mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-15 14:28:25 +00:00
ae3a0be92e
integer and floating-point opcodes, introducing FAdd, FSub, and FMul. For now, the AsmParser, BitcodeReader, and IRBuilder all preserve backwards compatability, and the Core LLVM APIs preserve backwards compatibility for IR producers. Most front-ends won't need to change immediately. This implements the first step of the plan outlined here: http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72897 91177308-0d34-0410-b5e6-96231b3b80d8
188 lines
7.5 KiB
LLVM
188 lines
7.5 KiB
LLVM
; RUN: llvm-as < %s | llc
|
|
|
|
%Domain = type { i8*, i32, i32*, i32, i32, i32*, %Domain* }
|
|
@AConst = constant i32 123 ; <i32*> [#uses=1]
|
|
|
|
; Test setting values of different constants in registers.
|
|
;
|
|
define void @testConsts(i32 %N, float %X) {
|
|
%a = add i32 %N, 1 ; <i32> [#uses=0]
|
|
%i = add i32 %N, 12345678 ; <i32> [#uses=0]
|
|
%b = add i16 4, 3 ; <i16> [#uses=0]
|
|
%c = fadd float %X, 0.000000e+00 ; <float> [#uses=0]
|
|
%d = fadd float %X, 0x400921CAC0000000 ; <float> [#uses=0]
|
|
%f = add i32 -1, 10 ; <i32> [#uses=0]
|
|
%g = add i16 20, -1 ; <i16> [#uses=0]
|
|
%j = add i16 -1, 30 ; <i16> [#uses=0]
|
|
%h = add i8 40, -1 ; <i8> [#uses=0]
|
|
%k = add i8 -1, 50 ; <i8> [#uses=0]
|
|
ret void
|
|
}
|
|
|
|
; A SetCC whose result is used should produce instructions to
|
|
; compute the boolean value in a register. One whose result
|
|
; is unused will only generate the condition code but not
|
|
; the boolean result.
|
|
;
|
|
define void @unusedBool(i32* %x, i32* %y) {
|
|
icmp eq i32* %x, %y ; <i1>:1 [#uses=1]
|
|
xor i1 %1, true ; <i1>:2 [#uses=0]
|
|
icmp ne i32* %x, %y ; <i1>:3 [#uses=0]
|
|
ret void
|
|
}
|
|
|
|
; A constant argument to a Phi produces a Cast instruction in the
|
|
; corresponding predecessor basic block. This checks a few things:
|
|
; -- phi arguments coming from the bottom of the same basic block
|
|
; (they should not be forward substituted in the machine code!)
|
|
; -- code generation for casts of various types
|
|
; -- use of immediate fields for integral constants of different sizes
|
|
; -- branch on a constant condition
|
|
;
|
|
define void @mergeConstants(i32* %x, i32* %y) {
|
|
; <label>:0
|
|
br label %Top
|
|
|
|
Top: ; preds = %Next, %Top, %0
|
|
phi i32 [ 0, %0 ], [ 1, %Top ], [ 524288, %Next ] ; <i32>:1 [#uses=0]
|
|
phi float [ 0.000000e+00, %0 ], [ 1.000000e+00, %Top ], [ 2.000000e+00, %Next ] ; <float>:2 [#uses=0]
|
|
phi double [ 5.000000e-01, %0 ], [ 1.500000e+00, %Top ], [ 2.500000e+00, %Next ]
|
|
phi i1 [ true, %0 ], [ false, %Top ], [ true, %Next ] ; <i1>:4 [#uses=0]
|
|
br i1 true, label %Top, label %Next
|
|
|
|
Next: ; preds = %Top
|
|
br label %Top
|
|
}
|
|
|
|
|
|
|
|
; A constant argument to a cast used only once should be forward substituted
|
|
; and loaded where needed, which happens is:
|
|
; -- User of cast has no immediate field
|
|
; -- User of cast has immediate field but constant is too large to fit
|
|
; or constant is not resolved until later (e.g., global address)
|
|
; -- User of cast uses it as a call arg. or return value so it is an implicit
|
|
; use but has to be loaded into a virtual register so that the reg.
|
|
; allocator can allocate the appropriate phys. reg. for it
|
|
;
|
|
define i32* @castconst(float) {
|
|
%castbig = trunc i64 99999999 to i32 ; <i32> [#uses=1]
|
|
%castsmall = trunc i64 1 to i32 ; <i32> [#uses=1]
|
|
%usebig = add i32 %castbig, %castsmall ; <i32> [#uses=0]
|
|
%castglob = bitcast i32* @AConst to i64* ; <i64*> [#uses=1]
|
|
%dummyl = load i64* %castglob ; <i64> [#uses=0]
|
|
%castnull = inttoptr i64 0 to i32* ; <i32*> [#uses=1]
|
|
ret i32* %castnull
|
|
}
|
|
|
|
; Test branch-on-comparison-with-zero, in two ways:
|
|
; 1. can be folded
|
|
; 2. cannot be folded because result of comparison is used twice
|
|
;
|
|
define void @testbool(i32 %A, i32 %B) {
|
|
br label %Top
|
|
|
|
Top: ; preds = %loop, %0
|
|
%D = add i32 %A, %B ; <i32> [#uses=2]
|
|
%E = sub i32 %D, -4 ; <i32> [#uses=1]
|
|
%C = icmp sle i32 %E, 0 ; <i1> [#uses=1]
|
|
br i1 %C, label %retlbl, label %loop
|
|
|
|
loop: ; preds = %loop, %Top
|
|
%F = add i32 %A, %B ; <i32> [#uses=0]
|
|
%G = sub i32 %D, -4 ; <i32> [#uses=1]
|
|
%D.upgrd.1 = icmp sle i32 %G, 0 ; <i1> [#uses=1]
|
|
%E.upgrd.2 = xor i1 %D.upgrd.1, true ; <i1> [#uses=1]
|
|
br i1 %E.upgrd.2, label %loop, label %Top
|
|
|
|
retlbl: ; preds = %Top
|
|
ret void
|
|
}
|
|
|
|
|
|
;; Test use of a boolean result in cast operations.
|
|
;; Requires converting a condition code result into a 0/1 value in a reg.
|
|
;;
|
|
define i32 @castbool(i32 %A, i32 %B) {
|
|
bb0:
|
|
%cond213 = icmp slt i32 %A, %B ; <i1> [#uses=1]
|
|
%cast110 = zext i1 %cond213 to i8 ; <i8> [#uses=1]
|
|
%cast109 = zext i8 %cast110 to i32 ; <i32> [#uses=1]
|
|
ret i32 %cast109
|
|
}
|
|
|
|
;; Test use of a boolean result in arithmetic and logical operations.
|
|
;; Requires converting a condition code result into a 0/1 value in a reg.
|
|
;;
|
|
define i1 @boolexpr(i1 %b, i32 %N) {
|
|
%b2 = icmp sge i32 %N, 0 ; <i1> [#uses=1]
|
|
%b3 = and i1 %b, %b2 ; <i1> [#uses=1]
|
|
ret i1 %b3
|
|
}
|
|
|
|
; Test branch on floating point comparison
|
|
;
|
|
define void @testfloatbool(float %x, float %y) {
|
|
br label %Top
|
|
|
|
Top: ; preds = %Top, %0
|
|
%p = fadd float %x, %y ; <float> [#uses=1]
|
|
%z = fsub float %x, %y ; <float> [#uses=1]
|
|
%b = fcmp ole float %p, %z ; <i1> [#uses=2]
|
|
%c = xor i1 %b, true ; <i1> [#uses=0]
|
|
br i1 %b, label %Top, label %goon
|
|
|
|
goon: ; preds = %Top
|
|
ret void
|
|
}
|
|
|
|
|
|
; Test cases where an LLVM instruction requires no machine
|
|
; instructions (e.g., cast int* to long). But there are 2 cases:
|
|
; 1. If the result register has only a single use and the use is in the
|
|
; same basic block, the operand will be copy-propagated during
|
|
; instruction selection.
|
|
; 2. If the result register has multiple uses or is in a different
|
|
; basic block, it cannot (or will not) be copy propagated during
|
|
; instruction selection. It will generate a
|
|
; copy instruction (add-with-0), but this copy should get coalesced
|
|
; away by the register allocator.
|
|
;
|
|
define i32 @checkForward(i32 %N, i32* %A) {
|
|
bb2:
|
|
%reg114 = shl i32 %N, 2 ; <i32> [#uses=1]
|
|
%cast115 = sext i32 %reg114 to i64 ; <i64> [#uses=1]
|
|
%cast116 = ptrtoint i32* %A to i64 ; <i64> [#uses=1]
|
|
%reg116 = add i64 %cast116, %cast115 ; <i64> [#uses=1]
|
|
%castPtr = inttoptr i64 %reg116 to i32* ; <i32*> [#uses=1]
|
|
%reg118 = load i32* %castPtr ; <i32> [#uses=1]
|
|
%cast117 = sext i32 %reg118 to i64 ; <i64> [#uses=2]
|
|
%reg159 = add i64 1234567, %cast117 ; <i64> [#uses=0]
|
|
%reg160 = add i64 7654321, %cast117 ; <i64> [#uses=0]
|
|
ret i32 0
|
|
}
|
|
|
|
|
|
; Test case for unary NOT operation constructed from XOR.
|
|
;
|
|
define void @checkNot(i1 %b, i32 %i) {
|
|
%notB = xor i1 %b, true ; <i1> [#uses=1]
|
|
%notI = xor i32 %i, -1 ; <i32> [#uses=2]
|
|
%F = icmp sge i32 %notI, 100 ; <i1> [#uses=1]
|
|
%J = add i32 %i, %i ; <i32> [#uses=1]
|
|
%andNotB = and i1 %F, %notB ; <i1> [#uses=0]
|
|
%andNotI = and i32 %J, %notI ; <i32> [#uses=0]
|
|
%notB2 = xor i1 true, %b ; <i1> [#uses=0]
|
|
%notI2 = xor i32 -1, %i ; <i32> [#uses=0]
|
|
ret void
|
|
}
|
|
|
|
; Test case for folding getelementptr into a load/store
|
|
;
|
|
define i32 @checkFoldGEP(%Domain* %D, i64 %idx) {
|
|
%reg841 = getelementptr %Domain* %D, i64 0, i32 1 ; <i32*> [#uses=1]
|
|
%reg820 = load i32* %reg841 ; <i32> [#uses=1]
|
|
ret i32 %reg820
|
|
}
|
|
|