mirror of
https://github.com/RPCS3/llvm.git
synced 2025-04-05 14:52:02 +00:00

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8862 91177308-0d34-0410-b5e6-96231b3b80d8
271 lines
10 KiB
C++
271 lines
10 KiB
C++
//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
|
|
//
|
|
// This file is used to promote memory references to be register references. A
|
|
// simple example of the transformation performed by this function is:
|
|
//
|
|
// FROM CODE TO CODE
|
|
// %X = alloca int, uint 1 ret int 42
|
|
// store int 42, int *%X
|
|
// %Y = load int* %X
|
|
// ret int %Y
|
|
//
|
|
// The code is transformed by looping over all of the alloca instruction,
|
|
// calculating dominator frontiers, then inserting phi-nodes following the usual
|
|
// SSA construction algorithm. This code does not modify the CFG of the
|
|
// function.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/StringExtras.h"
|
|
|
|
/// isAllocaPromotable - Return true if this alloca is legal for promotion.
|
|
/// This is true if there are only loads and stores to the alloca...
|
|
///
|
|
bool isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
|
|
// FIXME: If the memory unit is of pointer or integer type, we can permit
|
|
// assignments to subsections of the memory unit.
|
|
|
|
// Only allow direct loads and stores...
|
|
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
|
|
UI != UE; ++UI) // Loop over all of the uses of the alloca
|
|
if (!isa<LoadInst>(*UI))
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
|
|
if (SI->getOperand(0) == AI)
|
|
return false; // Don't allow a store of the AI, only INTO the AI.
|
|
} else {
|
|
return false; // Not a load or store?
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
namespace {
|
|
struct PromoteMem2Reg {
|
|
// Allocas - The alloca instructions being promoted
|
|
const std::vector<AllocaInst*> &Allocas;
|
|
DominanceFrontier &DF;
|
|
const TargetData &TD;
|
|
|
|
// AllocaLookup - Reverse mapping of Allocas
|
|
std::map<AllocaInst*, unsigned> AllocaLookup;
|
|
|
|
// VersionNumbers - Current version counters for each alloca
|
|
std::vector<unsigned> VersionNumbers;
|
|
|
|
// NewPhiNodes - The PhiNodes we're adding.
|
|
std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
|
|
|
|
// Visited - The set of basic blocks the renamer has already visited.
|
|
std::set<BasicBlock*> Visited;
|
|
|
|
public:
|
|
PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominanceFrontier &df,
|
|
const TargetData &td) : Allocas(A), DF(df), TD(td) {}
|
|
|
|
void run();
|
|
|
|
private:
|
|
void RenamePass(BasicBlock *BB, BasicBlock *Pred,
|
|
std::vector<Value*> &IncVals);
|
|
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
|
|
};
|
|
} // end of anonymous namespace
|
|
|
|
void PromoteMem2Reg::run() {
|
|
Function &F = *DF.getRoot()->getParent();
|
|
|
|
VersionNumbers.resize(Allocas.size());
|
|
|
|
for (unsigned i = 0; i != Allocas.size(); ++i) {
|
|
AllocaInst *AI = Allocas[i];
|
|
|
|
assert(isAllocaPromotable(AI, TD) &&
|
|
"Cannot promote non-promotable alloca!");
|
|
assert(Allocas[i]->getParent()->getParent() == &F &&
|
|
"All allocas should be in the same function, which is same as DF!");
|
|
|
|
// Calculate the set of write-locations for each alloca. This is analogous
|
|
// to counting the number of 'redefinitions' of each variable.
|
|
std::vector<BasicBlock*> DefiningBlocks;
|
|
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(cast<Instruction>(*U)))
|
|
// jot down the basic-block it came from
|
|
DefiningBlocks.push_back(SI->getParent());
|
|
|
|
AllocaLookup[Allocas[i]] = i;
|
|
|
|
// PhiNodeBlocks - A list of blocks that phi nodes have been inserted for
|
|
// this alloca.
|
|
std::vector<BasicBlock*> PhiNodeBlocks;
|
|
|
|
// Compute the locations where PhiNodes need to be inserted. Look at the
|
|
// dominance frontier of EACH basic-block we have a write in.
|
|
//
|
|
while (!DefiningBlocks.empty()) {
|
|
BasicBlock *BB = DefiningBlocks.back();
|
|
DefiningBlocks.pop_back();
|
|
|
|
// Look up the DF for this write, add it to PhiNodes
|
|
DominanceFrontier::const_iterator it = DF.find(BB);
|
|
if (it != DF.end()) {
|
|
const DominanceFrontier::DomSetType &S = it->second;
|
|
for (DominanceFrontier::DomSetType::iterator P = S.begin(),PE = S.end();
|
|
P != PE; ++P)
|
|
if (QueuePhiNode(*P, i))
|
|
DefiningBlocks.push_back(*P);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the incoming values for the basic block to be null values for all of
|
|
// the alloca's. We do this in case there is a load of a value that has not
|
|
// been stored yet. In this case, it will get this null value.
|
|
//
|
|
std::vector<Value *> Values(Allocas.size());
|
|
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
|
|
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
|
|
|
|
// Walks all basic blocks in the function performing the SSA rename algorithm
|
|
// and inserting the phi nodes we marked as necessary
|
|
//
|
|
RenamePass(F.begin(), 0, Values);
|
|
Visited.clear();
|
|
|
|
// Remove the allocas themselves from the function...
|
|
for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
|
|
Instruction *A = Allocas[i];
|
|
|
|
// If there are any uses of the alloca instructions left, they must be in
|
|
// sections of dead code that were not processed on the dominance frontier.
|
|
// Just delete the users now.
|
|
//
|
|
if (!A->use_empty())
|
|
A->replaceAllUsesWith(Constant::getNullValue(A->getType()));
|
|
A->getParent()->getInstList().erase(A);
|
|
}
|
|
}
|
|
|
|
|
|
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
|
|
// Alloca returns true if there wasn't already a phi-node for that variable
|
|
//
|
|
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
|
|
// Look up the basic-block in question
|
|
std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
|
|
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
|
|
|
|
// If the BB already has a phi node added for the i'th alloca then we're done!
|
|
if (BBPNs[AllocaNo]) return false;
|
|
|
|
// Create a PhiNode using the dereferenced type... and add the phi-node to the
|
|
// BasicBlock.
|
|
PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
|
|
Allocas[AllocaNo]->getName() + "." +
|
|
utostr(VersionNumbers[AllocaNo]++),
|
|
BB->begin());
|
|
|
|
// Add null incoming values for all predecessors. This ensures that if one of
|
|
// the predecessors is not found in the depth-first traversal of the CFG (ie,
|
|
// because it is an unreachable predecessor), that all PHI nodes will have the
|
|
// correct number of entries for their predecessors.
|
|
Value *NullVal = Constant::getNullValue(PN->getType());
|
|
|
|
// This is necessary because adding incoming values to the PHI node adds uses
|
|
// to the basic blocks being used, which can invalidate the predecessor
|
|
// iterator!
|
|
std::vector<BasicBlock*> Preds(pred_begin(BB), pred_end(BB));
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i)
|
|
PN->addIncoming(NullVal, Preds[i]);
|
|
|
|
BBPNs[AllocaNo] = PN;
|
|
return true;
|
|
}
|
|
|
|
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
|
|
std::vector<Value*> &IncomingVals) {
|
|
|
|
// If this BB needs a PHI node, update the PHI node for each variable we need
|
|
// PHI nodes for.
|
|
std::map<BasicBlock*, std::vector<PHINode *> >::iterator
|
|
BBPNI = NewPhiNodes.find(BB);
|
|
if (BBPNI != NewPhiNodes.end()) {
|
|
std::vector<PHINode *> &BBPNs = BBPNI->second;
|
|
for (unsigned k = 0; k != BBPNs.size(); ++k)
|
|
if (PHINode *PN = BBPNs[k]) {
|
|
// The PHI node may have multiple entries for this predecessor. We must
|
|
// make sure we update all of them.
|
|
for (unsigned i = 0, e = PN->getNumOperands(); i != e; i += 2) {
|
|
if (PN->getOperand(i+1) == Pred)
|
|
// At this point we can assume that the array has phi nodes.. let's
|
|
// update the incoming data.
|
|
PN->setOperand(i, IncomingVals[k]);
|
|
}
|
|
// also note that the active variable IS designated by the phi node
|
|
IncomingVals[k] = PN;
|
|
}
|
|
}
|
|
|
|
// don't revisit nodes
|
|
if (Visited.count(BB)) return;
|
|
|
|
// mark as visited
|
|
Visited.insert(BB);
|
|
|
|
for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
|
|
Instruction *I = II++; // get the instruction, increment iterator
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
|
|
std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
|
|
if (AI != AllocaLookup.end()) {
|
|
Value *V = IncomingVals[AI->second];
|
|
|
|
// walk the use list of this load and replace all uses with r
|
|
LI->replaceAllUsesWith(V);
|
|
BB->getInstList().erase(LI);
|
|
}
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
// Delete this instruction and mark the name as the current holder of the
|
|
// value
|
|
if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
|
|
std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
|
|
if (ai != AllocaLookup.end()) {
|
|
// what value were we writing?
|
|
IncomingVals[ai->second] = SI->getOperand(0);
|
|
BB->getInstList().erase(SI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recurse to our successors
|
|
TerminatorInst *TI = BB->getTerminator();
|
|
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
|
|
std::vector<Value*> OutgoingVals(IncomingVals);
|
|
RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
|
|
}
|
|
}
|
|
|
|
/// PromoteMemToReg - Promote the specified list of alloca instructions into
|
|
/// scalar registers, inserting PHI nodes as appropriate. This function makes
|
|
/// use of DominanceFrontier information. This function does not modify the CFG
|
|
/// of the function at all. All allocas must be from the same function.
|
|
///
|
|
void PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
|
|
DominanceFrontier &DF, const TargetData &TD) {
|
|
// If there is nothing to do, bail out...
|
|
if (Allocas.empty()) return;
|
|
PromoteMem2Reg(Allocas, DF, TD).run();
|
|
}
|