llvm/test/CodeGen/SystemZ/and-04.ll
Richard Sandiford b3f912b510 [SystemZ] Postpone NI->RISBG conversion to convertToThreeAddress()
r186399 aggressively used the RISBG instruction for immediate ANDs,
both because it can handle some values that AND IMMEDIATE can't,
and because it allows the destination register to be different from
the source.  I realized later while implementing the distinct-ops
support that it would be better to leave the choice up to
convertToThreeAddress() instead.  The AND IMMEDIATE form is shorter
and is less likely to be cracked.

This is a problem for 32-bit ANDs because we assume that all 32-bit
operations will leave the high word untouched, whereas RISBG used in
this way will either clear the high word or copy it from the source
register.  The patch uses the z196 instruction RISBLG for this instead.

This means that z10 will be restricted to NILL, NILH and NILF for
32-bit ANDs, but I think that should be OK for now.  Although we're
using z10 as the base architecture, the optimization work is going
to be focused more on z196 and zEC12.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187492 91177308-0d34-0410-b5e6-96231b3b80d8
2013-07-31 11:36:35 +00:00

184 lines
4.0 KiB
LLVM

; Test 64-bit ANDs in which the second operand is constant.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
; Use RISBG for a single bit.
define i64 @f1(i64 %a) {
; CHECK-LABEL: f1:
; CHECK: risbg %r2, %r2, 63, 191, 0
; CHECK: br %r14
%and = and i64 %a, 1
ret i64 %and
}
; Likewise 0xfffe.
define i64 @f2(i64 %a) {
; CHECK-LABEL: f2:
; CHECK: risbg %r2, %r2, 48, 190, 0
; CHECK: br %r14
%and = and i64 %a, 65534
ret i64 %and
}
; ...but 0xffff is a 16-bit zero extension.
define i64 @f3(i64 %a, i64 %b) {
; CHECK-LABEL: f3:
; CHECK: llghr %r2, %r3
; CHECK: br %r14
%and = and i64 %b, 65535
ret i64 %and
}
; Check the next value up, which can again use RISBG.
define i64 @f4(i64 %a) {
; CHECK-LABEL: f4:
; CHECK: risbg %r2, %r2, 47, 175, 0
; CHECK: br %r14
%and = and i64 %a, 65536
ret i64 %and
}
; Check 0xfffffffe, which can also use RISBG.
define i64 @f5(i64 %a) {
; CHECK-LABEL: f5:
; CHECK: risbg %r2, %r2, 32, 190, 0
; CHECK: br %r14
%and = and i64 %a, 4294967294
ret i64 %and
}
; Check the next value up, which is a 32-bit zero extension.
define i64 @f6(i64 %a, i64 %b) {
; CHECK-LABEL: f6:
; CHECK: llgfr %r2, %r3
; CHECK: br %r14
%and = and i64 %b, 4294967295
ret i64 %and
}
; Check the lowest useful NIHF value (0x00000001_ffffffff).
define i64 @f7(i64 %a) {
; CHECK-LABEL: f7:
; CHECK: nihf %r2, 1
; CHECK: br %r14
%and = and i64 %a, 8589934591
ret i64 %and
}
; ...but RISBG can be used if a three-address form is useful.
define i64 @f8(i64 %a, i64 %b) {
; CHECK-LABEL: f8:
; CHECK: risbg %r2, %r3, 31, 191, 0
; CHECK: br %r14
%and = and i64 %b, 8589934591
ret i64 %and
}
; Check the lowest NIHH value outside the RISBG range (0x0002ffff_ffffffff).
define i64 @f9(i64 %a) {
; CHECK-LABEL: f9:
; CHECK: nihh %r2, 2
; CHECK: br %r14
%and = and i64 %a, 844424930131967
ret i64 %and
}
; Check the highest NIHH value outside the RISBG range (0xfffaffff_ffffffff).
define i64 @f10(i64 %a) {
; CHECK-LABEL: f10:
; CHECK: nihh %r2, 65530
; CHECK: br %r14
%and = and i64 %a, -1407374883553281
ret i64 %and
}
; Check the highest useful NIHF value (0xfffefffe_ffffffff).
define i64 @f11(i64 %a) {
; CHECK-LABEL: f11:
; CHECK: nihf %r2, 4294901758
; CHECK: br %r14
%and = and i64 %a, -281479271677953
ret i64 %and
}
; Check the lowest NIHL value outside the RISBG range (0xffff0002_ffffffff).
define i64 @f12(i64 %a) {
; CHECK-LABEL: f12:
; CHECK: nihl %r2, 2
; CHECK: br %r14
%and = and i64 %a, -281462091808769
ret i64 %and
}
; Check the highest NIHL value outside the RISBG range (0xfffffffa_ffffffff).
define i64 @f13(i64 %a) {
; CHECK-LABEL: f13:
; CHECK: nihl %r2, 65530
; CHECK: br %r14
%and = and i64 %a, -21474836481
ret i64 %and
}
; Check the lowest NILF value outside the RISBG range (0xffffffff_00000002).
define i64 @f14(i64 %a) {
; CHECK-LABEL: f14:
; CHECK: nilf %r2, 2
; CHECK: br %r14
%and = and i64 %a, -4294967294
ret i64 %and
}
; Check the lowest NILH value outside the RISBG range (0xffffffff_0002ffff).
define i64 @f15(i64 %a) {
; CHECK-LABEL: f15:
; CHECK: nilh %r2, 2
; CHECK: br %r14
%and = and i64 %a, -4294770689
ret i64 %and
}
; Check the next value up, which must use NILF.
define i64 @f16(i64 %a) {
; CHECK-LABEL: f16:
; CHECK: nilf %r2, 196608
; CHECK: br %r14
%and = and i64 %a, -4294770688
ret i64 %and
}
; Check the highest NILH value outside the RISBG range (0xffffffff_fffaffff).
define i64 @f17(i64 %a) {
; CHECK-LABEL: f17:
; CHECK: nilh %r2, 65530
; CHECK: br %r14
%and = and i64 %a, -327681
ret i64 %and
}
; Check the maximum useful NILF value (0xffffffff_fffefffe).
define i64 @f18(i64 %a) {
; CHECK-LABEL: f18:
; CHECK: nilf %r2, 4294901758
; CHECK: br %r14
%and = and i64 %a, -65538
ret i64 %and
}
; Check the lowest NILL value outside the RISBG range (0xffffffff_ffff0002).
define i64 @f19(i64 %a) {
; CHECK-LABEL: f19:
; CHECK: nill %r2, 2
; CHECK: br %r14
%and = and i64 %a, -65534
ret i64 %and
}
; Check the highest NILL value outside the RISBG range.
define i64 @f20(i64 %a) {
; CHECK-LABEL: f20:
; CHECK: nill %r2, 65530
; CHECK: br %r14
%and = and i64 %a, -6
ret i64 %and
}