mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-01 17:28:21 +00:00
96d4bf7aee
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@15276 91177308-0d34-0410-b5e6-96231b3b80d8
544 lines
22 KiB
C++
544 lines
22 KiB
C++
//===- LoadValueNumbering.cpp - Load Value #'ing Implementation -*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a value numbering pass that value numbers load and call
|
|
// instructions. To do this, it finds lexically identical load instructions,
|
|
// and uses alias analysis to determine which loads are guaranteed to produce
|
|
// the same value. To value number call instructions, it looks for calls to
|
|
// functions that do not write to memory which do not have intervening
|
|
// instructions that clobber the memory that is read from.
|
|
//
|
|
// This pass builds off of another value numbering pass to implement value
|
|
// numbering for non-load and non-call instructions. It uses Alias Analysis so
|
|
// that it can disambiguate the load instructions. The more powerful these base
|
|
// analyses are, the more powerful the resultant value numbering will be.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LoadValueNumbering.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/Analysis/ValueNumbering.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// FIXME: This should not be a FunctionPass.
|
|
struct LoadVN : public FunctionPass, public ValueNumbering {
|
|
|
|
/// Pass Implementation stuff. This doesn't do any analysis.
|
|
///
|
|
bool runOnFunction(Function &) { return false; }
|
|
|
|
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering
|
|
/// and Alias Analysis.
|
|
///
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
|
|
/// getEqualNumberNodes - Return nodes with the same value number as the
|
|
/// specified Value. This fills in the argument vector with any equal
|
|
/// values.
|
|
///
|
|
virtual void getEqualNumberNodes(Value *V1,
|
|
std::vector<Value*> &RetVals) const;
|
|
|
|
/// deleteValue - This method should be called whenever an LLVM Value is
|
|
/// deleted from the program, for example when an instruction is found to be
|
|
/// redundant and is eliminated.
|
|
///
|
|
virtual void deleteValue(Value *V) {
|
|
getAnalysis<AliasAnalysis>().deleteValue(V);
|
|
}
|
|
|
|
/// copyValue - This method should be used whenever a preexisting value in
|
|
/// the program is copied or cloned, introducing a new value. Note that
|
|
/// analysis implementations should tolerate clients that use this method to
|
|
/// introduce the same value multiple times: if the analysis already knows
|
|
/// about a value, it should ignore the request.
|
|
///
|
|
virtual void copyValue(Value *From, Value *To) {
|
|
getAnalysis<AliasAnalysis>().copyValue(From, To);
|
|
}
|
|
|
|
/// getCallEqualNumberNodes - Given a call instruction, find other calls
|
|
/// that have the same value number.
|
|
void getCallEqualNumberNodes(CallInst *CI,
|
|
std::vector<Value*> &RetVals) const;
|
|
};
|
|
|
|
// Register this pass...
|
|
RegisterOpt<LoadVN> X("load-vn", "Load Value Numbering");
|
|
|
|
// Declare that we implement the ValueNumbering interface
|
|
RegisterAnalysisGroup<ValueNumbering, LoadVN> Y;
|
|
}
|
|
|
|
FunctionPass *llvm::createLoadValueNumberingPass() { return new LoadVN(); }
|
|
|
|
|
|
/// getAnalysisUsage - Does not modify anything. It uses Value Numbering and
|
|
/// Alias Analysis.
|
|
///
|
|
void LoadVN::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addRequired<ValueNumbering>();
|
|
AU.addRequired<DominatorSet>();
|
|
AU.addRequired<TargetData>();
|
|
}
|
|
|
|
static bool isPathTransparentTo(BasicBlock *CurBlock, BasicBlock *Dom,
|
|
Value *Ptr, unsigned Size, AliasAnalysis &AA,
|
|
std::set<BasicBlock*> &Visited,
|
|
std::map<BasicBlock*, bool> &TransparentBlocks){
|
|
// If we have already checked out this path, or if we reached our destination,
|
|
// stop searching, returning success.
|
|
if (CurBlock == Dom || !Visited.insert(CurBlock).second)
|
|
return true;
|
|
|
|
// Check whether this block is known transparent or not.
|
|
std::map<BasicBlock*, bool>::iterator TBI =
|
|
TransparentBlocks.lower_bound(CurBlock);
|
|
|
|
if (TBI == TransparentBlocks.end() || TBI->first != CurBlock) {
|
|
// If this basic block can modify the memory location, then the path is not
|
|
// transparent!
|
|
if (AA.canBasicBlockModify(*CurBlock, Ptr, Size)) {
|
|
TransparentBlocks.insert(TBI, std::make_pair(CurBlock, false));
|
|
return false;
|
|
}
|
|
TransparentBlocks.insert(TBI, std::make_pair(CurBlock, true));
|
|
} else if (!TBI->second)
|
|
// This block is known non-transparent, so that path can't be either.
|
|
return false;
|
|
|
|
// The current block is known to be transparent. The entire path is
|
|
// transparent if all of the predecessors paths to the parent is also
|
|
// transparent to the memory location.
|
|
for (pred_iterator PI = pred_begin(CurBlock), E = pred_end(CurBlock);
|
|
PI != E; ++PI)
|
|
if (!isPathTransparentTo(*PI, Dom, Ptr, Size, AA, Visited,
|
|
TransparentBlocks))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// getCallEqualNumberNodes - Given a call instruction, find other calls that
|
|
/// have the same value number.
|
|
void LoadVN::getCallEqualNumberNodes(CallInst *CI,
|
|
std::vector<Value*> &RetVals) const {
|
|
Function *CF = CI->getCalledFunction();
|
|
if (CF == 0) return; // Indirect call.
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
if (!AA.onlyReadsMemory(CF)) return; // Nothing we can do.
|
|
|
|
// Scan all of the arguments of the function, looking for one that is not
|
|
// global. In particular, we would prefer to have an argument or instruction
|
|
// operand to chase the def-use chains of.
|
|
Value *Op = CF;
|
|
for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
|
|
if (isa<Argument>(CI->getOperand(i)) ||
|
|
isa<Instruction>(CI->getOperand(i))) {
|
|
Op = CI->getOperand(i);
|
|
break;
|
|
}
|
|
|
|
// Identify all lexically identical calls in this function.
|
|
std::vector<CallInst*> IdenticalCalls;
|
|
|
|
Function *CIFunc = CI->getParent()->getParent();
|
|
for (Value::use_iterator UI = Op->use_begin(), E = Op->use_end(); UI != E;
|
|
++UI)
|
|
if (CallInst *C = dyn_cast<CallInst>(*UI))
|
|
if (C->getNumOperands() == CI->getNumOperands() &&
|
|
C->getOperand(0) == CI->getOperand(0) &&
|
|
C->getParent()->getParent() == CIFunc && C != CI) {
|
|
bool AllOperandsEqual = true;
|
|
for (unsigned i = 1, e = CI->getNumOperands(); i != e; ++i)
|
|
if (C->getOperand(i) != CI->getOperand(i)) {
|
|
AllOperandsEqual = false;
|
|
break;
|
|
}
|
|
|
|
if (AllOperandsEqual)
|
|
IdenticalCalls.push_back(C);
|
|
}
|
|
|
|
if (IdenticalCalls.empty()) return;
|
|
|
|
// Eliminate duplicates, which could occur if we chose a value that is passed
|
|
// into a call site multiple times.
|
|
std::sort(IdenticalCalls.begin(), IdenticalCalls.end());
|
|
IdenticalCalls.erase(std::unique(IdenticalCalls.begin(),IdenticalCalls.end()),
|
|
IdenticalCalls.end());
|
|
|
|
// If the call reads memory, we must make sure that there are no stores
|
|
// between the calls in question.
|
|
//
|
|
// FIXME: This should use mod/ref information. What we really care about it
|
|
// whether an intervening instruction could modify memory that is read, not
|
|
// ANY memory.
|
|
//
|
|
if (!AA.doesNotAccessMemory(CF)) {
|
|
DominatorSet &DomSetInfo = getAnalysis<DominatorSet>();
|
|
BasicBlock *CIBB = CI->getParent();
|
|
for (unsigned i = 0; i != IdenticalCalls.size(); ++i) {
|
|
CallInst *C = IdenticalCalls[i];
|
|
bool CantEqual = false;
|
|
|
|
if (DomSetInfo.dominates(CIBB, C->getParent())) {
|
|
// FIXME: we currently only handle the case where both calls are in the
|
|
// same basic block.
|
|
if (CIBB != C->getParent()) {
|
|
CantEqual = true;
|
|
} else {
|
|
Instruction *First = CI, *Second = C;
|
|
if (!DomSetInfo.dominates(CI, C))
|
|
std::swap(First, Second);
|
|
|
|
// Scan the instructions between the calls, checking for stores or
|
|
// calls to dangerous functions.
|
|
BasicBlock::iterator I = First;
|
|
for (++First; I != BasicBlock::iterator(Second); ++I) {
|
|
if (isa<StoreInst>(I)) {
|
|
// FIXME: We could use mod/ref information to make this much
|
|
// better!
|
|
CantEqual = true;
|
|
break;
|
|
} else if (CallInst *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->getCalledFunction() == 0 ||
|
|
!AA.onlyReadsMemory(CI->getCalledFunction())) {
|
|
CantEqual = true;
|
|
break;
|
|
}
|
|
} else if (I->mayWriteToMemory()) {
|
|
CantEqual = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (DomSetInfo.dominates(C->getParent(), CIBB)) {
|
|
// FIXME: We could implement this, but we don't for now.
|
|
CantEqual = true;
|
|
} else {
|
|
// FIXME: if one doesn't dominate the other, we can't tell yet.
|
|
CantEqual = true;
|
|
}
|
|
|
|
|
|
if (CantEqual) {
|
|
// This call does not produce the same value as the one in the query.
|
|
std::swap(IdenticalCalls[i--], IdenticalCalls.back());
|
|
IdenticalCalls.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Any calls that are identical and not destroyed will produce equal values!
|
|
for (unsigned i = 0, e = IdenticalCalls.size(); i != e; ++i)
|
|
RetVals.push_back(IdenticalCalls[i]);
|
|
}
|
|
|
|
// getEqualNumberNodes - Return nodes with the same value number as the
|
|
// specified Value. This fills in the argument vector with any equal values.
|
|
//
|
|
void LoadVN::getEqualNumberNodes(Value *V,
|
|
std::vector<Value*> &RetVals) const {
|
|
// If the alias analysis has any must alias information to share with us, we
|
|
// can definitely use it.
|
|
if (isa<PointerType>(V->getType()))
|
|
getAnalysis<AliasAnalysis>().getMustAliases(V, RetVals);
|
|
|
|
if (!isa<LoadInst>(V)) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(V))
|
|
getCallEqualNumberNodes(CI, RetVals);
|
|
|
|
// Not a load instruction? Just chain to the base value numbering
|
|
// implementation to satisfy the request...
|
|
assert(&getAnalysis<ValueNumbering>() != (ValueNumbering*)this &&
|
|
"getAnalysis() returned this!");
|
|
|
|
return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
|
|
}
|
|
|
|
// Volatile loads cannot be replaced with the value of other loads.
|
|
LoadInst *LI = cast<LoadInst>(V);
|
|
if (LI->isVolatile())
|
|
return getAnalysis<ValueNumbering>().getEqualNumberNodes(V, RetVals);
|
|
|
|
// If we have a load instruction, find all of the load and store instructions
|
|
// that use the same source operand. We implement this recursively, because
|
|
// there could be a load of a load of a load that are all identical. We are
|
|
// guaranteed that this cannot be an infinite recursion because load
|
|
// instructions would have to pass through a PHI node in order for there to be
|
|
// a cycle. The PHI node would be handled by the else case here, breaking the
|
|
// infinite recursion.
|
|
//
|
|
std::vector<Value*> PointerSources;
|
|
getEqualNumberNodes(LI->getOperand(0), PointerSources);
|
|
PointerSources.push_back(LI->getOperand(0));
|
|
|
|
BasicBlock *LoadBB = LI->getParent();
|
|
Function *F = LoadBB->getParent();
|
|
|
|
// Now that we know the set of equivalent source pointers for the load
|
|
// instruction, look to see if there are any load or store candidates that are
|
|
// identical.
|
|
//
|
|
std::map<BasicBlock*, std::vector<LoadInst*> > CandidateLoads;
|
|
std::map<BasicBlock*, std::vector<StoreInst*> > CandidateStores;
|
|
std::set<AllocationInst*> Allocations;
|
|
|
|
while (!PointerSources.empty()) {
|
|
Value *Source = PointerSources.back();
|
|
PointerSources.pop_back(); // Get a source pointer...
|
|
|
|
if (AllocationInst *AI = dyn_cast<AllocationInst>(Source))
|
|
Allocations.insert(AI);
|
|
|
|
for (Value::use_iterator UI = Source->use_begin(), UE = Source->use_end();
|
|
UI != UE; ++UI)
|
|
if (LoadInst *Cand = dyn_cast<LoadInst>(*UI)) {// Is a load of source?
|
|
if (Cand->getParent()->getParent() == F && // In the same function?
|
|
Cand != LI && !Cand->isVolatile()) // Not LI itself?
|
|
CandidateLoads[Cand->getParent()].push_back(Cand); // Got one...
|
|
} else if (StoreInst *Cand = dyn_cast<StoreInst>(*UI)) {
|
|
if (Cand->getParent()->getParent() == F && !Cand->isVolatile() &&
|
|
Cand->getOperand(1) == Source) // It's a store THROUGH the ptr...
|
|
CandidateStores[Cand->getParent()].push_back(Cand);
|
|
}
|
|
}
|
|
|
|
// Get alias analysis & dominators.
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
DominatorSet &DomSetInfo = getAnalysis<DominatorSet>();
|
|
Value *LoadPtr = LI->getOperand(0);
|
|
// Find out how many bytes of memory are loaded by the load instruction...
|
|
unsigned LoadSize = getAnalysis<TargetData>().getTypeSize(LI->getType());
|
|
|
|
// Find all of the candidate loads and stores that are in the same block as
|
|
// the defining instruction.
|
|
std::set<Instruction*> Instrs;
|
|
Instrs.insert(CandidateLoads[LoadBB].begin(), CandidateLoads[LoadBB].end());
|
|
CandidateLoads.erase(LoadBB);
|
|
Instrs.insert(CandidateStores[LoadBB].begin(), CandidateStores[LoadBB].end());
|
|
CandidateStores.erase(LoadBB);
|
|
|
|
// Figure out if the load is invalidated from the entry of the block it is in
|
|
// until the actual instruction. This scans the block backwards from LI. If
|
|
// we see any candidate load or store instructions, then we know that the
|
|
// candidates have the same value # as LI.
|
|
bool LoadInvalidatedInBBBefore = false;
|
|
for (BasicBlock::iterator I = LI; I != LoadBB->begin(); ) {
|
|
--I;
|
|
// If this instruction is a candidate load before LI, we know there are no
|
|
// invalidating instructions between it and LI, so they have the same value
|
|
// number.
|
|
if (isa<LoadInst>(I) && Instrs.count(I)) {
|
|
RetVals.push_back(I);
|
|
Instrs.erase(I);
|
|
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(I)) {
|
|
// If we run into an allocation of the value being loaded, then the
|
|
// contenxt are not initialized. We can return any value, so we will
|
|
// return a zero.
|
|
if (Allocations.count(AI)) {
|
|
LoadInvalidatedInBBBefore = true;
|
|
RetVals.push_back(Constant::getNullValue(LI->getType()));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
|
// If the invalidating instruction is a store, and its in our candidate
|
|
// set, then we can do store-load forwarding: the load has the same value
|
|
// # as the stored value.
|
|
if (isa<StoreInst>(I) && Instrs.count(I)) {
|
|
Instrs.erase(I);
|
|
RetVals.push_back(I->getOperand(0));
|
|
}
|
|
|
|
LoadInvalidatedInBBBefore = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Figure out if the load is invalidated between the load and the exit of the
|
|
// block it is defined in. While we are scanning the current basic block, if
|
|
// we see any candidate loads, then we know they have the same value # as LI.
|
|
//
|
|
bool LoadInvalidatedInBBAfter = false;
|
|
for (BasicBlock::iterator I = LI->getNext(); I != LoadBB->end(); ++I) {
|
|
// If this instruction is a load, then this instruction returns the same
|
|
// value as LI.
|
|
if (isa<LoadInst>(I) && Instrs.count(I)) {
|
|
RetVals.push_back(I);
|
|
Instrs.erase(I);
|
|
}
|
|
|
|
if (AA.getModRefInfo(I, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
|
LoadInvalidatedInBBAfter = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there is anything left in the Instrs set, it could not possibly equal
|
|
// LI.
|
|
Instrs.clear();
|
|
|
|
// TransparentBlocks - For each basic block the load/store is alive across,
|
|
// figure out if the pointer is invalidated or not. If it is invalidated, the
|
|
// boolean is set to false, if it's not it is set to true. If we don't know
|
|
// yet, the entry is not in the map.
|
|
std::map<BasicBlock*, bool> TransparentBlocks;
|
|
|
|
// Loop over all of the basic blocks that also load the value. If the value
|
|
// is live across the CFG from the source to destination blocks, and if the
|
|
// value is not invalidated in either the source or destination blocks, add it
|
|
// to the equivalence sets.
|
|
for (std::map<BasicBlock*, std::vector<LoadInst*> >::iterator
|
|
I = CandidateLoads.begin(), E = CandidateLoads.end(); I != E; ++I) {
|
|
bool CantEqual = false;
|
|
|
|
// Right now we only can handle cases where one load dominates the other.
|
|
// FIXME: generalize this!
|
|
BasicBlock *BB1 = I->first, *BB2 = LoadBB;
|
|
if (DomSetInfo.dominates(BB1, BB2)) {
|
|
// The other load dominates LI. If the loaded value is killed entering
|
|
// the LoadBB block, we know the load is not live.
|
|
if (LoadInvalidatedInBBBefore)
|
|
CantEqual = true;
|
|
} else if (DomSetInfo.dominates(BB2, BB1)) {
|
|
std::swap(BB1, BB2); // Canonicalize
|
|
// LI dominates the other load. If the loaded value is killed exiting
|
|
// the LoadBB block, we know the load is not live.
|
|
if (LoadInvalidatedInBBAfter)
|
|
CantEqual = true;
|
|
} else {
|
|
// None of these loads can VN the same.
|
|
CantEqual = true;
|
|
}
|
|
|
|
if (!CantEqual) {
|
|
// Ok, at this point, we know that BB1 dominates BB2, and that there is
|
|
// nothing in the LI block that kills the loaded value. Check to see if
|
|
// the value is live across the CFG.
|
|
std::set<BasicBlock*> Visited;
|
|
for (pred_iterator PI = pred_begin(BB2), E = pred_end(BB2); PI!=E; ++PI)
|
|
if (!isPathTransparentTo(*PI, BB1, LoadPtr, LoadSize, AA,
|
|
Visited, TransparentBlocks)) {
|
|
// None of these loads can VN the same.
|
|
CantEqual = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the loads can equal so far, scan the basic block that contains the
|
|
// loads under consideration to see if they are invalidated in the block.
|
|
// For any loads that are not invalidated, add them to the equivalence
|
|
// set!
|
|
if (!CantEqual) {
|
|
Instrs.insert(I->second.begin(), I->second.end());
|
|
if (BB1 == LoadBB) {
|
|
// If LI dominates the block in question, check to see if any of the
|
|
// loads in this block are invalidated before they are reached.
|
|
for (BasicBlock::iterator BBI = I->first->begin(); ; ++BBI) {
|
|
if (isa<LoadInst>(BBI) && Instrs.count(BBI)) {
|
|
// The load is in the set!
|
|
RetVals.push_back(BBI);
|
|
Instrs.erase(BBI);
|
|
if (Instrs.empty()) break;
|
|
} else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
|
|
& AliasAnalysis::Mod) {
|
|
// If there is a modifying instruction, nothing below it will value
|
|
// # the same.
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// If the block dominates LI, make sure that the loads in the block are
|
|
// not invalidated before the block ends.
|
|
BasicBlock::iterator BBI = I->first->end();
|
|
while (1) {
|
|
--BBI;
|
|
if (isa<LoadInst>(BBI) && Instrs.count(BBI)) {
|
|
// The load is in the set!
|
|
RetVals.push_back(BBI);
|
|
Instrs.erase(BBI);
|
|
if (Instrs.empty()) break;
|
|
} else if (AA.getModRefInfo(BBI, LoadPtr, LoadSize)
|
|
& AliasAnalysis::Mod) {
|
|
// If there is a modifying instruction, nothing above it will value
|
|
// # the same.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Instrs.clear();
|
|
}
|
|
}
|
|
|
|
// Handle candidate stores. If the loaded location is clobbered on entrance
|
|
// to the LoadBB, no store outside of the LoadBB can value number equal, so
|
|
// quick exit.
|
|
if (LoadInvalidatedInBBBefore)
|
|
return;
|
|
|
|
for (std::map<BasicBlock*, std::vector<StoreInst*> >::iterator
|
|
I = CandidateStores.begin(), E = CandidateStores.end(); I != E; ++I)
|
|
if (DomSetInfo.dominates(I->first, LoadBB)) {
|
|
// Check to see if the path from the store to the load is transparent
|
|
// w.r.t. the memory location.
|
|
bool CantEqual = false;
|
|
std::set<BasicBlock*> Visited;
|
|
for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
|
|
PI != E; ++PI)
|
|
if (!isPathTransparentTo(*PI, I->first, LoadPtr, LoadSize, AA,
|
|
Visited, TransparentBlocks)) {
|
|
// None of these stores can VN the same.
|
|
CantEqual = true;
|
|
break;
|
|
}
|
|
Visited.clear();
|
|
if (!CantEqual) {
|
|
// Okay, the path from the store block to the load block is clear, and
|
|
// we know that there are no invalidating instructions from the start
|
|
// of the load block to the load itself. Now we just scan the store
|
|
// block.
|
|
|
|
BasicBlock::iterator BBI = I->first->end();
|
|
while (1) {
|
|
assert(BBI != I->first->begin() &&
|
|
"There is a store in this block of the pointer, but the store"
|
|
" doesn't mod the address being stored to?? Must be a bug in"
|
|
" the alias analysis implementation!");
|
|
--BBI;
|
|
if (AA.getModRefInfo(BBI, LoadPtr, LoadSize) & AliasAnalysis::Mod) {
|
|
// If the invalidating instruction is one of the candidates,
|
|
// then it provides the value the load loads.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
|
|
if (std::find(I->second.begin(), I->second.end(), SI) !=
|
|
I->second.end())
|
|
RetVals.push_back(SI->getOperand(0));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|