mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-09 05:31:37 +00:00
477ef6d8cb
Only enable this with -use-sched-latencies, I'll enable it by default with a clean nightly tester run tonight. PPC is the only target that provides latency info currently. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26634 91177308-0d34-0410-b5e6-96231b3b80d8
815 lines
26 KiB
C++
815 lines
26 KiB
C++
//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Evan Cheng and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements bottom-up and top-down list schedulers, using standard
|
|
// algorithms. The basic approach uses a priority queue of available nodes to
|
|
// schedule. One at a time, nodes are taken from the priority queue (thus in
|
|
// priority order), checked for legality to schedule, and emitted if legal.
|
|
//
|
|
// Nodes may not be legal to schedule either due to structural hazards (e.g.
|
|
// pipeline or resource constraints) or because an input to the instruction has
|
|
// not completed execution.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sched"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <climits>
|
|
#include <iostream>
|
|
#include <queue>
|
|
#include <set>
|
|
#include <vector>
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// FIXME: UseLatencies is temporary.
|
|
cl::opt<bool> UseLatencies("use-sched-latencies");
|
|
Statistic<> NumNoops ("scheduler", "Number of noops inserted");
|
|
Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
|
|
|
|
/// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
|
|
/// a group of nodes flagged together.
|
|
struct SUnit {
|
|
SDNode *Node; // Representative node.
|
|
std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node.
|
|
std::set<SUnit*> Preds; // All real predecessors.
|
|
std::set<SUnit*> ChainPreds; // All chain predecessors.
|
|
std::set<SUnit*> Succs; // All real successors.
|
|
std::set<SUnit*> ChainSuccs; // All chain successors.
|
|
short NumPredsLeft; // # of preds not scheduled.
|
|
short NumSuccsLeft; // # of succs not scheduled.
|
|
short NumChainPredsLeft; // # of chain preds not scheduled.
|
|
short NumChainSuccsLeft; // # of chain succs not scheduled.
|
|
bool isTwoAddress : 1; // Is a two-address instruction.
|
|
bool isDefNUseOperand : 1; // Is a def&use operand.
|
|
unsigned short Latency; // Node latency.
|
|
unsigned CycleBound; // Upper/lower cycle to be scheduled at.
|
|
unsigned NodeNum; // Entry # of node in the node vector.
|
|
|
|
SUnit(SDNode *node, unsigned nodenum)
|
|
: Node(node), NumPredsLeft(0), NumSuccsLeft(0),
|
|
NumChainPredsLeft(0), NumChainSuccsLeft(0),
|
|
isTwoAddress(false), isDefNUseOperand(false),
|
|
Latency(0), CycleBound(0), NodeNum(nodenum) {}
|
|
|
|
void dump(const SelectionDAG *G) const;
|
|
void dumpAll(const SelectionDAG *G) const;
|
|
};
|
|
}
|
|
|
|
void SUnit::dump(const SelectionDAG *G) const {
|
|
std::cerr << "SU: ";
|
|
Node->dump(G);
|
|
std::cerr << "\n";
|
|
if (FlaggedNodes.size() != 0) {
|
|
for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
|
|
std::cerr << " ";
|
|
FlaggedNodes[i]->dump(G);
|
|
std::cerr << "\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void SUnit::dumpAll(const SelectionDAG *G) const {
|
|
dump(G);
|
|
|
|
std::cerr << " # preds left : " << NumPredsLeft << "\n";
|
|
std::cerr << " # succs left : " << NumSuccsLeft << "\n";
|
|
std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
|
|
std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
|
|
std::cerr << " Latency : " << Latency << "\n";
|
|
|
|
if (Preds.size() != 0) {
|
|
std::cerr << " Predecessors:\n";
|
|
for (std::set<SUnit*>::const_iterator I = Preds.begin(),
|
|
E = Preds.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (ChainPreds.size() != 0) {
|
|
std::cerr << " Chained Preds:\n";
|
|
for (std::set<SUnit*>::const_iterator I = ChainPreds.begin(),
|
|
E = ChainPreds.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (Succs.size() != 0) {
|
|
std::cerr << " Successors:\n";
|
|
for (std::set<SUnit*>::const_iterator I = Succs.begin(),
|
|
E = Succs.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
if (ChainSuccs.size() != 0) {
|
|
std::cerr << " Chained succs:\n";
|
|
for (std::set<SUnit*>::const_iterator I = ChainSuccs.begin(),
|
|
E = ChainSuccs.end(); I != E; ++I) {
|
|
std::cerr << " ";
|
|
(*I)->dump(G);
|
|
}
|
|
}
|
|
std::cerr << "\n";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SchedulingPriorityQueue - This interface is used to plug different
|
|
/// priorities computation algorithms into the list scheduler. It implements the
|
|
/// interface of a standard priority queue, where nodes are inserted in
|
|
/// arbitrary order and returned in priority order. The computation of the
|
|
/// priority and the representation of the queue are totally up to the
|
|
/// implementation to decide.
|
|
///
|
|
namespace {
|
|
class SchedulingPriorityQueue {
|
|
public:
|
|
virtual ~SchedulingPriorityQueue() {}
|
|
|
|
virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
|
|
virtual void releaseState() = 0;
|
|
|
|
virtual bool empty() const = 0;
|
|
virtual void push(SUnit *U) = 0;
|
|
virtual SUnit *pop() = 0;
|
|
};
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGList - The actual list scheduler implementation. This supports
|
|
/// both top-down and bottom-up scheduling.
|
|
///
|
|
class ScheduleDAGList : public ScheduleDAG {
|
|
private:
|
|
// SDNode to SUnit mapping (many to one).
|
|
std::map<SDNode*, SUnit*> SUnitMap;
|
|
// The schedule. Null SUnit*'s represent noop instructions.
|
|
std::vector<SUnit*> Sequence;
|
|
// Current scheduling cycle.
|
|
unsigned CurrCycle;
|
|
|
|
// The scheduling units.
|
|
std::vector<SUnit> SUnits;
|
|
|
|
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
|
|
/// it is top-down.
|
|
bool isBottomUp;
|
|
|
|
/// PriorityQueue - The priority queue to use.
|
|
SchedulingPriorityQueue *PriorityQueue;
|
|
|
|
/// HazardRec - The hazard recognizer to use.
|
|
HazardRecognizer *HazardRec;
|
|
|
|
public:
|
|
ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm, bool isbottomup,
|
|
SchedulingPriorityQueue *priorityqueue,
|
|
HazardRecognizer *HR)
|
|
: ScheduleDAG(listSchedulingBURR, dag, bb, tm),
|
|
CurrCycle(0), isBottomUp(isbottomup),
|
|
PriorityQueue(priorityqueue), HazardRec(HR) {
|
|
}
|
|
|
|
~ScheduleDAGList() {
|
|
delete HazardRec;
|
|
delete PriorityQueue;
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
void dumpSchedule() const;
|
|
|
|
private:
|
|
SUnit *NewSUnit(SDNode *N);
|
|
void ReleasePred(SUnit *PredSU, bool isChain = false);
|
|
void ReleaseSucc(SUnit *SuccSU, bool isChain = false);
|
|
void ScheduleNodeBottomUp(SUnit *SU);
|
|
void ScheduleNodeTopDown(SUnit *SU);
|
|
void ListScheduleTopDown();
|
|
void ListScheduleBottomUp();
|
|
void BuildSchedUnits();
|
|
void EmitSchedule();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
HazardRecognizer::~HazardRecognizer() {}
|
|
|
|
|
|
/// NewSUnit - Creates a new SUnit and return a ptr to it.
|
|
SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
|
|
SUnits.push_back(SUnit(N, SUnits.size()));
|
|
return &SUnits.back();
|
|
}
|
|
|
|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
|
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
PredSU->CycleBound = std::max(PredSU->CycleBound,CurrCycle + PredSU->Latency);
|
|
|
|
if (!isChain)
|
|
PredSU->NumSuccsLeft--;
|
|
else
|
|
PredSU->NumChainSuccsLeft--;
|
|
|
|
#ifndef NDEBUG
|
|
if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
PredSU->dump(&DAG);
|
|
std::cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
|
|
// EntryToken has to go last! Special case it here.
|
|
if (PredSU->Node->getOpcode() != ISD::EntryToken)
|
|
PriorityQueue->push(PredSU);
|
|
}
|
|
}
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the Available queue is the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound,CurrCycle + SuccSU->Latency);
|
|
|
|
if (!isChain)
|
|
SuccSU->NumPredsLeft--;
|
|
else
|
|
SuccSU->NumChainPredsLeft--;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) {
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SuccSU->dump(&DAG);
|
|
std::cerr << " has been released too many times!\n";
|
|
abort();
|
|
}
|
|
#endif
|
|
|
|
if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0)
|
|
PriorityQueue->push(SuccSU);
|
|
}
|
|
|
|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
|
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU) {
|
|
DEBUG(std::cerr << "*** Scheduling: ");
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
// Bottom up: release predecessors
|
|
for (std::set<SUnit*>::iterator I1 = SU->Preds.begin(),
|
|
E1 = SU->Preds.end(); I1 != E1; ++I1) {
|
|
ReleasePred(*I1);
|
|
SU->NumPredsLeft--;
|
|
}
|
|
for (std::set<SUnit*>::iterator I2 = SU->ChainPreds.begin(),
|
|
E2 = SU->ChainPreds.end(); I2 != E2; ++I2)
|
|
ReleasePred(*I2, true);
|
|
|
|
CurrCycle++;
|
|
}
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU) {
|
|
DEBUG(std::cerr << "*** Scheduling: ");
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
Sequence.push_back(SU);
|
|
|
|
// Bottom up: release successors.
|
|
for (std::set<SUnit*>::iterator I1 = SU->Succs.begin(),
|
|
E1 = SU->Succs.end(); I1 != E1; ++I1) {
|
|
ReleaseSucc(*I1);
|
|
SU->NumSuccsLeft--;
|
|
}
|
|
for (std::set<SUnit*>::iterator I2 = SU->ChainSuccs.begin(),
|
|
E2 = SU->ChainSuccs.end(); I2 != E2; ++I2)
|
|
ReleaseSucc(*I2, true);
|
|
|
|
CurrCycle++;
|
|
}
|
|
|
|
/// isReady - True if node's lower cycle bound is less or equal to the current
|
|
/// scheduling cycle. Always true if all nodes have uniform latency 1.
|
|
static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
|
|
return SU->CycleBound <= CurrCycle;
|
|
}
|
|
|
|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleBottomUp() {
|
|
// Add root to Available queue.
|
|
PriorityQueue->push(SUnitMap[DAG.getRoot().Val]);
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
while (!PriorityQueue->empty()) {
|
|
SUnit *CurrNode = PriorityQueue->pop();
|
|
|
|
while (!isReady(CurrNode, CurrCycle)) {
|
|
NotReady.push_back(CurrNode);
|
|
CurrNode = PriorityQueue->pop();
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
while (!NotReady.empty()) {
|
|
PriorityQueue->push(NotReady.back());
|
|
NotReady.pop_back();
|
|
}
|
|
|
|
ScheduleNodeBottomUp(CurrNode);
|
|
}
|
|
|
|
// Add entry node last
|
|
if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
Sequence.push_back(Entry);
|
|
}
|
|
|
|
// Reverse the order if it is bottom up.
|
|
std::reverse(Sequence.begin(), Sequence.end());
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
std::cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
assert(!AnyNotSched);
|
|
#endif
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void ScheduleDAGList::ListScheduleTopDown() {
|
|
// Emit the entry node first.
|
|
SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
|
|
ScheduleNodeTopDown(Entry);
|
|
HazardRec->EmitInstruction(Entry->Node);
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if ((SUnits[i].Preds.size() + SUnits[i].ChainPreds.size()) == 0 &&
|
|
&SUnits[i] != Entry)
|
|
PriorityQueue->push(&SUnits[i]);
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
while (!PriorityQueue->empty()) {
|
|
SUnit *FoundNode = 0;
|
|
|
|
bool HasNoopHazards = false;
|
|
do {
|
|
SUnit *CurNode = PriorityQueue->pop();
|
|
|
|
// Get the node represented by this SUnit.
|
|
SDNode *N = CurNode->Node;
|
|
// If this is a pseudo op, like copyfromreg, look to see if there is a
|
|
// real target node flagged to it. If so, use the target node.
|
|
for (unsigned i = 0, e = CurNode->FlaggedNodes.size();
|
|
N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
|
|
N = CurNode->FlaggedNodes[i];
|
|
|
|
HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
|
|
if (HT == HazardRecognizer::NoHazard) {
|
|
FoundNode = CurNode;
|
|
break;
|
|
}
|
|
|
|
// Remember if this is a noop hazard.
|
|
HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
|
|
|
|
NotReady.push_back(CurNode);
|
|
} while (!PriorityQueue->empty());
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
while (!NotReady.empty()) {
|
|
PriorityQueue->push(NotReady.back());
|
|
NotReady.pop_back();
|
|
}
|
|
|
|
// If we found a node to schedule, do it now.
|
|
if (FoundNode) {
|
|
ScheduleNodeTopDown(FoundNode);
|
|
HazardRec->EmitInstruction(FoundNode->Node);
|
|
} else if (!HasNoopHazards) {
|
|
// Otherwise, we have a pipeline stall, but no other problem, just advance
|
|
// the current cycle and try again.
|
|
DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
|
|
HazardRec->AdvanceCycle();
|
|
++NumStalls;
|
|
} else {
|
|
// Otherwise, we have no instructions to issue and we have instructions
|
|
// that will fault if we don't do this right. This is the case for
|
|
// processors without pipeline interlocks and other cases.
|
|
DEBUG(std::cerr << "*** Emitting noop\n");
|
|
HazardRec->EmitNoop();
|
|
Sequence.push_back(0); // NULL SUnit* -> noop
|
|
++NumNoops;
|
|
}
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
std::cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
std::cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
assert(!AnyNotSched);
|
|
#endif
|
|
}
|
|
|
|
|
|
void ScheduleDAGList::BuildSchedUnits() {
|
|
// Reserve entries in the vector for each of the SUnits we are creating. This
|
|
// ensure that reallocation of the vector won't happen, so SUnit*'s won't get
|
|
// invalidated.
|
|
SUnits.reserve(NodeCount);
|
|
|
|
const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
|
|
|
|
// Pass 1: create the SUnit's.
|
|
for (unsigned i = 0, NC = NodeCount; i < NC; i++) {
|
|
NodeInfo *NI = &Info[i];
|
|
SDNode *N = NI->Node;
|
|
if (isPassiveNode(N))
|
|
continue;
|
|
|
|
SUnit *SU;
|
|
if (NI->isInGroup()) {
|
|
if (NI != NI->Group->getBottom()) // Bottom up, so only look at bottom
|
|
continue; // node of the NodeGroup
|
|
|
|
SU = NewSUnit(N);
|
|
// Find the flagged nodes.
|
|
SDOperand FlagOp = N->getOperand(N->getNumOperands() - 1);
|
|
SDNode *Flag = FlagOp.Val;
|
|
unsigned ResNo = FlagOp.ResNo;
|
|
while (Flag->getValueType(ResNo) == MVT::Flag) {
|
|
NodeInfo *FNI = getNI(Flag);
|
|
assert(FNI->Group == NI->Group);
|
|
SU->FlaggedNodes.insert(SU->FlaggedNodes.begin(), Flag);
|
|
SUnitMap[Flag] = SU;
|
|
|
|
FlagOp = Flag->getOperand(Flag->getNumOperands() - 1);
|
|
Flag = FlagOp.Val;
|
|
ResNo = FlagOp.ResNo;
|
|
}
|
|
} else {
|
|
SU = NewSUnit(N);
|
|
}
|
|
SUnitMap[N] = SU;
|
|
|
|
// Compute the latency for the node. We use the sum of the latencies for
|
|
// all nodes flagged together into this SUnit.
|
|
if (InstrItins.isEmpty() || !UseLatencies) {
|
|
// No latency information.
|
|
SU->Latency = 1;
|
|
} else {
|
|
SU->Latency = 0;
|
|
if (N->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
|
|
InstrStage *S = InstrItins.begin(SchedClass);
|
|
InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) {
|
|
SDNode *FNode = SU->FlaggedNodes[i];
|
|
if (FNode->isTargetOpcode()) {
|
|
unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
|
|
InstrStage *S = InstrItins.begin(SchedClass);
|
|
InstrStage *E = InstrItins.end(SchedClass);
|
|
for (; S != E; ++S)
|
|
SU->Latency += S->Cycles;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Pass 2: add the preds, succs, etc.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
SDNode *N = SU->Node;
|
|
NodeInfo *NI = getNI(N);
|
|
|
|
if (N->isTargetOpcode() && TII->isTwoAddrInstr(N->getTargetOpcode()))
|
|
SU->isTwoAddress = true;
|
|
|
|
if (NI->isInGroup()) {
|
|
// Find all predecessors (of the group).
|
|
NodeGroupOpIterator NGOI(NI);
|
|
while (!NGOI.isEnd()) {
|
|
SDOperand Op = NGOI.next();
|
|
SDNode *OpN = Op.Val;
|
|
MVT::ValueType VT = OpN->getValueType(Op.ResNo);
|
|
NodeInfo *OpNI = getNI(OpN);
|
|
if (OpNI->Group != NI->Group && !isPassiveNode(OpN)) {
|
|
assert(VT != MVT::Flag);
|
|
SUnit *OpSU = SUnitMap[OpN];
|
|
if (VT == MVT::Other) {
|
|
if (SU->ChainPreds.insert(OpSU).second)
|
|
SU->NumChainPredsLeft++;
|
|
if (OpSU->ChainSuccs.insert(SU).second)
|
|
OpSU->NumChainSuccsLeft++;
|
|
} else {
|
|
if (SU->Preds.insert(OpSU).second)
|
|
SU->NumPredsLeft++;
|
|
if (OpSU->Succs.insert(SU).second)
|
|
OpSU->NumSuccsLeft++;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Find node predecessors.
|
|
for (unsigned j = 0, e = N->getNumOperands(); j != e; j++) {
|
|
SDOperand Op = N->getOperand(j);
|
|
SDNode *OpN = Op.Val;
|
|
MVT::ValueType VT = OpN->getValueType(Op.ResNo);
|
|
if (!isPassiveNode(OpN)) {
|
|
assert(VT != MVT::Flag);
|
|
SUnit *OpSU = SUnitMap[OpN];
|
|
if (VT == MVT::Other) {
|
|
if (SU->ChainPreds.insert(OpSU).second)
|
|
SU->NumChainPredsLeft++;
|
|
if (OpSU->ChainSuccs.insert(SU).second)
|
|
OpSU->NumChainSuccsLeft++;
|
|
} else {
|
|
if (SU->Preds.insert(OpSU).second)
|
|
SU->NumPredsLeft++;
|
|
if (OpSU->Succs.insert(SU).second)
|
|
OpSU->NumSuccsLeft++;
|
|
if (j == 0 && SU->isTwoAddress)
|
|
OpSU->isDefNUseOperand = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(SU->dumpAll(&DAG));
|
|
}
|
|
}
|
|
|
|
/// EmitSchedule - Emit the machine code in scheduled order.
|
|
void ScheduleDAGList::EmitSchedule() {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i]) {
|
|
for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++) {
|
|
SDNode *N = SU->FlaggedNodes[j];
|
|
EmitNode(getNI(N));
|
|
}
|
|
EmitNode(getNI(SU->Node));
|
|
} else {
|
|
// Null SUnit* is a noop.
|
|
EmitNoop();
|
|
}
|
|
}
|
|
}
|
|
|
|
/// dump - dump the schedule.
|
|
void ScheduleDAGList::dumpSchedule() const {
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
|
|
if (SUnit *SU = Sequence[i])
|
|
SU->dump(&DAG);
|
|
else
|
|
std::cerr << "**** NOOP ****\n";
|
|
}
|
|
}
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
/// FIXME: Right now it only supports the burr (bottom up register reducing)
|
|
/// heuristic.
|
|
void ScheduleDAGList::Schedule() {
|
|
DEBUG(std::cerr << "********** List Scheduling **********\n");
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
PriorityQueue->initNodes(SUnits);
|
|
|
|
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
|
|
if (isBottomUp)
|
|
ListScheduleBottomUp();
|
|
else
|
|
ListScheduleTopDown();
|
|
|
|
PriorityQueue->releaseState();
|
|
|
|
DEBUG(std::cerr << "*** Final schedule ***\n");
|
|
DEBUG(dumpSchedule());
|
|
DEBUG(std::cerr << "\n");
|
|
|
|
// Emit in scheduled order
|
|
EmitSchedule();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegReductionPriorityQueue Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
|
|
// to reduce register pressure.
|
|
//
|
|
namespace {
|
|
class RegReductionPriorityQueue;
|
|
|
|
/// Sorting functions for the Available queue.
|
|
struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
RegReductionPriorityQueue *SPQ;
|
|
ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
|
|
ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class RegReductionPriorityQueue : public SchedulingPriorityQueue {
|
|
// SUnits - The SUnits for the current graph.
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
std::vector<int> SethiUllmanNumbers;
|
|
|
|
std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
|
|
public:
|
|
RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
|
|
}
|
|
|
|
void initNodes(const std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculatePriorities();
|
|
}
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
SethiUllmanNumbers.clear();
|
|
}
|
|
|
|
unsigned getSethiUllmanNumber(unsigned NodeNum) const {
|
|
assert(NodeNum < SethiUllmanNumbers.size());
|
|
return SethiUllmanNumbers[NodeNum];
|
|
}
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
void push(SUnit *U) {
|
|
Queue.push(U);
|
|
}
|
|
SUnit *pop() {
|
|
SUnit *V = Queue.top();
|
|
Queue.pop();
|
|
return V;
|
|
}
|
|
private:
|
|
void CalculatePriorities();
|
|
int CalcNodePriority(const SUnit *SU);
|
|
};
|
|
}
|
|
|
|
bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
unsigned LeftNum = left->NodeNum;
|
|
unsigned RightNum = right->NodeNum;
|
|
|
|
int LBonus = (int)left ->isDefNUseOperand;
|
|
int RBonus = (int)right->isDefNUseOperand;
|
|
|
|
// Special tie breaker: if two nodes share a operand, the one that
|
|
// use it as a def&use operand is preferred.
|
|
if (left->isTwoAddress && !right->isTwoAddress) {
|
|
SDNode *DUNode = left->Node->getOperand(0).Val;
|
|
if (DUNode->isOperand(right->Node))
|
|
LBonus++;
|
|
}
|
|
if (!left->isTwoAddress && right->isTwoAddress) {
|
|
SDNode *DUNode = right->Node->getOperand(0).Val;
|
|
if (DUNode->isOperand(left->Node))
|
|
RBonus++;
|
|
}
|
|
|
|
// Priority1 is just the number of live range genned.
|
|
int LPriority1 = left ->NumPredsLeft - LBonus;
|
|
int RPriority1 = right->NumPredsLeft - RBonus;
|
|
int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
|
|
int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
|
|
|
|
if (LPriority1 > RPriority1)
|
|
return true;
|
|
else if (LPriority1 == RPriority1)
|
|
if (LPriority2 < RPriority2)
|
|
return true;
|
|
else if (LPriority2 == RPriority2)
|
|
if (left->CycleBound > right->CycleBound)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// CalcNodePriority - Priority is the Sethi Ullman number.
|
|
/// Smaller number is the higher priority.
|
|
int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
|
|
int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
|
|
if (SethiUllmanNumber != INT_MIN)
|
|
return SethiUllmanNumber;
|
|
|
|
if (SU->Preds.size() == 0) {
|
|
SethiUllmanNumber = 1;
|
|
} else {
|
|
int Extra = 0;
|
|
for (std::set<SUnit*>::iterator I = SU->Preds.begin(),
|
|
E = SU->Preds.end(); I != E; ++I) {
|
|
SUnit *PredSU = *I;
|
|
int PredSethiUllman = CalcNodePriority(PredSU);
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
Extra = 0;
|
|
} else if (PredSethiUllman == SethiUllmanNumber)
|
|
Extra++;
|
|
}
|
|
|
|
if (SU->Node->getOpcode() != ISD::TokenFactor)
|
|
SethiUllmanNumber += Extra;
|
|
else
|
|
SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
|
|
}
|
|
|
|
return SethiUllmanNumber;
|
|
}
|
|
|
|
/// CalculatePriorities - Calculate priorities of all scheduling units.
|
|
void RegReductionPriorityQueue::CalculatePriorities() {
|
|
SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcNodePriority(&(*SUnits)[i]);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
|
|
MachineBasicBlock *BB) {
|
|
return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true,
|
|
new RegReductionPriorityQueue(),
|
|
new HazardRecognizer());
|
|
}
|
|
|
|
/// createTDListDAGScheduler - This creates a top-down list scheduler with the
|
|
/// specified hazard recognizer.
|
|
ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
|
|
MachineBasicBlock *BB,
|
|
HazardRecognizer *HR) {
|
|
return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
|
|
new RegReductionPriorityQueue(),
|
|
HR);
|
|
}
|