llvm/lib/Target/Hexagon/HexagonGenExtract.cpp
Craig Topper 68149f546e [APInt] Move isMask and isShiftedMask out of APIntOps and into the APInt class. Implement them without memory allocation for multiword
This moves the isMask and isShiftedMask functions to be class methods. They now use the MathExtras.h function for single word size and leading/trailing zeros/ones or countPopulation for the multiword size. The previous implementation made multiple temorary memory allocations to do the bitwise arithmetic operations to match the MathExtras.h implementation.

Differential Revision: https://reviews.llvm.org/D31565




git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@299362 91177308-0d34-0410-b5e6-96231b3b80d8
2017-04-03 16:34:59 +00:00

269 lines
8.5 KiB
C++

//===--- HexagonGenExtract.cpp --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
#include <cstdint>
#include <iterator>
using namespace llvm;
static cl::opt<unsigned> ExtractCutoff("extract-cutoff", cl::init(~0U),
cl::Hidden, cl::desc("Cutoff for generating \"extract\""
" instructions"));
// This prevents generating extract instructions that have the offset of 0.
// One of the reasons for "extract" is to put a sequence of bits in a regis-
// ter, starting at offset 0 (so that these bits can then be used by an
// "insert"). If the bits are already at offset 0, it is better not to gene-
// rate "extract", since logical bit operations can be merged into compound
// instructions (as opposed to "extract").
static cl::opt<bool> NoSR0("extract-nosr0", cl::init(true), cl::Hidden,
cl::desc("No extract instruction with offset 0"));
static cl::opt<bool> NeedAnd("extract-needand", cl::init(true), cl::Hidden,
cl::desc("Require & in extract patterns"));
namespace llvm {
void initializeHexagonGenExtractPass(PassRegistry&);
FunctionPass *createHexagonGenExtract();
} // end namespace llvm
namespace {
class HexagonGenExtract : public FunctionPass {
public:
static char ID;
HexagonGenExtract() : FunctionPass(ID), ExtractCount(0) {
initializeHexagonGenExtractPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Hexagon generate \"extract\" instructions";
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
private:
bool visitBlock(BasicBlock *B);
bool convert(Instruction *In);
unsigned ExtractCount;
DominatorTree *DT;
};
char HexagonGenExtract::ID = 0;
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(HexagonGenExtract, "hextract", "Hexagon generate "
"\"extract\" instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(HexagonGenExtract, "hextract", "Hexagon generate "
"\"extract\" instructions", false, false)
bool HexagonGenExtract::convert(Instruction *In) {
using namespace PatternMatch;
Value *BF = nullptr;
ConstantInt *CSL = nullptr, *CSR = nullptr, *CM = nullptr;
BasicBlock *BB = In->getParent();
LLVMContext &Ctx = BB->getContext();
bool LogicalSR;
// (and (shl (lshr x, #sr), #sl), #m)
LogicalSR = true;
bool Match = match(In, m_And(m_Shl(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CSL)),
m_ConstantInt(CM)));
if (!Match) {
// (and (shl (ashr x, #sr), #sl), #m)
LogicalSR = false;
Match = match(In, m_And(m_Shl(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CSL)),
m_ConstantInt(CM)));
}
if (!Match) {
// (and (shl x, #sl), #m)
LogicalSR = true;
CSR = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Match = match(In, m_And(m_Shl(m_Value(BF), m_ConstantInt(CSL)),
m_ConstantInt(CM)));
if (Match && NoSR0)
return false;
}
if (!Match) {
// (and (lshr x, #sr), #m)
LogicalSR = true;
CSL = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Match = match(In, m_And(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CM)));
}
if (!Match) {
// (and (ashr x, #sr), #m)
LogicalSR = false;
CSL = ConstantInt::get(Type::getInt32Ty(Ctx), 0);
Match = match(In, m_And(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CM)));
}
if (!Match) {
CM = nullptr;
// (shl (lshr x, #sr), #sl)
LogicalSR = true;
Match = match(In, m_Shl(m_LShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CSL)));
}
if (!Match) {
CM = nullptr;
// (shl (ashr x, #sr), #sl)
LogicalSR = false;
Match = match(In, m_Shl(m_AShr(m_Value(BF), m_ConstantInt(CSR)),
m_ConstantInt(CSL)));
}
if (!Match)
return false;
Type *Ty = BF->getType();
if (!Ty->isIntegerTy())
return false;
unsigned BW = Ty->getPrimitiveSizeInBits();
if (BW != 32 && BW != 64)
return false;
uint32_t SR = CSR->getZExtValue();
uint32_t SL = CSL->getZExtValue();
if (!CM) {
// If there was no and, and the shift left did not remove all potential
// sign bits created by the shift right, then extractu cannot reproduce
// this value.
if (!LogicalSR && (SR > SL))
return false;
APInt A = APInt(BW, ~0ULL).lshr(SR).shl(SL);
CM = ConstantInt::get(Ctx, A);
}
// CM is the shifted-left mask. Shift it back right to remove the zero
// bits on least-significant positions.
APInt M = CM->getValue().lshr(SL);
uint32_t T = M.countTrailingOnes();
// During the shifts some of the bits will be lost. Calculate how many
// of the original value will remain after shift right and then left.
uint32_t U = BW - std::max(SL, SR);
// The width of the extracted field is the minimum of the original bits
// that remain after the shifts and the number of contiguous 1s in the mask.
uint32_t W = std::min(U, T);
if (W == 0)
return false;
// Check if the extracted bits are contained within the mask that it is
// and-ed with. The extract operation will copy these bits, and so the
// mask cannot any holes in it that would clear any of the bits of the
// extracted field.
if (!LogicalSR) {
// If the shift right was arithmetic, it could have included some 1 bits.
// It is still ok to generate extract, but only if the mask eliminates
// those bits (i.e. M does not have any bits set beyond U).
APInt C = APInt::getHighBitsSet(BW, BW-U);
if (M.intersects(C) || !M.isMask(W))
return false;
} else {
// Check if M starts with a contiguous sequence of W times 1 bits. Get
// the low U bits of M (which eliminates the 0 bits shifted in on the
// left), and check if the result is APInt's "mask":
if (!M.getLoBits(U).isMask(W))
return false;
}
IRBuilder<> IRB(In);
Intrinsic::ID IntId = (BW == 32) ? Intrinsic::hexagon_S2_extractu
: Intrinsic::hexagon_S2_extractup;
Module *Mod = BB->getParent()->getParent();
Value *ExtF = Intrinsic::getDeclaration(Mod, IntId);
Value *NewIn = IRB.CreateCall(ExtF, {BF, IRB.getInt32(W), IRB.getInt32(SR)});
if (SL != 0)
NewIn = IRB.CreateShl(NewIn, SL, CSL->getName());
In->replaceAllUsesWith(NewIn);
return true;
}
bool HexagonGenExtract::visitBlock(BasicBlock *B) {
// Depth-first, bottom-up traversal.
for (auto *DTN : children<DomTreeNode*>(DT->getNode(B)))
visitBlock(DTN->getBlock());
// Allow limiting the number of generated extracts for debugging purposes.
bool HasCutoff = ExtractCutoff.getPosition();
unsigned Cutoff = ExtractCutoff;
bool Changed = false;
BasicBlock::iterator I = std::prev(B->end()), NextI, Begin = B->begin();
while (true) {
if (HasCutoff && (ExtractCount >= Cutoff))
return Changed;
bool Last = (I == Begin);
if (!Last)
NextI = std::prev(I);
Instruction *In = &*I;
bool Done = convert(In);
if (HasCutoff && Done)
ExtractCount++;
Changed |= Done;
if (Last)
break;
I = NextI;
}
return Changed;
}
bool HexagonGenExtract::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool Changed;
// Traverse the function bottom-up, to see super-expressions before their
// sub-expressions.
BasicBlock *Entry = GraphTraits<Function*>::getEntryNode(&F);
Changed = visitBlock(Entry);
return Changed;
}
FunctionPass *llvm::createHexagonGenExtract() {
return new HexagonGenExtract();
}