llvm/lib/Target/Sparc/SparcISelLowering.cpp
Dan Gohman 4406604047 Split ISD::LABEL into ISD::DBG_LABEL and ISD::EH_LABEL, eliminating
the need for a flavor operand, and add a new SDNode subclass,
LabelSDNode, for use with them to eliminate the need for a label id
operand.

Change instruction selection to let these label nodes through
unmodified instead of creating copies of them. Teach the MachineInstr
emitter how to emit a MachineInstr directly from an ISD label node.

This avoids the need for allocating SDNodes for the label id and
flavor value, as well as SDNodes for each of the post-isel label,
label id, and label flavor.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@52943 91177308-0d34-0410-b5e6-96231b3b80d8
2008-07-01 00:05:16 +00:00

946 lines
36 KiB
C++

//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Sparc uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "SparcISelLowering.h"
#include "SparcTargetMachine.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "SparcGenCallingConv.inc"
static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
// CCState - Info about the registers and stack slot.
CCState CCInfo(CC, isVarArg, DAG.getTarget(), RVLocs);
// Analize return values of ISD::RET
CCInfo.AnalyzeReturn(Op.Val, RetCC_Sparc32);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDOperand Chain = Op.getOperand(0);
SDOperand Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
// ISD::RET => ret chain, (regnum1,val1), ...
// So i*2+1 index only the regnums.
Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
}
if (Flag.Val)
return DAG.getNode(SPISD::RET_FLAG, MVT::Other, Chain, Flag);
return DAG.getNode(SPISD::RET_FLAG, MVT::Other, Chain);
}
/// LowerArguments - V8 uses a very simple ABI, where all values are passed in
/// either one or two GPRs, including FP values. TODO: we should pass FP values
/// in FP registers for fastcc functions.
void
SparcTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
SmallVectorImpl<SDOperand> &ArgValues) {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
static const unsigned ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
const unsigned *CurArgReg = ArgRegs, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = 68;
SDOperand Root = DAG.getRoot();
std::vector<SDOperand> OutChains;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
MVT ObjectVT = getValueType(I->getType());
switch (ObjectVT.getSimpleVT()) {
default: assert(0 && "Unhandled argument type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
if (I->use_empty()) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT));
} else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
SDOperand Arg = DAG.getCopyFromReg(Root, VReg, MVT::i32);
if (ObjectVT != MVT::i32) {
unsigned AssertOp = ISD::AssertSext;
Arg = DAG.getNode(AssertOp, MVT::i32, Arg,
DAG.getValueType(ObjectVT));
Arg = DAG.getNode(ISD::TRUNCATE, ObjectVT, Arg);
}
ArgValues.push_back(Arg);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDOperand Load;
if (ObjectVT == MVT::i32) {
Load = DAG.getLoad(MVT::i32, Root, FIPtr, NULL, 0);
} else {
ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
// Sparc is big endian, so add an offset based on the ObjectVT.
unsigned Offset = 4-std::max(1U, ObjectVT.getSizeInBits()/8);
FIPtr = DAG.getNode(ISD::ADD, MVT::i32, FIPtr,
DAG.getConstant(Offset, MVT::i32));
Load = DAG.getExtLoad(LoadOp, MVT::i32, Root, FIPtr,
NULL, 0, ObjectVT);
Load = DAG.getNode(ISD::TRUNCATE, ObjectVT, Load);
}
ArgValues.push_back(Load);
}
ArgOffset += 4;
break;
case MVT::f32:
if (I->use_empty()) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT));
} else if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
// FP value is passed in an integer register.
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VReg);
SDOperand Arg = DAG.getCopyFromReg(Root, VReg, MVT::i32);
Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Arg);
ArgValues.push_back(Arg);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDOperand Load = DAG.getLoad(MVT::f32, Root, FIPtr, NULL, 0);
ArgValues.push_back(Load);
}
ArgOffset += 4;
break;
case MVT::i64:
case MVT::f64:
if (I->use_empty()) { // Argument is dead.
if (CurArgReg < ArgRegEnd) ++CurArgReg;
if (CurArgReg < ArgRegEnd) ++CurArgReg;
ArgValues.push_back(DAG.getNode(ISD::UNDEF, ObjectVT));
} else {
SDOperand HiVal;
if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VRegHi);
HiVal = DAG.getCopyFromReg(Root, VRegHi, MVT::i32);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
HiVal = DAG.getLoad(MVT::i32, Root, FIPtr, NULL, 0);
}
SDOperand LoVal;
if (CurArgReg < ArgRegEnd) { // Lives in an incoming GPR
unsigned VRegLo = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg++, VRegLo);
LoVal = DAG.getCopyFromReg(Root, VRegLo, MVT::i32);
} else {
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset+4);
SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
LoVal = DAG.getLoad(MVT::i32, Root, FIPtr, NULL, 0);
}
// Compose the two halves together into an i64 unit.
SDOperand WholeValue =
DAG.getNode(ISD::BUILD_PAIR, MVT::i64, LoVal, HiVal);
// If we want a double, do a bit convert.
if (ObjectVT == MVT::f64)
WholeValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, WholeValue);
ArgValues.push_back(WholeValue);
}
ArgOffset += 8;
break;
}
}
// Store remaining ArgRegs to the stack if this is a varargs function.
if (F.isVarArg()) {
// Remember the vararg offset for the va_start implementation.
VarArgsFrameOffset = ArgOffset;
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
SDOperand Arg = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset);
SDOperand FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
OutChains.push_back(DAG.getStore(DAG.getRoot(), Arg, FIPtr, NULL, 0));
ArgOffset += 4;
}
}
if (!OutChains.empty())
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
&OutChains[0], OutChains.size()));
}
static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
SDOperand Chain = Op.getOperand(0);
SDOperand Callee = Op.getOperand(4);
bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
#if 0
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallingConv, isVarArg, DAG.getTarget(), ArgLocs);
CCInfo.AnalyzeCallOperands(Op.Val, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// FIXME: We can't use this until f64 is known to take two GPRs.
#else
(void)CC_Sparc32;
// Count the size of the outgoing arguments.
unsigned ArgsSize = 0;
for (unsigned i = 5, e = Op.getNumOperands(); i != e; i += 2) {
switch (Op.getOperand(i).getValueType().getSimpleVT()) {
default: assert(0 && "Unknown value type!");
case MVT::i1:
case MVT::i8:
case MVT::i16:
case MVT::i32:
case MVT::f32:
ArgsSize += 4;
break;
case MVT::i64:
case MVT::f64:
ArgsSize += 8;
break;
}
}
if (ArgsSize > 4*6)
ArgsSize -= 4*6; // Space for first 6 arguments is prereserved.
else
ArgsSize = 0;
#endif
// Keep stack frames 8-byte aligned.
ArgsSize = (ArgsSize+7) & ~7;
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize));
SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
SmallVector<SDOperand, 8> MemOpChains;
#if 0
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments start after the 5 first operands of ISD::CALL
SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDOperand StackPtr = DAG.getRegister(SP::O6, MVT::i32);
// FIXME: VERIFY THAT 68 IS RIGHT.
SDOperand PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+68);
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
}
#else
static const unsigned ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
unsigned ArgOffset = 68;
for (unsigned i = 5, e = Op.getNumOperands(); i != e; i += 2) {
SDOperand Val = Op.getOperand(i);
MVT ObjectVT = Val.getValueType();
SDOperand ValToStore(0, 0);
unsigned ObjSize;
switch (ObjectVT.getSimpleVT()) {
default: assert(0 && "Unhandled argument type!");
case MVT::i32:
ObjSize = 4;
if (RegsToPass.size() >= 6) {
ValToStore = Val;
} else {
RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Val));
}
break;
case MVT::f32:
ObjSize = 4;
if (RegsToPass.size() >= 6) {
ValToStore = Val;
} else {
// Convert this to a FP value in an int reg.
Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Val);
RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Val));
}
break;
case MVT::f64:
ObjSize = 8;
// Otherwise, convert this to a FP value in int regs.
Val = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Val);
// FALL THROUGH
case MVT::i64:
ObjSize = 8;
if (RegsToPass.size() >= 6) {
ValToStore = Val; // Whole thing is passed in memory.
break;
}
// Split the value into top and bottom part. Top part goes in a reg.
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Val,
DAG.getConstant(1, MVT::i32));
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Val,
DAG.getConstant(0, MVT::i32));
RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Hi));
if (RegsToPass.size() >= 6) {
ValToStore = Lo;
ArgOffset += 4;
ObjSize = 4;
} else {
RegsToPass.push_back(std::make_pair(ArgRegs[RegsToPass.size()], Lo));
}
break;
}
if (ValToStore.Val) {
SDOperand StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDOperand PtrOff = DAG.getConstant(ArgOffset, MVT::i32);
PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, ValToStore, PtrOff, NULL, 0));
}
ArgOffset += ObjSize;
}
#endif
// Emit all stores, make sure the occur before any copies into physregs.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emited instructions must be
// stuck together.
SDOperand InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
unsigned Reg = RegsToPass[i].first;
// Remap I0->I7 -> O0->O7.
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg-SP::I0+SP::O0;
Chain = DAG.getCopyToReg(Chain, Reg, RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
std::vector<MVT> NodeTys;
NodeTys.push_back(MVT::Other); // Returns a chain
NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
SDOperand Ops[] = { Chain, Callee, InFlag };
Chain = DAG.getNode(SPISD::CALL, NodeTys, Ops, InFlag.Val ? 3 : 2);
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(ArgsSize, MVT::i32),
DAG.getConstant(0, MVT::i32), InFlag);
InFlag = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallingConv, isVarArg, DAG.getTarget(), RVLocs);
RVInfo.AnalyzeCallResult(Op.Val, RetCC_Sparc32);
SmallVector<SDOperand, 8> ResultVals;
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
unsigned Reg = RVLocs[i].getLocReg();
// Remap I0->I7 -> O0->O7.
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg-SP::I0+SP::O0;
Chain = DAG.getCopyFromReg(Chain, Reg,
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
ResultVals.push_back(Chain.getValue(0));
}
ResultVals.push_back(Chain);
// Merge everything together with a MERGE_VALUES node.
return DAG.getMergeValues(Op.Val->getVTList(), &ResultVals[0],
ResultVals.size());
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
case ISD::SETGT: return SPCC::ICC_G;
case ISD::SETLE: return SPCC::ICC_LE;
case ISD::SETGE: return SPCC::ICC_GE;
case ISD::SETULT: return SPCC::ICC_CS;
case ISD::SETULE: return SPCC::ICC_LEU;
case ISD::SETUGT: return SPCC::ICC_GU;
case ISD::SETUGE: return SPCC::ICC_CC;
}
}
/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
case ISD::SETUNE: return SPCC::FCC_NE;
case ISD::SETLT:
case ISD::SETOLT: return SPCC::FCC_L;
case ISD::SETGT:
case ISD::SETOGT: return SPCC::FCC_G;
case ISD::SETLE:
case ISD::SETOLE: return SPCC::FCC_LE;
case ISD::SETGE:
case ISD::SETOGE: return SPCC::FCC_GE;
case ISD::SETULT: return SPCC::FCC_UL;
case ISD::SETULE: return SPCC::FCC_ULE;
case ISD::SETUGT: return SPCC::FCC_UG;
case ISD::SETUGE: return SPCC::FCC_UGE;
case ISD::SETUO: return SPCC::FCC_U;
case ISD::SETO: return SPCC::FCC_O;
case ISD::SETONE: return SPCC::FCC_LG;
case ISD::SETUEQ: return SPCC::FCC_UE;
}
}
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
: TargetLowering(TM) {
// Set up the register classes.
addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
// Turn FP extload into load/fextend
setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand);
// Sparc doesn't have i1 sign extending load
setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Custom legalize GlobalAddress nodes into LO/HI parts.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool , MVT::i32, Custom);
// Sparc doesn't have sext_inreg, replace them with shl/sra
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
// Sparc has no REM or DIVREM operations.
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
// Custom expand fp<->sint
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
// Expand fp<->uint
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
// Sparc has no select or setcc: expand to SELECT_CC.
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
// Sparc doesn't have BRCOND either, it has BR_CC.
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// SPARC has no intrinsics for these particular operations.
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTLZ , MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// FIXME: Sparc provides these multiplies, but we don't have them yet.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
// We don't have line number support yet.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
// RET must be custom lowered, to meet ABI requirements
setOperationAction(ISD::RET , MVT::Other, Custom);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
setOperationAction(ISD::VAARG , MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
// No debug info support yet.
setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
setOperationAction(ISD::DECLARE, MVT::Other, Expand);
setStackPointerRegisterToSaveRestore(SP::O6);
if (TM.getSubtarget<SparcSubtarget>().isV9())
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
computeRegisterProperties();
}
const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case SPISD::CMPICC: return "SPISD::CMPICC";
case SPISD::CMPFCC: return "SPISD::CMPFCC";
case SPISD::BRICC: return "SPISD::BRICC";
case SPISD::BRFCC: return "SPISD::BRFCC";
case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
case SPISD::Hi: return "SPISD::Hi";
case SPISD::Lo: return "SPISD::Lo";
case SPISD::FTOI: return "SPISD::FTOI";
case SPISD::ITOF: return "SPISD::ITOF";
case SPISD::CALL: return "SPISD::CALL";
case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
}
}
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner.
void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
const APInt &Mask,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
APInt KnownZero2, KnownOne2;
KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
switch (Op.getOpcode()) {
default: break;
case SPISD::SELECT_ICC:
case SPISD::SELECT_FCC:
DAG.ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne,
Depth+1);
DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
}
}
// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
static void LookThroughSetCC(SDOperand &LHS, SDOperand &RHS,
ISD::CondCode CC, unsigned &SPCC) {
if (isa<ConstantSDNode>(RHS) && cast<ConstantSDNode>(RHS)->getValue() == 0 &&
CC == ISD::SETNE &&
((LHS.getOpcode() == SPISD::SELECT_ICC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
(LHS.getOpcode() == SPISD::SELECT_FCC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
isa<ConstantSDNode>(LHS.getOperand(0)) &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(0))->getValue() == 1 &&
cast<ConstantSDNode>(LHS.getOperand(1))->getValue() == 0) {
SDOperand CMPCC = LHS.getOperand(3);
SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getValue();
LHS = CMPCC.getOperand(0);
RHS = CMPCC.getOperand(1);
}
}
static SDOperand LowerGLOBALADDRESS(SDOperand Op, SelectionDAG &DAG) {
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32);
SDOperand Hi = DAG.getNode(SPISD::Hi, MVT::i32, GA);
SDOperand Lo = DAG.getNode(SPISD::Lo, MVT::i32, GA);
return DAG.getNode(ISD::ADD, MVT::i32, Lo, Hi);
}
static SDOperand LowerCONSTANTPOOL(SDOperand Op, SelectionDAG &DAG) {
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
Constant *C = N->getConstVal();
SDOperand CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
SDOperand Hi = DAG.getNode(SPISD::Hi, MVT::i32, CP);
SDOperand Lo = DAG.getNode(SPISD::Lo, MVT::i32, CP);
return DAG.getNode(ISD::ADD, MVT::i32, Lo, Hi);
}
static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
// Convert the fp value to integer in an FP register.
assert(Op.getValueType() == MVT::i32);
Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
}
static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
assert(Op.getOperand(0).getValueType() == MVT::i32);
SDOperand Tmp = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0));
// Convert the int value to FP in an FP register.
return DAG.getNode(SPISD::ITOF, Op.getValueType(), Tmp);
}
static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDOperand LHS = Op.getOperand(2);
SDOperand RHS = Op.getOperand(3);
SDOperand Dest = Op.getOperand(4);
unsigned Opc, SPCC = ~0U;
// If this is a br_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
// Get the condition flag.
SDOperand CompareFlag;
if (LHS.getValueType() == MVT::i32) {
std::vector<MVT> VTs;
VTs.push_back(MVT::i32);
VTs.push_back(MVT::Flag);
SDOperand Ops[2] = { LHS, RHS };
CompareFlag = DAG.getNode(SPISD::CMPICC, VTs, Ops, 2).getValue(1);
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
Opc = SPISD::BRICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, MVT::Flag, LHS, RHS);
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
Opc = SPISD::BRFCC;
}
return DAG.getNode(Opc, MVT::Other, Chain, Dest,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
SDOperand LHS = Op.getOperand(0);
SDOperand RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDOperand TrueVal = Op.getOperand(2);
SDOperand FalseVal = Op.getOperand(3);
unsigned Opc, SPCC = ~0U;
// If this is a select_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
SDOperand CompareFlag;
if (LHS.getValueType() == MVT::i32) {
std::vector<MVT> VTs;
VTs.push_back(LHS.getValueType()); // subcc returns a value
VTs.push_back(MVT::Flag);
SDOperand Ops[2] = { LHS, RHS };
CompareFlag = DAG.getNode(SPISD::CMPICC, VTs, Ops, 2).getValue(1);
Opc = SPISD::SELECT_ICC;
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, MVT::Flag, LHS, RHS);
Opc = SPISD::SELECT_FCC;
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
}
return DAG.getNode(Opc, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
SparcTargetLowering &TLI) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDOperand Offset = DAG.getNode(ISD::ADD, MVT::i32,
DAG.getRegister(SP::I6, MVT::i32),
DAG.getConstant(TLI.getVarArgsFrameOffset(),
MVT::i32));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), Offset, Op.getOperand(1), SV, 0);
}
static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG) {
SDNode *Node = Op.Val;
MVT VT = Node->getValueType(0);
SDOperand InChain = Node->getOperand(0);
SDOperand VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDOperand VAList = DAG.getLoad(MVT::i32, InChain, VAListPtr, SV, 0);
// Increment the pointer, VAList, to the next vaarg
SDOperand NextPtr = DAG.getNode(ISD::ADD, MVT::i32, VAList,
DAG.getConstant(VT.getSizeInBits()/8,
MVT::i32));
// Store the incremented VAList to the legalized pointer
InChain = DAG.getStore(VAList.getValue(1), NextPtr,
VAListPtr, SV, 0);
// Load the actual argument out of the pointer VAList, unless this is an
// f64 load.
if (VT != MVT::f64)
return DAG.getLoad(VT, InChain, VAList, NULL, 0);
// Otherwise, load it as i64, then do a bitconvert.
SDOperand V = DAG.getLoad(MVT::i64, InChain, VAList, NULL, 0);
// Bit-Convert the value to f64.
SDOperand Ops[2] = {
DAG.getNode(ISD::BIT_CONVERT, MVT::f64, V),
V.getValue(1)
};
return DAG.getMergeValues(DAG.getVTList(MVT::f64, MVT::Other), Ops, 2);
}
static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG) {
SDOperand Chain = Op.getOperand(0); // Legalize the chain.
SDOperand Size = Op.getOperand(1); // Legalize the size.
unsigned SPReg = SP::O6;
SDOperand SP = DAG.getCopyFromReg(Chain, SPReg, MVT::i32);
SDOperand NewSP = DAG.getNode(ISD::SUB, MVT::i32, SP, Size); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), SPReg, NewSP); // Output chain
// The resultant pointer is actually 16 words from the bottom of the stack,
// to provide a register spill area.
SDOperand NewVal = DAG.getNode(ISD::ADD, MVT::i32, NewSP,
DAG.getConstant(96, MVT::i32));
SDOperand Ops[2] = { NewVal, Chain };
return DAG.getMergeValues(DAG.getVTList(MVT::i32, MVT::Other), Ops, 2);
}
SDOperand SparcTargetLowering::
LowerOperation(SDOperand Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
default: assert(0 && "Should not custom lower this!");
// Frame & Return address. Currently unimplemented
case ISD::RETURNADDR: return SDOperand();
case ISD::FRAMEADDR: return SDOperand();
case ISD::GlobalTLSAddress:
assert(0 && "TLS not implemented for Sparc.");
case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
case ISD::ConstantPool: return LowerCONSTANTPOOL(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::CALL: return LowerCALL(Op, DAG);
case ISD::RET: return LowerRET(Op, DAG);
}
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
unsigned BROpcode;
unsigned CC;
// Figure out the conditional branch opcode to use for this select_cc.
switch (MI->getOpcode()) {
default: assert(0 && "Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
BROpcode = SP::BCOND;
break;
case SP::SELECT_CC_Int_FCC:
case SP::SELECT_CC_FP_FCC:
case SP::SELECT_CC_DFP_FCC:
BROpcode = SP::FBCOND;
break;
}
CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
ilist<MachineBasicBlock>::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// [f]bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
BuildMI(BB, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
MachineFunction *F = BB->getParent();
F->getBasicBlockList().insert(It, copy0MBB);
F->getBasicBlockList().insert(It, sinkMBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
sinkMBB->transferSuccessors(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(BB, TII.get(SP::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
delete MI; // The pseudo instruction is gone now.
return BB;
}