llvm/lib/Target/Mips/MipsISelLowering.cpp
2011-07-19 23:30:50 +00:00

2351 lines
91 KiB
C++

//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "MipsSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case MipsISD::JmpLink: return "MipsISD::JmpLink";
case MipsISD::Hi: return "MipsISD::Hi";
case MipsISD::Lo: return "MipsISD::Lo";
case MipsISD::GPRel: return "MipsISD::GPRel";
case MipsISD::TlsGd: return "MipsISD::TlsGd";
case MipsISD::TprelHi: return "MipsISD::TprelHi";
case MipsISD::TprelLo: return "MipsISD::TprelLo";
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
case MipsISD::Ret: return "MipsISD::Ret";
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
case MipsISD::FPCmp: return "MipsISD::FPCmp";
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
case MipsISD::FPRound: return "MipsISD::FPRound";
case MipsISD::MAdd: return "MipsISD::MAdd";
case MipsISD::MAddu: return "MipsISD::MAddu";
case MipsISD::MSub: return "MipsISD::MSub";
case MipsISD::MSubu: return "MipsISD::MSubu";
case MipsISD::DivRem: return "MipsISD::DivRem";
case MipsISD::DivRemU: return "MipsISD::DivRemU";
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
case MipsISD::WrapperPIC: return "MipsISD::WrapperPIC";
case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
case MipsISD::Sync: return "MipsISD::Sync";
default: return NULL;
}
}
MipsTargetLowering::
MipsTargetLowering(MipsTargetMachine &TM)
: TargetLowering(TM, new MipsTargetObjectFile()) {
Subtarget = &TM.getSubtarget<MipsSubtarget>();
// Mips does not have i1 type, so use i32 for
// setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
// Set up the register classes
addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
// When dealing with single precision only, use libcalls
if (!Subtarget->isSingleFloat())
if (!Subtarget->isFP64bit())
addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
// Load extented operations for i1 types must be promoted
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// MIPS doesn't have extending float->double load/store
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Used by legalize types to correctly generate the setcc result.
// Without this, every float setcc comes with a AND/OR with the result,
// we don't want this, since the fpcmp result goes to a flag register,
// which is used implicitly by brcond and select operations.
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
// Mips Custom Operations
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
// Operations not directly supported by Mips.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
if (!Subtarget->isMips32r2())
setOperationAction(ISD::ROTR, MVT::i32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Use the default for now
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
if (Subtarget->isSingleFloat())
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
if (!Subtarget->hasSEInReg()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
}
if (!Subtarget->hasBitCount())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
if (!Subtarget->hasSwap())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setTargetDAGCombine(ISD::ADDE);
setTargetDAGCombine(ISD::SUBE);
setTargetDAGCombine(ISD::SDIVREM);
setTargetDAGCombine(ISD::UDIVREM);
setTargetDAGCombine(ISD::SETCC);
setMinFunctionAlignment(2);
setStackPointerRegisterToSaveRestore(Mips::SP);
computeRegisterProperties();
setExceptionPointerRegister(Mips::A0);
setExceptionSelectorRegister(Mips::A1);
}
MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i32;
}
// SelectMadd -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc multLo, Lo0), (adde multHi, Hi0),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) {
// ADDENode's second operand must be a flag output of an ADDC node in order
// for the matching to be successful.
SDNode* ADDCNode = ADDENode->getOperand(2).getNode();
if (ADDCNode->getOpcode() != ISD::ADDC)
return false;
SDValue MultHi = ADDENode->getOperand(0);
SDValue MultLo = ADDCNode->getOperand(0);
SDNode* MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than ADDENode or ADDCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MADD instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDValue Chain = CurDAG->getEntryNode();
DebugLoc dl = ADDENode->getDebugLoc();
// create MipsMAdd(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
SDValue MAdd = CurDAG->getNode(MultOpc, dl,
MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ADDCNode->getOperand(1),// Lo0
ADDENode->getOperand(1));// Hi0
// create CopyFromReg nodes
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
MAdd);
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
Mips::HI, MVT::i32,
CopyFromLo.getValue(2));
// replace uses of adde and addc here
if (!SDValue(ADDCNode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
if (!SDValue(ADDENode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
return true;
}
// SelectMsub -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc Lo0, multLo), (sube Hi0, multHi),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) {
// SUBENode's second operand must be a flag output of an SUBC node in order
// for the matching to be successful.
SDNode* SUBCNode = SUBENode->getOperand(2).getNode();
if (SUBCNode->getOpcode() != ISD::SUBC)
return false;
SDValue MultHi = SUBENode->getOperand(1);
SDValue MultLo = SUBCNode->getOperand(1);
SDNode* MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than SUBENode or SUBCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MSUB instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDValue Chain = CurDAG->getEntryNode();
DebugLoc dl = SUBENode->getDebugLoc();
// create MipsSub(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
SDValue MSub = CurDAG->getNode(MultOpc, dl,
MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
SUBCNode->getOperand(0),// Lo0
SUBENode->getOperand(0));// Hi0
// create CopyFromReg nodes
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
MSub);
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
Mips::HI, MVT::i32,
CopyFromLo.getValue(2));
// replace uses of sube and subc here
if (!SDValue(SUBCNode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
if (!SDValue(SUBENode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
return true;
}
static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget* Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->isMips32() && SelectMadd(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget* Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->isMips32() && SelectMsub(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget* Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
MipsISD::DivRemU;
DebugLoc dl = N->getDebugLoc();
SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
N->getOperand(0), N->getOperand(1));
SDValue InChain = DAG.getEntryNode();
SDValue InGlue = DivRem;
// insert MFLO
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, Mips::LO, MVT::i32,
InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// insert MFHI
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
Mips::HI, MVT::i32, InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
}
return SDValue();
}
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return Mips::FCOND_OEQ;
case ISD::SETUNE: return Mips::FCOND_UNE;
case ISD::SETLT:
case ISD::SETOLT: return Mips::FCOND_OLT;
case ISD::SETGT:
case ISD::SETOGT: return Mips::FCOND_OGT;
case ISD::SETLE:
case ISD::SETOLE: return Mips::FCOND_OLE;
case ISD::SETGE:
case ISD::SETOGE: return Mips::FCOND_OGE;
case ISD::SETULT: return Mips::FCOND_ULT;
case ISD::SETULE: return Mips::FCOND_ULE;
case ISD::SETUGT: return Mips::FCOND_UGT;
case ISD::SETUGE: return Mips::FCOND_UGE;
case ISD::SETUO: return Mips::FCOND_UN;
case ISD::SETO: return Mips::FCOND_OR;
case ISD::SETNE:
case ISD::SETONE: return Mips::FCOND_ONE;
case ISD::SETUEQ: return Mips::FCOND_UEQ;
}
}
// Returns true if condition code has to be inverted.
static bool InvertFPCondCode(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return false;
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
return true;
assert(false && "Illegal Condition Code");
return false;
}
// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) {
// must be a SETCC node
if (Op.getOpcode() != ISD::SETCC)
return Op;
SDValue LHS = Op.getOperand(0);
if (!LHS.getValueType().isFloatingPoint())
return Op;
SDValue RHS = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
// node if necessary.
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
}
// Creates and returns a CMovFPT/F node.
static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True,
SDValue False, DebugLoc DL) {
bool invert = InvertFPCondCode((Mips::CondCode)
cast<ConstantSDNode>(Cond.getOperand(2))
->getSExtValue());
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
True.getValueType(), True, False, Cond);
}
static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG& DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget* Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Cond = CreateFPCmp(DAG, SDValue(N, 0));
if (Cond.getOpcode() != MipsISD::FPCmp)
return SDValue();
SDValue True = DAG.getConstant(1, MVT::i32);
SDValue False = DAG.getConstant(0, MVT::i32);
return CreateCMovFP(DAG, Cond, True, False, N->getDebugLoc());
}
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
SelectionDAG &DAG = DCI.DAG;
unsigned opc = N->getOpcode();
switch (opc) {
default: break;
case ISD::ADDE:
return PerformADDECombine(N, DAG, DCI, Subtarget);
case ISD::SUBE:
return PerformSUBECombine(N, DAG, DCI, Subtarget);
case ISD::SDIVREM:
case ISD::UDIVREM:
return PerformDivRemCombine(N, DAG, DCI, Subtarget);
case ISD::SETCC:
return PerformSETCCCombine(N, DAG, DCI, Subtarget);
}
return SDValue();
}
SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
switch (Op.getOpcode())
{
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Lower helper functions
//===----------------------------------------------------------------------===//
// AddLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value. It also creates a corresponding
// virtual register for it.
static unsigned
AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
{
assert(RC->contains(PReg) && "Not the correct regclass!");
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
MF.getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
// Get fp branch code (not opcode) from condition code.
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return Mips::BRANCH_T;
if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
return Mips::BRANCH_F;
return Mips::BRANCH_INVALID;
}
static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
DebugLoc dl,
const MipsSubtarget* Subtarget,
const TargetInstrInfo *TII,
bool isFPCmp, unsigned Opc) {
// There is no need to expand CMov instructions if target has
// conditional moves.
if (Subtarget->hasCondMov())
return BB;
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// Emit the right instruction according to the type of the operands compared
if (isFPCmp)
BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
else
BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
.addReg(Mips::ZERO).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
if (isFPCmp)
BuildMI(*BB, BB->begin(), dl,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
else
BuildMI(*BB, BB->begin(), dl,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
switch (MI->getOpcode()) {
default:
assert(false && "Unexpected instr type to insert");
return NULL;
case Mips::MOVT:
case Mips::MOVT_S:
case Mips::MOVT_D:
return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1F);
case Mips::MOVF:
case Mips::MOVF_S:
case Mips::MOVF_D:
return ExpandCondMov(MI, BB, dl, Subtarget, TII, true, Mips::BC1T);
case Mips::MOVZ_I:
case Mips::MOVZ_S:
case Mips::MOVZ_D:
return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BNE);
case Mips::MOVN_I:
case Mips::MOVN_S:
case Mips::MOVN_D:
return ExpandCondMov(MI, BB, dl, Subtarget, TII, false, Mips::BEQ);
case Mips::ATOMIC_LOAD_ADD_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I32:
return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
case Mips::ATOMIC_LOAD_AND_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I32:
return EmitAtomicBinary(MI, BB, 4, Mips::AND);
case Mips::ATOMIC_LOAD_OR_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I32:
return EmitAtomicBinary(MI, BB, 4, Mips::OR);
case Mips::ATOMIC_LOAD_XOR_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I32:
return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
case Mips::ATOMIC_LOAD_NAND_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
case Mips::ATOMIC_LOAD_NAND_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
case Mips::ATOMIC_LOAD_NAND_I32:
return EmitAtomicBinary(MI, BB, 4, 0, true);
case Mips::ATOMIC_LOAD_SUB_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I32:
return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
case Mips::ATOMIC_SWAP_I8:
return EmitAtomicBinaryPartword(MI, BB, 1, 0);
case Mips::ATOMIC_SWAP_I16:
return EmitAtomicBinaryPartword(MI, BB, 2, 0);
case Mips::ATOMIC_SWAP_I32:
return EmitAtomicBinary(MI, BB, 4, 0);
case Mips::ATOMIC_CMP_SWAP_I8:
return EmitAtomicCmpSwapPartword(MI, BB, 1);
case Mips::ATOMIC_CMP_SWAP_I16:
return EmitAtomicCmpSwapPartword(MI, BB, 2);
case Mips::ATOMIC_CMP_SWAP_I32:
return EmitAtomicCmpSwap(MI, BB, 4);
}
}
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert(Size == 4 && "Unsupported size for EmitAtomicBinary.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned OldVal = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(exitMBB);
// loopMBB:
// ll oldval, 0(ptr)
// <binop> storeval, oldval, incr
// sc success, storeval, 0(ptr)
// beq success, $0, loopMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(Ptr).addImm(0);
if (Nand) {
// and andres, oldval, incr
// nor storeval, $0, andres
BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr);
BuildMI(BB, dl, TII->get(Mips::NOR), StoreVal)
.addReg(Mips::ZERO).addReg(AndRes);
} else if (BinOpcode) {
// <binop> storeval, oldval, incr
BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
} else {
StoreVal = Incr;
}
BuildMI(BB, dl, TII->get(Mips::SC), Success)
.addReg(StoreVal).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicBinaryPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned NewVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// sll incr2,incr,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
.addReg(ShiftAmt).addReg(MaskUpper);
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
// atomic.load.binop
// loopMBB:
// ll oldval,0(alignedaddr)
// binop binopres,oldval,incr2
// and newval,binopres,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
// atomic.swap
// loopMBB:
// ll oldval,0(alignedaddr)
// and newval,incr2,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
if (Nand) {
// and andres, oldval, incr2
// nor binopres, $0, andres
// and newval, binopres, mask
BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
.addReg(Mips::ZERO).addReg(AndRes);
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else if (BinOpcode) {
// <binop> binopres, oldval, incr2
// and newval, binopres, mask
BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else {// atomic.swap
// and newval, incr2, mask
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
}
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal0).addReg(NewVal);
BuildMI(BB, dl, TII->get(Mips::SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
// sinkMBB:
// and maskedoldval1,oldval,mask
// srl srlres,maskedoldval1,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
.addReg(ShiftAmt).addReg(MaskedOldVal1);
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert(Size == 4 && "Unsupported size for EmitAtomicCmpSwap.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned OldVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(exitMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(exitMBB);
// loop1MBB:
// ll dest, 0(ptr)
// bne dest, oldval, exitMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(Mips::LL), Dest).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BNE))
.addReg(Dest).addReg(OldVal).addMBB(exitMBB);
// loop2MBB:
// sc success, newval, 0(ptr)
// beq success, $0, loop1MBB
BB = loop2MBB;
BuildMI(BB, dl, TII->get(Mips::SC), Success)
.addReg(NewVal).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicCmpSwapPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned CmpVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(sinkMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// FIXME: computation of newval2 can be moved to loop2MBB.
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// andi maskedcmpval,cmpval,255
// sll shiftedcmpval,maskedcmpval,shiftamt
// andi maskednewval,newval,255
// sll shiftednewval,maskednewval,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
.addReg(ShiftAmt).addReg(MaskUpper);
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
.addReg(CmpVal).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
.addReg(ShiftAmt).addReg(MaskedCmpVal);
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
.addReg(NewVal).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
.addReg(ShiftAmt).addReg(MaskedNewVal);
// loop1MBB:
// ll oldval,0(alginedaddr)
// and maskedoldval0,oldval,mask
// bne maskedoldval0,shiftedcmpval,sinkMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(Mips::LL), OldVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::BNE))
.addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
// loop2MBB:
// and maskedoldval1,oldval,mask2
// or storeval,maskedoldval1,shiftednewval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loop1MBB
BB = loop2MBB;
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
BuildMI(BB, dl, TII->get(Mips::SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
// sinkMBB:
// srl srlres,maskedoldval0,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
.addReg(ShiftAmt).addReg(MaskedOldVal0);
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue MipsTargetLowering::
LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
{
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
assert(getTargetMachine().getFrameLowering()->getStackAlignment() >=
cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() &&
"Cannot lower if the alignment of the allocated space is larger than \
that of the stack.");
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
// Get a reference from Mips stack pointer
SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
// Subtract the dynamic size from the actual stack size to
// obtain the new stack size.
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
// The Sub result contains the new stack start address, so it
// must be placed in the stack pointer register.
Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub,
SDValue());
// This node always has two return values: a new stack pointer
// value and a chain
SDVTList VTLs = DAG.getVTList(MVT::i32, MVT::Other);
SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy());
SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) };
return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3);
}
SDValue MipsTargetLowering::
LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
{
// The first operand is the chain, the second is the condition, the third is
// the block to branch to if the condition is true.
SDValue Chain = Op.getOperand(0);
SDValue Dest = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
// Return if flag is not set by a floating point comparison.
if (CondRes.getOpcode() != MipsISD::FPCmp)
return Op;
SDValue CCNode = CondRes.getOperand(2);
Mips::CondCode CC =
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
Dest, CondRes);
}
SDValue MipsTargetLowering::
LowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
// Return if flag is not set by a floating point comparison.
if (Cond.getOpcode() != MipsISD::FPCmp)
return Op;
return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
Op.getDebugLoc());
}
SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
SDVTList VTs = DAG.getVTList(MVT::i32);
MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
// %gp_rel relocation
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_GPREL);
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
}
// %hi/%lo relocation
SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_ABS_HI);
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_ABS_LO);
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
}
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_GOT);
GA = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, GA);
SDValue ResNode = DAG.getLoad(MVT::i32, dl,
DAG.getEntryNode(), GA, MachinePointerInfo(),
false, false, 0);
// On functions and global targets not internal linked only
// a load from got/GP is necessary for PIC to work.
if (!GV->hasInternalLinkage() &&
(!GV->hasLocalLinkage() || isa<Function>(GV)))
return ResNode;
SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_ABS_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo);
return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
}
SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
// %hi/%lo relocation
SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true,
MipsII::MO_ABS_HI);
SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true,
MipsII::MO_ABS_LO);
SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo);
return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
}
SDValue BAGOTOffset = DAG.getBlockAddress(BA, MVT::i32, true,
MipsII::MO_GOT);
BAGOTOffset = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, BAGOTOffset);
SDValue BALOOffset = DAG.getBlockAddress(BA, MVT::i32, true,
MipsII::MO_ABS_LO);
SDValue Load = DAG.getLoad(MVT::i32, dl,
DAG.getEntryNode(), BAGOTOffset,
MachinePointerInfo(), false, false, 0);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALOOffset);
return DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
}
SDValue MipsTargetLowering::
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
// If the relocation model is PIC, use the General Dynamic TLS Model,
// otherwise use the Initial Exec or Local Exec TLS Model.
// TODO: implement Local Dynamic TLS model
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
DebugLoc dl = GA->getDebugLoc();
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
// General Dynamic TLS Model
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32,
0, MipsII::MO_TLSGD);
SDValue Tlsgd = DAG.getNode(MipsISD::TlsGd, dl, MVT::i32, TGA);
SDValue GP = DAG.getRegister(Mips::GP, MVT::i32);
SDValue Argument = DAG.getNode(ISD::ADD, dl, MVT::i32, GP, Tlsgd);
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
Args.push_back(Entry);
std::pair<SDValue, SDValue> CallResult =
LowerCallTo(DAG.getEntryNode(),
(Type *) Type::getInt32Ty(*DAG.getContext()),
false, false, false, false, 0, CallingConv::C, false, true,
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG,
dl);
return CallResult.first;
}
SDValue Offset;
if (GV->isDeclaration()) {
// Initial Exec TLS Model
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_GOTTPREL);
Offset = DAG.getLoad(MVT::i32, dl,
DAG.getEntryNode(), TGA, MachinePointerInfo(),
false, false, 0);
} else {
// Local Exec TLS Model
SDVTList VTs = DAG.getVTList(MVT::i32);
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_TPREL_HI);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_TPREL_LO);
SDValue Hi = DAG.getNode(MipsISD::TprelHi, dl, VTs, &TGAHi, 1);
SDValue Lo = DAG.getNode(MipsISD::TprelLo, dl, MVT::i32, TGALo);
Offset = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo);
}
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue MipsTargetLowering::
LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
SDValue ResNode;
SDValue HiPart;
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HI;
EVT PtrVT = Op.getValueType();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
if (!IsPIC) {
SDValue Ops[] = { JTI };
HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
} else {// Emit Load from Global Pointer
JTI = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, JTI);
HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI,
MachinePointerInfo(),
false, false, 0);
}
SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
MipsII::MO_ABS_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTILo);
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
return ResNode;
}
SDValue MipsTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
SDValue ResNode;
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
const Constant *C = N->getConstVal();
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
// gp_rel relocation
// FIXME: we should reference the constant pool using small data sections,
// but the asm printer currently doesn't support this feature without
// hacking it. This feature should come soon so we can uncomment the
// stuff below.
//if (IsInSmallSection(C->getType())) {
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
N->getOffset(), MipsII::MO_ABS_HI);
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
N->getOffset(), MipsII::MO_ABS_LO);
SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
} else {
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
N->getOffset(), MipsII::MO_GOT);
CP = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, CP);
SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
CP, MachinePointerInfo::getConstantPool(),
false, false, 0);
SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
N->getOffset(), MipsII::MO_ABS_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo);
ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
}
return ResNode;
}
SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
DebugLoc dl = Op.getDebugLoc();
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy());
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
MachinePointerInfo(SV),
false, false, 0);
}
static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG) {
// FIXME: Use ext/ins instructions if target architecture is Mips32r2.
DebugLoc dl = Op.getDebugLoc();
SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(0));
SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op.getOperand(1));
SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op0,
DAG.getConstant(0x7fffffff, MVT::i32));
SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op1,
DAG.getConstant(0x80000000, MVT::i32));
SDValue Result = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Result);
}
static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool isLittle) {
// FIXME:
// Use ext/ins instructions if target architecture is Mips32r2.
// Eliminate redundant mfc1 and mtc1 instructions.
unsigned LoIdx = 0, HiIdx = 1;
if (!isLittle)
std::swap(LoIdx, HiIdx);
DebugLoc dl = Op.getDebugLoc();
SDValue Word0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Op.getOperand(0),
DAG.getConstant(LoIdx, MVT::i32));
SDValue Hi0 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Op.getOperand(0), DAG.getConstant(HiIdx, MVT::i32));
SDValue Hi1 = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Op.getOperand(1), DAG.getConstant(HiIdx, MVT::i32));
SDValue And0 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi0,
DAG.getConstant(0x7fffffff, MVT::i32));
SDValue And1 = DAG.getNode(ISD::AND, dl, MVT::i32, Hi1,
DAG.getConstant(0x80000000, MVT::i32));
SDValue Word1 = DAG.getNode(ISD::OR, dl, MVT::i32, And0, And1);
if (!isLittle)
std::swap(Word0, Word1);
return DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, Word0, Word1);
}
SDValue MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG)
const {
EVT Ty = Op.getValueType();
assert(Ty == MVT::f32 || Ty == MVT::f64);
if (Ty == MVT::f32)
return LowerFCOPYSIGN32(Op, DAG);
else
return LowerFCOPYSIGN64(Op, DAG, Subtarget->isLittle());
}
SDValue MipsTargetLowering::
LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Frame address can only be determined for current frame.");
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Mips::FP, VT);
return FrameAddr;
}
// TODO: set SType according to the desired memory barrier behavior.
SDValue MipsTargetLowering::LowerMEMBARRIER(SDValue Op,
SelectionDAG& DAG) const {
unsigned SType = 0;
DebugLoc dl = Op.getDebugLoc();
return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(SType, MVT::i32));
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "MipsGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
// an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
// go to stack.
//
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//
static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const unsigned IntRegsSize=4, FloatRegsSize=2;
static const unsigned IntRegs[] = {
Mips::A0, Mips::A1, Mips::A2, Mips::A3
};
static const unsigned F32Regs[] = {
Mips::F12, Mips::F14
};
static const unsigned F64Regs[] = {
Mips::D6, Mips::D7
};
// ByVal Args
if (ArgFlags.isByVal()) {
State.HandleByVal(ValNo, ValVT, LocVT, LocInfo,
1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags);
unsigned NextReg = (State.getNextStackOffset() + 3) / 4;
for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize);
r < std::min(IntRegsSize, NextReg); ++r)
State.AllocateReg(IntRegs[r]);
return false;
}
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Reg;
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
// is true: function is vararg, argument is 3rd or higher, there is previous
// argument which is not f32 or f64.
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
|| State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
unsigned OrigAlign = ArgFlags.getOrigAlign();
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
Reg = State.AllocateReg(IntRegs, IntRegsSize);
// If this is the first part of an i64 arg,
// the allocated register must be either A0 or A2.
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
Reg = State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
// Allocate int register and shadow next int register. If first
// available register is Mips::A1 or Mips::A3, shadow it too.
Reg = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg == Mips::A1 || Reg == Mips::A3)
Reg = State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
// we are guaranteed to find an available float register
if (ValVT == MVT::f32) {
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
// Shadow int register
State.AllocateReg(IntRegs, IntRegsSize);
} else {
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
// Shadow int registers
unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
}
} else
llvm_unreachable("Cannot handle this ValVT.");
unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign);
if (!Reg)
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false; // CC must always match
}
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
static const unsigned O32IntRegsSize = 4;
static const unsigned O32IntRegs[] = {
Mips::A0, Mips::A1, Mips::A2, Mips::A3
};
// Write ByVal Arg to arg registers and stack.
static void
WriteByValArg(SDValue& Chain, DebugLoc dl,
SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass,
SmallVector<SDValue, 8>& MemOpChains, int& LastFI,
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
const CCValAssign &VA, const ISD::ArgFlagsTy& Flags,
MVT PtrType) {
unsigned FirstWord = VA.getLocMemOffset() / 4;
unsigned NumWords = (Flags.getByValSize() + 3) / 4;
unsigned LastWord = FirstWord + NumWords;
unsigned CurWord;
// copy the first 4 words of byval arg to registers A0 - A3
for (CurWord = FirstWord; CurWord < std::min(LastWord, O32IntRegsSize);
++CurWord) {
SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
DAG.getConstant((CurWord - FirstWord) * 4,
MVT::i32));
SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr,
MachinePointerInfo(),
false, false, 0);
MemOpChains.push_back(LoadVal.getValue(1));
unsigned DstReg = O32IntRegs[CurWord];
RegsToPass.push_back(std::make_pair(DstReg, LoadVal));
}
// copy remaining part of byval arg to stack.
if (CurWord < LastWord) {
unsigned SizeInBytes = (LastWord - CurWord) * 4;
SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg,
DAG.getConstant((CurWord - FirstWord) * 4,
MVT::i32));
LastFI = MFI->CreateFixedObject(SizeInBytes, CurWord * 4, true);
SDValue Dst = DAG.getFrameIndex(LastFI, PtrType);
Chain = DAG.getMemcpy(Chain, dl, Dst, Src,
DAG.getConstant(SizeInBytes, MVT::i32),
/*Align*/4,
/*isVolatile=*/false, /*AlwaysInline=*/false,
MachinePointerInfo(0), MachinePointerInfo(0));
MemOpChains.push_back(Chain);
}
}
/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: isTailCall.
SDValue
MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// MIPs target does not yet support tail call optimization.
isTailCall = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
if (Subtarget->isABI_O32())
CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32);
else
CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NextStackOffset = CCInfo.getNextStackOffset();
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NextStackOffset,
true));
// If this is the first call, create a stack frame object that points to
// a location to which .cprestore saves $gp.
if (IsPIC && !MipsFI->getGPFI())
MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true));
// Get the frame index of the stack frame object that points to the location
// of dynamically allocated area on the stack.
int DynAllocFI = MipsFI->getDynAllocFI();
// Update size of the maximum argument space.
// For O32, a minimum of four words (16 bytes) of argument space is
// allocated.
if (Subtarget->isABI_O32())
NextStackOffset = std::max(NextStackOffset, (unsigned)16);
unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize();
if (MaxCallFrameSize < NextStackOffset) {
MipsFI->setMaxCallFrameSize(NextStackOffset);
// Set the offsets relative to $sp of the $gp restore slot and dynamically
// allocated stack space. These offsets must be aligned to a boundary
// determined by the stack alignment of the ABI.
unsigned StackAlignment = TFL->getStackAlignment();
NextStackOffset = (NextStackOffset + StackAlignment - 1) /
StackAlignment * StackAlignment;
if (IsPIC)
MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset);
MFI->setObjectOffset(DynAllocFI, NextStackOffset);
}
// With EABI is it possible to have 16 args on registers.
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue Arg = OutVals[i];
CCValAssign &VA = ArgLocs[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (Subtarget->isABI_O32() && VA.isRegLoc()) {
if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Arg, DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Arg, DAG.getConstant(1, MVT::i32));
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
continue;
}
}
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
// Register can't get to this point...
assert(VA.isMemLoc());
// ByVal Arg.
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
assert(Subtarget->isABI_O32() &&
"No support for ByVal args by ABIs other than O32 yet.");
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
WriteByValArg(Chain, dl, RegsToPass, MemOpChains, LastFI, MFI, DAG, Arg,
VA, Flags, getPointerTy());
continue;
}
// Create the frame index object for this incoming parameter
LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
VA.getLocMemOffset(), true);
SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
// emit ISD::STORE whichs stores the
// parameter value to a stack Location
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Extend range of indices of frame objects for outgoing arguments that were
// created during this function call. Skip this step if no such objects were
// created.
if (LastFI)
MipsFI->extendOutArgFIRange(FirstFI, LastFI);
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
bool LoadSymAddr = false;
SDValue CalleeLo;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (IsPIC && G->getGlobal()->hasInternalLinkage()) {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
getPointerTy(), 0,MipsII:: MO_GOT);
CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(),
0, MipsII::MO_ABS_LO);
} else {
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
getPointerTy(), 0, OpFlag);
}
LoadSymAddr = true;
}
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
getPointerTy(), OpFlag);
LoadSymAddr = true;
}
SDValue InFlag;
// Create nodes that load address of callee and copy it to T9
if (IsPIC) {
if (LoadSymAddr) {
// Load callee address
Callee = DAG.getNode(MipsISD::WrapperPIC, dl, MVT::i32, Callee);
SDValue LoadValue = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(),
false, false, 0);
// Use GOT+LO if callee has internal linkage.
if (CalleeLo.getNode()) {
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CalleeLo);
Callee = DAG.getNode(ISD::ADD, dl, MVT::i32, LoadValue, Lo);
} else
Callee = LoadValue;
}
// copy to T9
Chain = DAG.getCopyToReg(Chain, dl, Mips::T9, Callee, SDValue(0, 0));
InFlag = Chain.getValue(1);
Callee = DAG.getRegister(Mips::T9, MVT::i32);
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
//
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NextStackOffset, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl,
std::vector<SDValue>& OutChains,
SelectionDAG &DAG, unsigned NumWords, SDValue FIN,
const CCValAssign &VA, const ISD::ArgFlagsTy& Flags) {
unsigned LocMem = VA.getLocMemOffset();
unsigned FirstWord = LocMem / 4;
// copy register A0 - A3 to frame object
for (unsigned i = 0; i < NumWords; ++i) {
unsigned CurWord = FirstWord + i;
if (CurWord >= O32IntRegsSize)
break;
unsigned SrcReg = O32IntRegs[CurWord];
unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass);
SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN,
DAG.getConstant(i * 4, MVT::i32));
SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32),
StorePtr, MachinePointerInfo(), false,
false, 0);
OutChains.push_back(Store);
}
}
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setVarArgsFrameIndex(0);
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
if (Subtarget->isABI_O32())
CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32);
else
CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// Arguments stored on registers
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
unsigned ArgReg = VA.getLocReg();
TargetRegisterClass *RC = 0;
if (RegVT == MVT::i32)
RC = Mips::CPURegsRegisterClass;
else if (RegVT == MVT::f32)
RC = Mips::FGR32RegisterClass;
else if (RegVT == MVT::f64) {
if (!Subtarget->isSingleFloat())
RC = Mips::AFGR64RegisterClass;
} else
llvm_unreachable("RegVT not supported by FormalArguments Lowering");
// Transform the arguments stored on
// physical registers into virtual ones
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
if (VA.getLocInfo() != CCValAssign::Full) {
unsigned Opcode = 0;
if (VA.getLocInfo() == CCValAssign::SExt)
Opcode = ISD::AssertSext;
else if (VA.getLocInfo() == CCValAssign::ZExt)
Opcode = ISD::AssertZext;
if (Opcode)
ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
// Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
if (Subtarget->isABI_O32()) {
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
ArgValue = DAG.getNode(ISD::BITCAST, dl, MVT::f32, ArgValue);
if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
VA.getLocReg()+1, RC);
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
if (!Subtarget->isLittle())
std::swap(ArgValue, ArgValue2);
ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
ArgValue, ArgValue2);
}
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) {
assert(Subtarget->isABI_O32() &&
"No support for ByVal args by ABIs other than O32 yet.");
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
unsigned NumWords = (Flags.getByValSize() + 3) / 4;
LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(),
true);
SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
InVals.push_back(FIN);
ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags);
continue;
}
// The stack pointer offset is relative to the caller stack frame.
LastFI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
VA.getLocMemOffset(), true);
// Create load nodes to retrieve arguments from the stack
SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy());
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(LastFI),
false, false, 0));
}
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
MipsFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
if (isVarArg && Subtarget->isABI_O32()) {
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
unsigned NextStackOffset = CCInfo.getNextStackOffset();
assert(NextStackOffset % 4 == 0 &&
"NextStackOffset must be aligned to 4-byte boundaries.");
LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
MipsFI->setVarArgsFrameIndex(LastFI);
// If NextStackOffset is smaller than o32's 16-byte reserved argument area,
// copy the integer registers that have not been used for argument passing
// to the caller's stack frame.
for (; NextStackOffset < 16; NextStackOffset += 4) {
TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
unsigned Idx = NextStackOffset / 4;
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), O32IntRegs[Idx], RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
LastFI = MFI->CreateFixedObject(4, NextStackOffset, true);
SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy());
OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
}
MipsFI->setLastInArgFI(LastFI);
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
SDValue
MipsTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
OutVals[i], Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
Flag = Chain.getValue(1);
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into $v0.
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
Flag = Chain.getValue(1);
}
// Return on Mips is always a "jr $ra"
if (Flag.getNode())
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
else // Return Void
return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
Chain, DAG.getRegister(Mips::RA, MVT::i32));
}
//===----------------------------------------------------------------------===//
// Mips Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType MipsTargetLowering::
getConstraintType(const std::string &Constraint) const
{
// Mips specific constrainy
// GCC config/mips/constraints.md
//
// 'd' : An address register. Equivalent to r
// unless generating MIPS16 code.
// 'y' : Equivalent to r; retained for
// backwards compatibility.
// 'f' : Floating Point registers.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default : break;
case 'd':
case 'y':
case 'f':
return C_RegisterClass;
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'd':
case 'y':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f':
if (type->isFloatTy())
weight = CW_Register;
break;
}
return weight;
}
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
{
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
case 'y': // Same as 'r'. Exists for compatibility.
case 'r':
return std::make_pair(0U, Mips::CPURegsRegisterClass);
case 'f':
if (VT == MVT::f32)
return std::make_pair(0U, Mips::FGR32RegisterClass);
if (VT == MVT::f64)
if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
return std::make_pair(0U, Mips::AFGR64RegisterClass);
break;
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Mips target isn't yet aware of offsets.
return false;
}
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (VT != MVT::f32 && VT != MVT::f64)
return false;
if (Imm.isNegZero())
return false;
return Imm.isZero();
}