mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-16 06:49:58 +00:00
0aa7cd605d
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2581 91177308-0d34-0410-b5e6-96231b3b80d8
200 lines
6.7 KiB
C++
200 lines
6.7 KiB
C++
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
|
|
//
|
|
// This pass reassociates commutative expressions in an order that is designed
|
|
// to promote better constant propogation, GCSE, LICM, PRE...
|
|
//
|
|
// For example: 4 + (x + 5) -> x + (4 + 5)
|
|
//
|
|
// Note that this pass works best if left shifts have been promoted to explicit
|
|
// multiplies before this pass executes.
|
|
//
|
|
// In the implementation of this algorithm, constants are assigned rank = 0,
|
|
// function arguments are rank = 1, and other values are assigned ranks
|
|
// corresponding to the reverse post order traversal of current function
|
|
// (starting at 2), which effectively gives values in deep loops higher rank
|
|
// than values not in loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/iOperators.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "Support/PostOrderIterator.h"
|
|
|
|
namespace {
|
|
class Reassociate : public FunctionPass {
|
|
map<BasicBlock*, unsigned> RankMap;
|
|
public:
|
|
const char *getPassName() const {
|
|
return "Expression Reassociation";
|
|
}
|
|
|
|
bool runOnFunction(Function *F);
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.preservesCFG();
|
|
}
|
|
private:
|
|
void BuildRankMap(Function *F);
|
|
unsigned getRank(Value *V);
|
|
bool ReassociateExpr(BinaryOperator *I);
|
|
bool ReassociateBB(BasicBlock *BB);
|
|
};
|
|
}
|
|
|
|
Pass *createReassociatePass() { return new Reassociate(); }
|
|
|
|
void Reassociate::BuildRankMap(Function *F) {
|
|
unsigned i = 1;
|
|
ReversePostOrderTraversal<Function*> RPOT(F);
|
|
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
|
|
E = RPOT.end(); I != E; ++I)
|
|
RankMap[*I] = ++i;
|
|
}
|
|
|
|
unsigned Reassociate::getRank(Value *V) {
|
|
if (isa<Argument>(V)) return 1; // Function argument...
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
|
|
// can reassociate expressions for code motion! Since we do not recurse for
|
|
// PHI nodes, we cannot have infinite recursion here, because there cannot
|
|
// be loops in the value graph (except for PHI nodes).
|
|
//
|
|
if (I->getOpcode() == Instruction::PHINode ||
|
|
I->getOpcode() == Instruction::Alloca ||
|
|
I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
|
|
I->hasSideEffects())
|
|
return RankMap[I->getParent()];
|
|
|
|
unsigned Rank = 0;
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
Rank = std::max(Rank, getRank(I->getOperand(i)));
|
|
|
|
return Rank;
|
|
}
|
|
|
|
// Otherwise it's a global or constant, rank 0.
|
|
return 0;
|
|
}
|
|
|
|
|
|
// isCommutativeOperator - Return true if the specified instruction is
|
|
// commutative and associative. If the instruction is not commutative and
|
|
// associative, we can not reorder its operands!
|
|
//
|
|
static inline BinaryOperator *isCommutativeOperator(Instruction *I) {
|
|
// Floating point operations do not commute!
|
|
if (I->getType()->isFloatingPoint()) return 0;
|
|
|
|
if (I->getOpcode() == Instruction::Add ||
|
|
I->getOpcode() == Instruction::Mul ||
|
|
I->getOpcode() == Instruction::And ||
|
|
I->getOpcode() == Instruction::Or ||
|
|
I->getOpcode() == Instruction::Xor)
|
|
return cast<BinaryOperator>(I);
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool Reassociate::ReassociateExpr(BinaryOperator *I) {
|
|
Value *LHS = I->getOperand(0);
|
|
Value *RHS = I->getOperand(1);
|
|
unsigned LHSRank = getRank(LHS);
|
|
unsigned RHSRank = getRank(RHS);
|
|
|
|
bool Changed = false;
|
|
|
|
// Make sure the LHS of the operand always has the greater rank...
|
|
if (LHSRank < RHSRank) {
|
|
I->swapOperands();
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSRank, RHSRank);
|
|
Changed = true;
|
|
//cerr << "Transposed: " << I << " Result BB: " << I->getParent();
|
|
}
|
|
|
|
// If the LHS is the same operator as the current one is, and if we are the
|
|
// only expression using it...
|
|
//
|
|
if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
|
|
if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
|
|
// If the rank of our current RHS is less than the rank of the LHS's LHS,
|
|
// then we reassociate the two instructions...
|
|
if (RHSRank < getRank(LHSI->getOperand(0))) {
|
|
unsigned TakeOp = 0;
|
|
if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
|
|
if (IOp->getOpcode() == LHSI->getOpcode())
|
|
TakeOp = 1; // Hoist out non-tree portion
|
|
|
|
// Convert ((a + 12) + 10) into (a + (12 + 10))
|
|
I->setOperand(0, LHSI->getOperand(TakeOp));
|
|
LHSI->setOperand(TakeOp, RHS);
|
|
I->setOperand(1, LHSI);
|
|
|
|
//cerr << "Reassociated: " << I << " Result BB: " << I->getParent();
|
|
|
|
// Since we modified the RHS instruction, make sure that we recheck it.
|
|
ReassociateExpr(LHSI);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool Reassociate::ReassociateBB(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
|
|
Instruction *Inst = *BI;
|
|
|
|
// If this instruction is a commutative binary operator, and the ranks of
|
|
// the two operands are sorted incorrectly, fix it now.
|
|
//
|
|
if (BinaryOperator *I = isCommutativeOperator(Inst)) {
|
|
// Make sure that this expression is correctly reassociated with respect
|
|
// to it's used values...
|
|
//
|
|
Changed |= ReassociateExpr(I);
|
|
|
|
} else if (Inst->getOpcode() == Instruction::Sub &&
|
|
Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) {
|
|
// Convert a subtract into an add and a neg instruction... so that sub
|
|
// instructions can be commuted with other add instructions...
|
|
//
|
|
Instruction *New = BinaryOperator::create(Instruction::Add,
|
|
Inst->getOperand(0), Inst,
|
|
Inst->getName());
|
|
// Everyone now refers to the add instruction...
|
|
Inst->replaceAllUsesWith(New);
|
|
Inst->setName(Inst->getOperand(1)->getName()+".neg");
|
|
New->setOperand(1, Inst); // Except for the add inst itself!
|
|
|
|
BI = BB->getInstList().insert(BI+1, New)-1; // Add to the basic block...
|
|
Inst->setOperand(0, Constant::getNullValue(Inst->getType()));
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool Reassociate::runOnFunction(Function *F) {
|
|
// Recalculate the rank map for F
|
|
BuildRankMap(F);
|
|
|
|
bool Changed = false;
|
|
for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
|
|
Changed |= ReassociateBB(*FI);
|
|
|
|
// We are done with the rank map...
|
|
RankMap.clear();
|
|
return Changed;
|
|
}
|