llvm/lib/VMCore/AsmWriter.cpp
Chris Lattner b976e66816 Add support for undef and unreachable
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@17041 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-16 18:08:06 +00:00

1665 lines
55 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because it can be used for debugging transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Assembly/AsmAnnotationWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
using namespace llvm;
namespace llvm {
/// This class provides computation of slot numbers for LLVM Assembly writing.
/// @brief LLVM Assembly Writing Slot Computation.
class SlotMachine {
/// @name Types
/// @{
public:
/// @brief A mapping of Values to slot numbers
typedef std::map<const Value*, unsigned> ValueMap;
typedef std::map<const Type*, unsigned> TypeMap;
/// @brief A plane with next slot number and ValueMap
struct ValuePlane {
unsigned next_slot; ///< The next slot number to use
ValueMap map; ///< The map of Value* -> unsigned
ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
};
struct TypePlane {
unsigned next_slot;
TypeMap map;
TypePlane() { next_slot = 0; }
void clear() { map.clear(); next_slot = 0; }
};
/// @brief The map of planes by Type
typedef std::map<const Type*, ValuePlane> TypedPlanes;
/// @}
/// @name Constructors
/// @{
public:
/// @brief Construct from a module
SlotMachine(const Module *M );
/// @brief Construct from a function, starting out in incorp state.
SlotMachine(const Function *F );
/// @}
/// @name Accessors
/// @{
public:
/// Return the slot number of the specified value in it's type
/// plane. Its an error to ask for something not in the SlotMachine.
/// Its an error to ask for a Type*
int getSlot(const Value *V);
int getSlot(const Type*Ty);
/// Determine if a Value has a slot or not
bool hasSlot(const Value* V);
bool hasSlot(const Type* Ty);
/// @}
/// @name Mutators
/// @{
public:
/// If you'd like to deal with a function instead of just a module, use
/// this method to get its data into the SlotMachine.
void incorporateFunction(const Function *F) {
TheFunction = F;
FunctionProcessed = false;
}
/// After calling incorporateFunction, use this method to remove the
/// most recently incorporated function from the SlotMachine. This
/// will reset the state of the machine back to just the module contents.
void purgeFunction();
/// @}
/// @name Implementation Details
/// @{
private:
/// This function does the actual initialization.
inline void initialize();
/// Values can be crammed into here at will. If they haven't
/// been inserted already, they get inserted, otherwise they are ignored.
/// Either way, the slot number for the Value* is returned.
unsigned createSlot(const Value *V);
unsigned createSlot(const Type* Ty);
/// Insert a value into the value table. Return the slot number
/// that it now occupies. BadThings(TM) will happen if you insert a
/// Value that's already been inserted.
unsigned insertValue( const Value *V );
unsigned insertValue( const Type* Ty);
/// Add all of the module level global variables (and their initializers)
/// and function declarations, but not the contents of those functions.
void processModule();
/// Add all of the functions arguments, basic blocks, and instructions
void processFunction();
SlotMachine(const SlotMachine &); // DO NOT IMPLEMENT
void operator=(const SlotMachine &); // DO NOT IMPLEMENT
/// @}
/// @name Data
/// @{
public:
/// @brief The module for which we are holding slot numbers
const Module* TheModule;
/// @brief The function for which we are holding slot numbers
const Function* TheFunction;
bool FunctionProcessed;
/// @brief The TypePlanes map for the module level data
TypedPlanes mMap;
TypePlane mTypes;
/// @brief The TypePlanes map for the function level data
TypedPlanes fMap;
TypePlane fTypes;
/// @}
};
} // end namespace llvm
static RegisterPass<PrintModulePass>
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
static RegisterPass<PrintFunctionPass>
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotMachine *Machine);
static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotMachine *Machine);
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
else if (const Instruction *I = dyn_cast<Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
return GV->getParent();
return 0;
}
static SlotMachine *createSlotMachine(const Value *V) {
if (const Argument *FA = dyn_cast<Argument>(V)) {
return new SlotMachine(FA->getParent());
} else if (const Instruction *I = dyn_cast<Instruction>(V)) {
return new SlotMachine(I->getParent()->getParent());
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
return new SlotMachine(BB->getParent());
} else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
return new SlotMachine(GV->getParent());
} else if (const Function *Func = dyn_cast<Function>(V)) {
return new SlotMachine(Func);
}
return 0;
}
// getLLVMName - Turn the specified string into an 'LLVM name', which is either
// prefixed with % (if the string only contains simple characters) or is
// surrounded with ""'s (if it has special chars in it).
static std::string getLLVMName(const std::string &Name) {
assert(!Name.empty() && "Cannot get empty name!");
// First character cannot start with a number...
if (Name[0] >= '0' && Name[0] <= '9')
return "\"" + Name + "\"";
// Scan to see if we have any characters that are not on the "white list"
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
char C = Name[i];
assert(C != '"' && "Illegal character in LLVM value name!");
if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
C != '-' && C != '.' && C != '_')
return "\"" + Name + "\"";
}
// If we get here, then the identifier is legal to use as a "VarID".
return "%"+Name;
}
/// fillTypeNameTable - If the module has a symbol table, take all global types
/// and stuff their names into the TypeNames map.
///
static void fillTypeNameTable(const Module *M,
std::map<const Type *, std::string> &TypeNames) {
if (!M) return;
const SymbolTable &ST = M->getSymbolTable();
SymbolTable::type_const_iterator TI = ST.type_begin();
for (; TI != ST.type_end(); ++TI ) {
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
//
const Type *Ty = cast<Type>(TI->second);
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
}
}
static void calcTypeName(const Type *Ty,
std::vector<const Type *> &TypeStack,
std::map<const Type *, std::string> &TypeNames,
std::string & Result){
if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
Result += Ty->getDescription(); // Base case
return;
}
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) {
Result += I->second;
return;
}
if (isa<OpaqueType>(Ty)) {
Result += "opaque";
return;
}
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
if (Slot < CurSize) {
Result += "\\" + utostr(CurSize-Slot); // Here's the upreference
return;
}
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
switch (Ty->getTypeID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<FunctionType>(Ty);
calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
Result += " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Result += ", ";
calcTypeName(*I, TypeStack, TypeNames, Result);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<StructType>(Ty);
Result += "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Result += ", ";
calcTypeName(*I, TypeStack, TypeNames, Result);
}
Result += " }";
break;
}
case Type::PointerTyID:
calcTypeName(cast<PointerType>(Ty)->getElementType(),
TypeStack, TypeNames, Result);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
Result += "[" + utostr(ATy->getNumElements()) + " x ";
calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
Result += "]";
break;
}
case Type::PackedTyID: {
const PackedType *PTy = cast<PackedType>(Ty);
Result += "<" + utostr(PTy->getNumElements()) + " x ";
calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
Result += ">";
break;
}
case Type::OpaqueTyID:
Result += "opaque";
break;
default:
Result += "<unrecognized-type>";
}
TypeStack.pop_back(); // Remove self from stack...
return;
}
/// printTypeInt - The internal guts of printing out a type that has a
/// potentially named portion.
///
static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
std::map<const Type *, std::string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
//
if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
return Out << Ty->getDescription();
// Check to see if the type is named.
std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
std::vector<const Type *> TypeStack;
std::string TypeName;
calcTypeName(Ty, TypeStack, TypeNames, TypeName);
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
return (Out << TypeName);
}
/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
/// type, iff there is an entry in the modules symbol table for the specified
/// type or one of it's component types. This is slower than a simple x << Type
///
std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
const Module *M) {
Out << ' ';
// If they want us to print out a type, attempt to make it symbolic if there
// is a symbol table in the module...
if (M) {
std::map<const Type *, std::string> TypeNames;
fillTypeNameTable(M, TypeNames);
return printTypeInt(Out, Ty, TypeNames);
} else {
return Out << Ty->getDescription();
}
}
/// @brief Internal constant writer.
static void WriteConstantInt(std::ostream &Out, const Constant *CV,
bool PrintName,
std::map<const Type *, std::string> &TypeTable,
SlotMachine *Machine) {
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << (CB == ConstantBool::True ? "true" : "false");
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[1] >= '0' && StrVal[1] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
Out << StrVal; return;
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
//
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
//
double Val = CFP->getValue();
char *Ptr = (char*)&Val;
assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(*(uint64_t*)Ptr);
} else if (isa<ConstantAggregateZero>(CV)) {
Out << "zeroinitializer";
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CA->getType()->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
if (ETy == Type::SByteTy)
for (unsigned i = 0; i < CA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
isString = false;
break;
}
if (isString) {
Out << "c\"";
for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
unsigned char C =
(unsigned char)cast<ConstantInt>(CA->getOperand(i))->getRawValue();
if (isprint(C) && C != '"' && C != '\\') {
Out << C;
} else {
Out << '\\'
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
Out << "\"";
} else { // Cannot output in string format...
Out << '[';
if (CA->getNumOperands()) {
Out << ' ';
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(0),
PrintName, TypeTable, Machine);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
TypeTable, Machine);
}
}
Out << " ]";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << '{';
if (CS->getNumOperands()) {
Out << ' ';
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(0),
PrintName, TypeTable, Machine);
for (unsigned i = 1; i < CS->getNumOperands(); i++) {
Out << ", ";
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(i),
PrintName, TypeTable, Machine);
}
}
Out << " }";
} else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
const Type *ETy = CP->getType()->getElementType();
assert(CP->getNumOperands() > 0 &&
"Number of operands for a PackedConst must be > 0");
Out << '<';
Out << ' ';
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CP->getOperand(0),
PrintName, TypeTable, Machine);
for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
TypeTable, Machine);
}
Out << " >";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "null";
} else if (isa<UndefValue>(CV)) {
Out << "undef";
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName() << " (";
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
printTypeInt(Out, (*OI)->getType(), TypeTable);
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
if (OI+1 != CE->op_end())
Out << ", ";
}
if (CE->getOpcode() == Instruction::Cast) {
Out << " to ";
printTypeInt(Out, CE->getType(), TypeTable);
}
Out << ')';
} else {
Out << "<placeholder or erroneous Constant>";
}
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
bool PrintName,
std::map<const Type*, std::string> &TypeTable,
SlotMachine *Machine) {
Out << ' ';
if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
Out << getLLVMName(V->getName());
else {
const Constant *CV = dyn_cast<Constant>(V);
if (CV && !isa<GlobalValue>(CV))
WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
else {
int Slot;
if (Machine) {
Slot = Machine->getSlot(V);
} else {
Machine = createSlotMachine(V);
if (Machine == 0)
Slot = Machine->getSlot(V);
else
Slot = -1;
delete Machine;
}
if (Slot != -1)
Out << '%' << Slot;
else
Out << "<badref>";
}
}
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
bool PrintType, bool PrintName,
const Module *Context) {
std::map<const Type *, std::string> TypeNames;
if (Context == 0) Context = getModuleFromVal(V);
if (Context)
fillTypeNameTable(Context, TypeNames);
if (PrintType)
printTypeInt(Out, V->getType(), TypeNames);
WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
return Out;
}
/// WriteAsOperandInternal - Write the name of the specified value out to
/// the specified ostream. This can be useful when you just want to print
/// int %reg126, not the whole instruction that generated it.
///
static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
bool PrintName,
std::map<const Type*, std::string> &TypeTable,
SlotMachine *Machine) {
Out << ' ';
int Slot;
if (Machine) {
Slot = Machine->getSlot(T);
if (Slot != -1)
Out << '%' << Slot;
else
Out << "<badref>";
} else {
Out << T->getDescription();
}
}
/// WriteAsOperand - Write the name of the specified value out to the specified
/// ostream. This can be useful when you just want to print int %reg126, not
/// the whole instruction that generated it.
///
std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
bool PrintType, bool PrintName,
const Module *Context) {
std::map<const Type *, std::string> TypeNames;
assert(Context != 0 && "Can't write types as operand without module context");
fillTypeNameTable(Context, TypeNames);
// if (PrintType)
// printTypeInt(Out, V->getType(), TypeNames);
printTypeInt(Out, Ty, TypeNames);
WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
return Out;
}
namespace llvm {
class AssemblyWriter {
std::ostream &Out;
SlotMachine &Machine;
const Module *TheModule;
std::map<const Type *, std::string> TypeNames;
AssemblyAnnotationWriter *AnnotationWriter;
public:
inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
AssemblyAnnotationWriter *AAW)
: Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
fillTypeNameTable(M, TypeNames);
}
inline void write(const Module *M) { printModule(M); }
inline void write(const GlobalVariable *G) { printGlobal(G); }
inline void write(const Function *F) { printFunction(F); }
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
inline void write(const Instruction *I) { printInstruction(*I); }
inline void write(const Constant *CPV) { printConstant(CPV); }
inline void write(const Type *Ty) { printType(Ty); }
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
const Module* getModule() { return TheModule; }
private :
void printModule(const Module *M);
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
void printArgument(const Argument *FA);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction &I);
// printType - Go to extreme measures to attempt to print out a short,
// symbolic version of a type name.
//
std::ostream &printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
}
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
};
} // end of llvm namespace
/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
/// without considering any symbolic types that we may have equal to it.
///
std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
printType(FTy->getReturnType()) << " (";
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I) {
if (I != FTy->param_begin())
Out << ", ";
printType(*I);
}
if (FTy->isVarArg()) {
if (FTy->getNumParams()) Out << ", ";
Out << "...";
}
Out << ')';
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
Out << "{ ";
for (StructType::element_iterator I = STy->element_begin(),
E = STy->element_end(); I != E; ++I) {
if (I != STy->element_begin())
Out << ", ";
printType(*I);
}
Out << " }";
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
printType(PTy->getElementType()) << '*';
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Out << '[' << ATy->getNumElements() << " x ";
printType(ATy->getElementType()) << ']';
} else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
Out << '<' << PTy->getNumElements() << " x ";
printType(PTy->getElementType()) << '>';
}
else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
Out << "opaque";
} else {
if (!Ty->isPrimitiveType())
Out << "<unknown derived type>";
printType(Ty);
}
return Out;
}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
assert(Operand != 0 && "Illegal Operand");
if (PrintType) { Out << ' '; printType(Operand->getType()); }
WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
}
void AssemblyWriter::printModule(const Module *M) {
switch (M->getEndianness()) {
case Module::LittleEndian: Out << "target endian = little\n"; break;
case Module::BigEndian: Out << "target endian = big\n"; break;
case Module::AnyEndianness: break;
}
switch (M->getPointerSize()) {
case Module::Pointer32: Out << "target pointersize = 32\n"; break;
case Module::Pointer64: Out << "target pointersize = 64\n"; break;
case Module::AnyPointerSize: break;
}
if (!M->getTargetTriple().empty())
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
// Loop over the dependent libraries and emit them.
Module::lib_iterator LI = M->lib_begin();
Module::lib_iterator LE = M->lib_end();
if (LI != LE) {
Out << "deplibs = [ ";
while (LI != LE) {
Out << '"' << *LI << '"';
++LI;
if (LI != LE)
Out << ", ";
}
Out << " ]\n";
}
// Loop over the symbol table, emitting all named constants.
printSymbolTable(M->getSymbolTable());
for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
printGlobal(I);
Out << "\nimplementation ; Functions:\n";
// Output all of the functions.
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
if (!GV->hasInitializer())
Out << "external ";
else
switch (GV->getLinkage()) {
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
case GlobalValue::WeakLinkage: Out << "weak "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalLinkage: break;
}
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getElementType());
if (GV->hasInitializer()) {
Constant* C = cast<Constant>(GV->getInitializer());
assert(C && "GlobalVar initializer isn't constant?");
writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
}
printInfoComment(*GV);
Out << "\n";
}
// printSymbolTable - Run through symbol table looking for constants
// and types. Emit their declarations.
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
// Print the types.
for (SymbolTable::type_const_iterator TI = ST.type_begin();
TI != ST.type_end(); ++TI ) {
Out << "\t" << getLLVMName(TI->first) << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
//
printTypeAtLeastOneLevel(TI->second) << "\n";
}
// Print the constants, in type plane order.
for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
PI != ST.plane_end(); ++PI ) {
SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
for (; VI != VE; ++VI) {
const Value* V = VI->second;
const Constant *CPV = dyn_cast<Constant>(V) ;
if (CPV && !isa<GlobalValue>(V)) {
printConstant(CPV);
}
}
}
}
/// printConstant - Print out a constant pool entry...
///
void AssemblyWriter::printConstant(const Constant *CPV) {
// Don't print out unnamed constants, they will be inlined
if (!CPV->hasName()) return;
// Print out name...
Out << "\t" << getLLVMName(CPV->getName()) << " =";
// Write the value out now...
writeOperand(CPV, true, false);
printInfoComment(*CPV);
Out << "\n";
}
/// printFunction - Print all aspects of a function.
///
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name...
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
if (F->isExternal())
Out << "declare ";
else
switch (F->getLinkage()) {
case GlobalValue::InternalLinkage: Out << "internal "; break;
case GlobalValue::LinkOnceLinkage: Out << "linkonce "; break;
case GlobalValue::WeakLinkage: Out << "weak "; break;
case GlobalValue::AppendingLinkage: Out << "appending "; break;
case GlobalValue::ExternalLinkage: break;
}
printType(F->getReturnType()) << ' ';
if (!F->getName().empty())
Out << getLLVMName(F->getName());
else
Out << "\"\"";
Out << '(';
Machine.incorporateFunction(F);
// Loop over the arguments, printing them...
const FunctionType *FT = F->getFunctionType();
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
printArgument(I);
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getNumParams()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ')';
if (F->isExternal()) {
Out << "\n";
} else {
Out << " {";
// Output all of its basic blocks... for the function
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
Out << "}\n";
}
Machine.purgeFunction();
}
/// printArgument - This member is called for every argument that is passed into
/// the function. Simply print it out
///
void AssemblyWriter::printArgument(const Argument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg != &Arg->getParent()->afront()) Out << ", ";
// Output type...
printType(Arg->getType());
// Output name, if available...
if (Arg->hasName())
Out << ' ' << getLLVMName(Arg->getName());
}
/// printBasicBlock - This member is called for each basic block in a method.
///
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n" << BB->getName() << ':';
} else if (!BB->use_empty()) { // Don't print block # of no uses...
Out << "\n; <label>:";
int Slot = Machine.getSlot(BB);
if (Slot != -1)
Out << Slot;
else
Out << "<badref>";
}
if (BB->getParent() == 0)
Out << "\t\t; Error: Block without parent!";
else {
if (BB != &BB->getParent()->front()) { // Not the entry block?
// Output predecessors for the block...
Out << "\t\t;";
pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
if (PI == PE) {
Out << " No predecessors!";
} else {
Out << " preds =";
writeOperand(*PI, false, true);
for (++PI; PI != PE; ++PI) {
Out << ',';
writeOperand(*PI, false, true);
}
}
}
}
Out << "\n";
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
printInstruction(*I);
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
}
/// printInfoComment - Print a little comment after the instruction indicating
/// which slot it occupies.
///
void AssemblyWriter::printInfoComment(const Value &V) {
if (V.getType() != Type::VoidTy) {
Out << "\t\t; <";
printType(V.getType()) << '>';
if (!V.hasName()) {
int SlotNum = Machine.getSlot(&V);
if (SlotNum == -1)
Out << ":<badref>";
else
Out << ':' << SlotNum; // Print out the def slot taken.
}
Out << " [#uses=" << V.use_size() << ']'; // Output # uses
}
}
/// printInstruction - This member is called for each Instruction in a function..
///
void AssemblyWriter::printInstruction(const Instruction &I) {
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
Out << "\t";
// Print out name if it exists...
if (I.hasName())
Out << getLLVMName(I.getName()) << " = ";
// If this is a volatile load or store, print out the volatile marker
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()))
Out << "volatile ";
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
writeOperand(I.getOperand(2), true);
Out << ',';
writeOperand(Operand, true);
Out << ',';
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ',';
writeOperand(I.getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true); Out << ',';
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << ' ';
printType(I.getType());
Out << ' ';
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << '[';
writeOperand(I.getOperand(op ), false); Out << ',';
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (isa<CallInst>(I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the call instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
const PointerType *PTy = cast<PointerType>(Operand->getType());
const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
const Type *RetTy = FTy->getReturnType();
// If possible, print out the short form of the invoke instruction. We can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the return type is not a pointer to a function.
//
if (!FTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
Out << ' '; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << '(';
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ',';
writeOperand(I.getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " unwind";
writeOperand(II->getUnwindDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << ' ';
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ',';
writeOperand(AI->getArraySize(), true);
}
} else if (isa<CastInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << " to ";
printType(I.getType());
} else if (isa<VAArgInst>(I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << ", ";
printType(I.getType());
} else if (const VANextInst *VAN = dyn_cast<VANextInst>(&I)) {
if (Operand) writeOperand(Operand, true); // Work with broken code
Out << ", ";
printType(VAN->getArgType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
// Shift Left & Right print both types even for Ubyte LHS, and select prints
// types even if all operands are bools.
if (isa<ShiftInst>(I) || isa<SelectInst>(I)) {
PrintAllTypes = true;
} else {
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
}
if (!PrintAllTypes) {
Out << ' ';
printType(TheType);
}
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ',';
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
printInfoComment(I);
Out << "\n";
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotMachine SlotTable(this);
AssemblyWriter W(o, SlotTable, this, AAW);
W.write(this);
}
void GlobalVariable::print(std::ostream &o) const {
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable, getParent(), 0);
W.write(this);
}
void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable, getParent(), AAW);
W.write(this);
}
void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
SlotMachine SlotTable(getParent());
AssemblyWriter W(o, SlotTable,
getParent() ? getParent()->getParent() : 0, AAW);
W.write(this);
}
void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
const Function *F = getParent() ? getParent()->getParent() : 0;
SlotMachine SlotTable(F);
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
W.write(this);
}
void Constant::print(std::ostream &o) const {
if (this == 0) { o << "<null> constant value\n"; return; }
o << ' ' << getType()->getDescription() << ' ';
std::map<const Type *, std::string> TypeTable;
WriteConstantInt(o, this, false, TypeTable, 0);
}
void Type::print(std::ostream &o) const {
if (this == 0)
o << "<null Type>";
else
o << getDescription();
}
void Argument::print(std::ostream &o) const {
WriteAsOperand(o, this, true, true,
getParent() ? getParent()->getParent() : 0);
}
// Value::dump - allow easy printing of Values from the debugger.
// Located here because so much of the needed functionality is here.
void Value::dump() const { print(std::cerr); }
// Type::dump - allow easy printing of Values from the debugger.
// Located here because so much of the needed functionality is here.
void Type::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// CachedWriter Class Implementation
//===----------------------------------------------------------------------===//
void CachedWriter::setModule(const Module *M) {
delete SC; delete AW;
if (M) {
SC = new SlotMachine(M );
AW = new AssemblyWriter(Out, *SC, M, 0);
} else {
SC = 0; AW = 0;
}
}
CachedWriter::~CachedWriter() {
delete AW;
delete SC;
}
CachedWriter &CachedWriter::operator<<(const Value &V) {
assert(AW && SC && "CachedWriter does not have a current module!");
if (const Instruction *I = dyn_cast<Instruction>(&V))
AW->write(I);
else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
AW->write(BB);
else if (const Function *F = dyn_cast<Function>(&V))
AW->write(F);
else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
AW->write(GV);
else
AW->writeOperand(&V, true, true);
return *this;
}
CachedWriter& CachedWriter::operator<<(const Type &Ty) {
if (SymbolicTypes) {
const Module *M = AW->getModule();
if (M) WriteTypeSymbolic(Out, &Ty, M);
} else {
AW->write(&Ty);
}
return *this;
}
//===----------------------------------------------------------------------===//
//===-- SlotMachine Implementation
//===----------------------------------------------------------------------===//
#if 0
#define SC_DEBUG(X) std::cerr << X
#else
#define SC_DEBUG(X)
#endif
// Module level constructor. Causes the contents of the Module (sans functions)
// to be added to the slot table.
SlotMachine::SlotMachine(const Module *M)
: TheModule(M) ///< Saved for lazy initialization.
, TheFunction(0)
, FunctionProcessed(false)
, mMap()
, mTypes()
, fMap()
, fTypes()
{
}
// Function level constructor. Causes the contents of the Module and the one
// function provided to be added to the slot table.
SlotMachine::SlotMachine(const Function *F )
: TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
, TheFunction(F) ///< Saved for lazy initialization
, FunctionProcessed(false)
, mMap()
, mTypes()
, fMap()
, fTypes()
{
}
inline void SlotMachine::initialize(void) {
if ( TheModule) {
processModule();
TheModule = 0; ///< Prevent re-processing next time we're called.
}
if ( TheFunction && ! FunctionProcessed) {
processFunction();
}
}
// Iterate through all the global variables, functions, and global
// variable initializers and create slots for them.
void SlotMachine::processModule() {
SC_DEBUG("begin processModule!\n");
// Add all of the global variables to the value table...
for (Module::const_giterator I = TheModule->gbegin(), E = TheModule->gend();
I != E; ++I)
createSlot(I);
// Add all the functions to the table
for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
I != E; ++I)
createSlot(I);
SC_DEBUG("end processModule!\n");
}
// Process the arguments, basic blocks, and instructions of a function.
void SlotMachine::processFunction() {
SC_DEBUG("begin processFunction!\n");
// Add all the function arguments
for(Function::const_aiterator AI = TheFunction->abegin(),
AE = TheFunction->aend(); AI != AE; ++AI)
createSlot(AI);
SC_DEBUG("Inserting Instructions:\n");
// Add all of the basic blocks and instructions
for (Function::const_iterator BB = TheFunction->begin(),
E = TheFunction->end(); BB != E; ++BB) {
createSlot(BB);
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
createSlot(I);
}
}
FunctionProcessed = true;
SC_DEBUG("end processFunction!\n");
}
// Clean up after incorporating a function. This is the only way
// to get out of the function incorporation state that affects the
// getSlot/createSlot lock. Function incorporation state is indicated
// by TheFunction != 0.
void SlotMachine::purgeFunction() {
SC_DEBUG("begin purgeFunction!\n");
fMap.clear(); // Simply discard the function level map
fTypes.clear();
TheFunction = 0;
FunctionProcessed = false;
SC_DEBUG("end purgeFunction!\n");
}
/// Get the slot number for a value. This function will assert if you
/// ask for a Value that hasn't previously been inserted with createSlot.
/// Types are forbidden because Type does not inherit from Value (any more).
int SlotMachine::getSlot(const Value *V) {
assert( V && "Can't get slot for null Value" );
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
"Can't insert a non-GlobalValue Constant into SlotMachine");
// Check for uninitialized state and do lazy initialization
this->initialize();
// Get the type of the value
const Type* VTy = V->getType();
// Find the type plane in the module map
TypedPlanes::const_iterator MI = mMap.find(VTy);
if ( TheFunction ) {
// Lookup the type in the function map too
TypedPlanes::const_iterator FI = fMap.find(VTy);
// If there is a corresponding type plane in the function map
if ( FI != fMap.end() ) {
// Lookup the Value in the function map
ValueMap::const_iterator FVI = FI->second.map.find(V);
// If the value doesn't exist in the function map
if ( FVI == FI->second.map.end() ) {
// Look up the value in the module map.
if (MI == mMap.end()) return -1;
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it, it wasn't inserted
if (MVI == MI->second.map.end()) return -1;
assert( MVI != MI->second.map.end() && "Value not found");
// We found it only at the module level
return MVI->second;
// else the value exists in the function map
} else {
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
if (MI != mMap.end())
return MI->second.next_slot + FVI->second;
else
return FVI->second;
}
}
}
// N.B. Can get here only if either !TheFunction or the function doesn't
// have a corresponding type plane for the Value
// Make sure the type plane exists
if (MI == mMap.end()) return -1;
// Lookup the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// Make sure we found it.
if (MVI == MI->second.map.end()) return -1;
// Return it.
return MVI->second;
}
/// Get the slot number for a value. This function will assert if you
/// ask for a Value that hasn't previously been inserted with createSlot.
/// Types are forbidden because Type does not inherit from Value (any more).
int SlotMachine::getSlot(const Type *Ty) {
assert( Ty && "Can't get slot for null Type" );
// Check for uninitialized state and do lazy initialization
this->initialize();
if ( TheFunction ) {
// Lookup the Type in the function map
TypeMap::const_iterator FTI = fTypes.map.find(Ty);
// If the Type doesn't exist in the function map
if ( FTI == fTypes.map.end() ) {
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
// If we didn't find it, it wasn't inserted
if (MTI == mTypes.map.end())
return -1;
// We found it only at the module level
return MTI->second;
// else the value exists in the function map
} else {
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
return mTypes.next_slot + FTI->second;
}
}
// N.B. Can get here only if either !TheFunction
// Lookup the value in the module's map
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
// Make sure we found it.
if (MTI == mTypes.map.end()) return -1;
// Return it.
return MTI->second;
}
// Create a new slot, or return the existing slot if it is already
// inserted. Note that the logic here parallels getSlot but instead
// of asserting when the Value* isn't found, it inserts the value.
unsigned SlotMachine::createSlot(const Value *V) {
assert( V && "Can't insert a null Value to SlotMachine");
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
"Can't insert a non-GlobalValue Constant into SlotMachine");
const Type* VTy = V->getType();
// Just ignore void typed things
if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
// Look up the type plane for the Value's type from the module map
TypedPlanes::const_iterator MI = mMap.find(VTy);
if ( TheFunction ) {
// Get the type plane for the Value's type from the function map
TypedPlanes::const_iterator FI = fMap.find(VTy);
// If there is a corresponding type plane in the function map
if ( FI != fMap.end() ) {
// Lookup the Value in the function map
ValueMap::const_iterator FVI = FI->second.map.find(V);
// If the value doesn't exist in the function map
if ( FVI == FI->second.map.end() ) {
// If there is no corresponding type plane in the module map
if ( MI == mMap.end() )
return insertValue(V);
// Look up the value in the module map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it, it wasn't inserted
if ( MVI == MI->second.map.end() )
return insertValue(V);
else
// We found it only at the module level
return MVI->second;
// else the value exists in the function map
} else {
if ( MI == mMap.end() )
return FVI->second;
else
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
return MI->second.next_slot + FVI->second;
}
// else there is not a corresponding type plane in the function map
} else {
// If the type plane doesn't exists at the module level
if ( MI == mMap.end() ) {
return insertValue(V);
// else type plane exists at the module level, examine it
} else {
// Look up the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
// If we didn't find it there either
if ( MVI == MI->second.map.end() )
// Return the slot number as the module's contribution to
// the type plane plus the index of the function map insertion.
return MI->second.next_slot + insertValue(V);
else
return MVI->second;
}
}
}
// N.B. Can only get here if !TheFunction
// If the module map's type plane is not for the Value's type
if ( MI != mMap.end() ) {
// Lookup the value in the module's map
ValueMap::const_iterator MVI = MI->second.map.find(V);
if ( MVI != MI->second.map.end() )
return MVI->second;
}
return insertValue(V);
}
// Create a new slot, or return the existing slot if it is already
// inserted. Note that the logic here parallels getSlot but instead
// of asserting when the Value* isn't found, it inserts the value.
unsigned SlotMachine::createSlot(const Type *Ty) {
assert( Ty && "Can't insert a null Type to SlotMachine");
if ( TheFunction ) {
// Lookup the Type in the function map
TypeMap::const_iterator FTI = fTypes.map.find(Ty);
// If the type doesn't exist in the function map
if ( FTI == fTypes.map.end() ) {
// Look up the type in the module map
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
// If we didn't find it, it wasn't inserted
if ( MTI == mTypes.map.end() )
return insertValue(Ty);
else
// We found it only at the module level
return MTI->second;
// else the value exists in the function map
} else {
// Return the slot number as the module's contribution to
// the type plane plus the index in the function's contribution
// to the type plane.
return mTypes.next_slot + FTI->second;
}
}
// N.B. Can only get here if !TheFunction
// Lookup the type in the module's map
TypeMap::const_iterator MTI = mTypes.map.find(Ty);
if ( MTI != mTypes.map.end() )
return MTI->second;
return insertValue(Ty);
}
// Low level insert function. Minimal checking is done. This
// function is just for the convenience of createSlot (above).
unsigned SlotMachine::insertValue(const Value *V ) {
assert(V && "Can't insert a null Value into SlotMachine!");
assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
"Can't insert a non-GlobalValue Constant into SlotMachine");
// If this value does not contribute to a plane (is void)
// or if the value already has a name then ignore it.
if (V->getType() == Type::VoidTy || V->hasName() ) {
SC_DEBUG("ignored value " << *V << "\n");
return 0; // FIXME: Wrong return value
}
const Type *VTy = V->getType();
unsigned DestSlot = 0;
if ( TheFunction ) {
TypedPlanes::iterator I = fMap.find( VTy );
if ( I == fMap.end() )
I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
DestSlot = I->second.map[V] = I->second.next_slot++;
} else {
TypedPlanes::iterator I = mMap.find( VTy );
if ( I == mMap.end() )
I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
DestSlot = I->second.map[V] = I->second.next_slot++;
}
SC_DEBUG(" Inserting value [" << VTy << "] = " << V << " slot=" <<
DestSlot << " [");
// G = Global, C = Constant, T = Type, F = Function, o = other
SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
(isa<Constant>(V) ? 'C' : 'o'))));
SC_DEBUG("]\n");
return DestSlot;
}
// Low level insert function. Minimal checking is done. This
// function is just for the convenience of createSlot (above).
unsigned SlotMachine::insertValue(const Type *Ty ) {
assert(Ty && "Can't insert a null Type into SlotMachine!");
unsigned DestSlot = 0;
if ( TheFunction ) {
DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
} else {
DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
}
SC_DEBUG(" Inserting type [" << DestSlot << "] = " << Ty << "\n");
return DestSlot;
}
// vim: sw=2