> > PhiNodes; // index corresponds to Allocas
|
|
vector<vector<Value *> > CurrentValue; //the current value stack
|
|
|
|
//list of instructions to remove at end of pass :)
|
|
vector<Instruction *> killlist;
|
|
|
|
set<BasicBlock *> visited; //the basic blocks we've already visited
|
|
map<BasicBlock *, vector<PHINode *> > new_phinodes; //the phinodes we're adding
|
|
|
|
|
|
void traverse(BasicBlock *f, BasicBlock * predecessor);
|
|
bool PromoteFunction(Function *F, DominanceFrontier &DF);
|
|
bool queuePhiNode(BasicBlock *bb, int alloca_index);
|
|
void findSafeAllocas(Function *M);
|
|
bool didchange;
|
|
public:
|
|
// I do this so that I can force the deconstruction of the local variables
|
|
PromoteInstance(Function *F, DominanceFrontier &DF)
|
|
{
|
|
didchange=PromoteFunction(F, DF);
|
|
}
|
|
//This returns whether the pass changes anything
|
|
operator bool () { return didchange; }
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
// findSafeAllocas - Find allocas that are safe to promote
|
|
//
|
|
void PromoteInstance::findSafeAllocas(Function *F)
|
|
{
|
|
BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function
|
|
|
|
// Look at all instructions in the entry node
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(*I)) // Is it an alloca?
|
|
if (!AI->isArrayAllocation()) {
|
|
bool isSafe = true;
|
|
for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
|
|
UI != UE; ++UI) { // Loop over all of the uses of the alloca
|
|
|
|
// Only allow nonindexed memory access instructions...
|
|
if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
|
|
if (MAI->hasIndices()) { // indexed?
|
|
// Allow the access if there is only one index and the index is zero.
|
|
if (*MAI->idx_begin() != ConstantUInt::get(Type::UIntTy, 0) ||
|
|
MAI->idx_begin()+1 != MAI->idx_end()) {
|
|
isSafe = false; break;
|
|
}
|
|
}
|
|
} else {
|
|
isSafe = false; break; // Not a load or store?
|
|
}
|
|
}
|
|
if (isSafe) // If all checks pass, add alloca to safe list
|
|
{
|
|
AllocaLookup[AI]=Allocas.size();
|
|
Allocas.push_back(AI);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool PromoteInstance::PromoteFunction(Function *F, DominanceFrontier & DF) {
|
|
// Calculate the set of safe allocas
|
|
findSafeAllocas(F);
|
|
|
|
// Add each alloca to the killlist
|
|
// note: killlist is destroyed MOST recently added to least recently.
|
|
killlist.assign(Allocas.begin(), Allocas.end());
|
|
|
|
// Calculate the set of write-locations for each alloca.
|
|
// this is analogous to counting the number of 'redefinitions' of each variable.
|
|
for (unsigned i = 0; i<Allocas.size(); ++i)
|
|
{
|
|
AllocaInst * AI = Allocas[i];
|
|
WriteSets.push_back(std::vector<BasicBlock *>()); //add a new set
|
|
for (Value::use_iterator U = AI->use_begin();U!=AI->use_end();++U)
|
|
{
|
|
if (MemAccessInst *MAI = dyn_cast<StoreInst>(*U)) {
|
|
WriteSets[i].push_back(MAI->getParent()); // jot down the basic-block it came from
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the locations where PhiNodes need to be inserted
|
|
// look at the dominance frontier of EACH basic-block we have a write in
|
|
PhiNodes.resize(Allocas.size());
|
|
for (unsigned i = 0; i<Allocas.size(); ++i)
|
|
{
|
|
for (unsigned j = 0; j<WriteSets[i].size(); j++)
|
|
{
|
|
//look up the DF for this write, add it to PhiNodes
|
|
DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
|
|
DominanceFrontier::DomSetType s = (*it).second;
|
|
for (DominanceFrontier::DomSetType::iterator p = s.begin();p!=s.end(); ++p)
|
|
{
|
|
if (queuePhiNode((BasicBlock *)*p, i))
|
|
PhiNodes[i].push_back((BasicBlock *)*p);
|
|
}
|
|
}
|
|
// perform iterative step
|
|
for (unsigned k = 0; k<PhiNodes[i].size(); k++)
|
|
{
|
|
DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
|
|
DominanceFrontier::DomSetType s = it->second;
|
|
for (DominanceFrontier::DomSetType::iterator p = s.begin(); p!=s.end(); ++p)
|
|
{
|
|
if (queuePhiNode((BasicBlock *)*p,i))
|
|
PhiNodes[i].push_back((BasicBlock*)*p);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Walks all basic blocks in the function
|
|
// performing the SSA rename algorithm
|
|
// and inserting the phi nodes we marked as necessary
|
|
BasicBlock * f = F->front(); //get root basic-block
|
|
|
|
CurrentValue.push_back(vector<Value *>(Allocas.size()));
|
|
|
|
traverse(f, NULL); // there is no predecessor of the root node
|
|
|
|
|
|
// ** REMOVE EVERYTHING IN THE KILL-LIST **
|
|
// we need to kill 'uses' before root values
|
|
// so we should probably run through in reverse
|
|
for (vector<Instruction *>::reverse_iterator i = killlist.rbegin(); i!=killlist.rend(); ++i)
|
|
{
|
|
Instruction * r = *i;
|
|
BasicBlock * o = r->getParent();
|
|
//now go find..
|
|
|
|
BasicBlock::InstListType & l = o->getInstList();
|
|
o->getInstList().remove(r);
|
|
delete r;
|
|
}
|
|
|
|
return !Allocas.empty();
|
|
}
|
|
|
|
|
|
|
|
void PromoteInstance::traverse(BasicBlock *f, BasicBlock * predecessor)
|
|
{
|
|
vector<Value *> * tos = &CurrentValue.back(); //look at top-
|
|
|
|
//if this is a BB needing a phi node, lookup/create the phinode for
|
|
// each variable we need phinodes for.
|
|
map<BasicBlock *, vector<PHINode *> >::iterator nd = new_phinodes.find(f);
|
|
if (nd!=new_phinodes.end())
|
|
{
|
|
for (unsigned k = 0; k!=nd->second.size(); ++k)
|
|
if (nd->second[k])
|
|
{
|
|
//at this point we can assume that the array has phi nodes.. let's
|
|
// add the incoming data
|
|
if ((*tos)[k])
|
|
nd->second[k]->addIncoming((*tos)[k],predecessor);
|
|
//also note that the active variable IS designated by the phi node
|
|
(*tos)[k] = nd->second[k];
|
|
}
|
|
}
|
|
|
|
//don't revisit nodes
|
|
if (visited.find(f)!=visited.end())
|
|
return;
|
|
//mark as visited
|
|
visited.insert(f);
|
|
|
|
BasicBlock::iterator i = f->begin();
|
|
//keep track of the value of each variable we're watching.. how?
|
|
while(i!=f->end())
|
|
{
|
|
Instruction * inst = *i; //get the instruction
|
|
//is this a write/read?
|
|
if (LoadInst * LI = dyn_cast<LoadInst>(inst))
|
|
{
|
|
// This is a bit weird...
|
|
Value * ptr = LI->getPointerOperand(); //of type value
|
|
if (AllocaInst * srcinstr = dyn_cast<AllocaInst>(ptr))
|
|
{
|
|
map<Instruction *, int>::iterator ai = AllocaLookup.find(srcinstr);
|
|
if (ai!=AllocaLookup.end())
|
|
{
|
|
if (Value *r = (*tos)[ai->second])
|
|
{
|
|
//walk the use list of this load and replace
|
|
// all uses with r
|
|
LI->replaceAllUsesWith(r);
|
|
//now delete the instruction.. somehow..
|
|
killlist.push_back((Instruction *)LI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if (StoreInst * SI = dyn_cast<StoreInst>(inst))
|
|
{
|
|
// delete this instruction and mark the name as the
|
|
// current holder of the value
|
|
Value * ptr = SI->getPointerOperand(); //of type value
|
|
if (Instruction * srcinstr = dyn_cast<Instruction>(ptr))
|
|
{
|
|
map<Instruction *, int>::iterator ai = AllocaLookup.find(srcinstr);
|
|
if (ai!=AllocaLookup.end())
|
|
{
|
|
//what value were we writing?
|
|
Value * writeval = SI->getOperand(0);
|
|
//write down...
|
|
(*tos)[ai->second] = writeval;
|
|
//now delete it.. somehow?
|
|
killlist.push_back((Instruction *)SI);
|
|
}
|
|
}
|
|
|
|
}
|
|
else if (TerminatorInst * TI = dyn_cast<TerminatorInst>(inst))
|
|
{
|
|
// Recurse across our sucessors
|
|
for (unsigned i = 0; i!=TI->getNumSuccessors(); i++)
|
|
{
|
|
CurrentValue.push_back(CurrentValue.back());
|
|
traverse(TI->getSuccessor(i),f); //this node IS the predecessor
|
|
CurrentValue.pop_back();
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// queues a phi-node to be added to a basic-block for a specific Alloca
|
|
// returns true if there wasn't already a phi-node for that variable
|
|
|
|
|
|
bool PromoteInstance::queuePhiNode(BasicBlock *bb, int i /*the alloca*/)
|
|
{
|
|
map<BasicBlock *, vector<PHINode *> >::iterator nd;
|
|
//look up the basic-block in question
|
|
nd = new_phinodes.find(bb);
|
|
//if the basic-block has no phi-nodes added, or at least none
|
|
//for the i'th alloca. then add.
|
|
if (nd==new_phinodes.end() || nd->second[i]==NULL)
|
|
{
|
|
//we're not added any phi nodes to this basicblock yet
|
|
// create the phi-node array.
|
|
if (nd==new_phinodes.end())
|
|
{
|
|
new_phinodes[bb] = vector<PHINode *>(Allocas.size());
|
|
nd = new_phinodes.find(bb);
|
|
}
|
|
|
|
//find the type the alloca returns
|
|
const PointerType * pt = Allocas[i]->getType();
|
|
//create a phi-node using the DEREFERENCED type
|
|
PHINode * ph = new PHINode(pt->getElementType(), Allocas[i]->getName()+".mem2reg");
|
|
nd->second[i] = ph;
|
|
//add the phi-node to the basic-block
|
|
bb->getInstList().push_front(ph);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
namespace {
|
|
struct PromotePass : public MethodPass {
|
|
|
|
// runOnMethod - To run this pass, first we calculate the alloca
|
|
// instructions that are safe for promotion, then we promote each one.
|
|
//
|
|
virtual bool runOnMethod(Function *F) {
|
|
return (bool)PromoteInstance(F, getAnalysis<DominanceFrontier>());
|
|
}
|
|
|
|
|
|
// getAnalysisUsageInfo - We need dominance frontiers
|
|
//
|
|
virtual void getAnalysisUsageInfo(Pass::AnalysisSet &Requires,
|
|
Pass::AnalysisSet &Destroyed,
|
|
Pass::AnalysisSet &Provided) {
|
|
Requires.push_back(DominanceFrontier::ID);
|
|
}
|
|
};
|
|
}
|
|
|
|
|
|
// createPromoteMemoryToRegister - Provide an entry point to create this pass.
|
|
//
|
|
Pass *createPromoteMemoryToRegister() {
|
|
return new PromotePass();
|
|
}
|
|
|
|
|