llvm/lib/Target/SystemZ/MCTargetDesc/SystemZMCTargetDesc.cpp
Rafael Espindola 320296a4cf Add a MCTargetStreamer interface.
This patch fixes an old FIXME by creating a MCTargetStreamer interface
and moving the target specific functions for ARM, Mips and PPC to it.

The ARM streamer is still declared in a common place because it is
used from lib/CodeGen/ARMException.cpp, but the Mips and PPC are
completely hidden in the corresponding Target directories.

I will send an email to llvmdev with instructions on how to use this.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@192181 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-08 13:08:17 +00:00

230 lines
8.5 KiB
C++

//===-- SystemZMCTargetDesc.cpp - SystemZ target descriptions -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SystemZMCTargetDesc.h"
#include "InstPrinter/SystemZInstPrinter.h"
#include "SystemZMCAsmInfo.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/TargetRegistry.h"
#define GET_INSTRINFO_MC_DESC
#include "SystemZGenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "SystemZGenSubtargetInfo.inc"
#define GET_REGINFO_MC_DESC
#include "SystemZGenRegisterInfo.inc"
using namespace llvm;
const unsigned SystemZMC::GR32Regs[16] = {
SystemZ::R0L, SystemZ::R1L, SystemZ::R2L, SystemZ::R3L,
SystemZ::R4L, SystemZ::R5L, SystemZ::R6L, SystemZ::R7L,
SystemZ::R8L, SystemZ::R9L, SystemZ::R10L, SystemZ::R11L,
SystemZ::R12L, SystemZ::R13L, SystemZ::R14L, SystemZ::R15L
};
const unsigned SystemZMC::GRH32Regs[16] = {
SystemZ::R0H, SystemZ::R1H, SystemZ::R2H, SystemZ::R3H,
SystemZ::R4H, SystemZ::R5H, SystemZ::R6H, SystemZ::R7H,
SystemZ::R8H, SystemZ::R9H, SystemZ::R10H, SystemZ::R11H,
SystemZ::R12H, SystemZ::R13H, SystemZ::R14H, SystemZ::R15H
};
const unsigned SystemZMC::GR64Regs[16] = {
SystemZ::R0D, SystemZ::R1D, SystemZ::R2D, SystemZ::R3D,
SystemZ::R4D, SystemZ::R5D, SystemZ::R6D, SystemZ::R7D,
SystemZ::R8D, SystemZ::R9D, SystemZ::R10D, SystemZ::R11D,
SystemZ::R12D, SystemZ::R13D, SystemZ::R14D, SystemZ::R15D
};
const unsigned SystemZMC::GR128Regs[16] = {
SystemZ::R0Q, 0, SystemZ::R2Q, 0,
SystemZ::R4Q, 0, SystemZ::R6Q, 0,
SystemZ::R8Q, 0, SystemZ::R10Q, 0,
SystemZ::R12Q, 0, SystemZ::R14Q, 0
};
const unsigned SystemZMC::FP32Regs[16] = {
SystemZ::F0S, SystemZ::F1S, SystemZ::F2S, SystemZ::F3S,
SystemZ::F4S, SystemZ::F5S, SystemZ::F6S, SystemZ::F7S,
SystemZ::F8S, SystemZ::F9S, SystemZ::F10S, SystemZ::F11S,
SystemZ::F12S, SystemZ::F13S, SystemZ::F14S, SystemZ::F15S
};
const unsigned SystemZMC::FP64Regs[16] = {
SystemZ::F0D, SystemZ::F1D, SystemZ::F2D, SystemZ::F3D,
SystemZ::F4D, SystemZ::F5D, SystemZ::F6D, SystemZ::F7D,
SystemZ::F8D, SystemZ::F9D, SystemZ::F10D, SystemZ::F11D,
SystemZ::F12D, SystemZ::F13D, SystemZ::F14D, SystemZ::F15D
};
const unsigned SystemZMC::FP128Regs[16] = {
SystemZ::F0Q, SystemZ::F1Q, 0, 0,
SystemZ::F4Q, SystemZ::F5Q, 0, 0,
SystemZ::F8Q, SystemZ::F9Q, 0, 0,
SystemZ::F12Q, SystemZ::F13Q, 0, 0
};
unsigned SystemZMC::getFirstReg(unsigned Reg) {
static unsigned Map[SystemZ::NUM_TARGET_REGS];
static bool Initialized = false;
if (!Initialized) {
for (unsigned I = 0; I < 16; ++I) {
Map[GR32Regs[I]] = I;
Map[GRH32Regs[I]] = I;
Map[GR64Regs[I]] = I;
Map[GR128Regs[I]] = I;
Map[FP32Regs[I]] = I;
Map[FP64Regs[I]] = I;
Map[FP128Regs[I]] = I;
}
}
assert(Reg < SystemZ::NUM_TARGET_REGS);
return Map[Reg];
}
static MCAsmInfo *createSystemZMCAsmInfo(const MCRegisterInfo &MRI,
StringRef TT) {
MCAsmInfo *MAI = new SystemZMCAsmInfo(TT);
MCCFIInstruction Inst =
MCCFIInstruction::createDefCfa(0, MRI.getDwarfRegNum(SystemZ::R15D, true),
SystemZMC::CFAOffsetFromInitialSP);
MAI->addInitialFrameState(Inst);
return MAI;
}
static MCInstrInfo *createSystemZMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitSystemZMCInstrInfo(X);
return X;
}
static MCRegisterInfo *createSystemZMCRegisterInfo(StringRef TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitSystemZMCRegisterInfo(X, SystemZ::R14D);
return X;
}
static MCSubtargetInfo *createSystemZMCSubtargetInfo(StringRef TT,
StringRef CPU,
StringRef FS) {
MCSubtargetInfo *X = new MCSubtargetInfo();
InitSystemZMCSubtargetInfo(X, TT, CPU, FS);
return X;
}
static MCCodeGenInfo *createSystemZMCCodeGenInfo(StringRef TT, Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
// Static code is suitable for use in a dynamic executable; there is no
// separate DynamicNoPIC model.
if (RM == Reloc::Default || RM == Reloc::DynamicNoPIC)
RM = Reloc::Static;
// For SystemZ we define the models as follows:
//
// Small: BRASL can call any function and will use a stub if necessary.
// Locally-binding symbols will always be in range of LARL.
//
// Medium: BRASL can call any function and will use a stub if necessary.
// GOT slots and locally-defined text will always be in range
// of LARL, but other symbols might not be.
//
// Large: Equivalent to Medium for now.
//
// Kernel: Equivalent to Medium for now.
//
// This means that any PIC module smaller than 4GB meets the
// requirements of Small, so Small seems like the best default there.
//
// All symbols bind locally in a non-PIC module, so the choice is less
// obvious. There are two cases:
//
// - When creating an executable, PLTs and copy relocations allow
// us to treat external symbols as part of the executable.
// Any executable smaller than 4GB meets the requirements of Small,
// so that seems like the best default.
//
// - When creating JIT code, stubs will be in range of BRASL if the
// image is less than 4GB in size. GOT entries will likewise be
// in range of LARL. However, the JIT environment has no equivalent
// of copy relocs, so locally-binding data symbols might not be in
// the range of LARL. We need the Medium model in that case.
if (CM == CodeModel::Default)
CM = CodeModel::Small;
else if (CM == CodeModel::JITDefault)
CM = RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
X->InitMCCodeGenInfo(RM, CM, OL);
return X;
}
static MCInstPrinter *createSystemZMCInstPrinter(const Target &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI) {
return new SystemZInstPrinter(MAI, MII, MRI);
}
static MCStreamer *createSystemZMCObjectStreamer(const Target &T, StringRef TT,
MCContext &Ctx,
MCAsmBackend &MAB,
raw_ostream &OS,
MCCodeEmitter *Emitter,
bool RelaxAll,
bool NoExecStack) {
return createELFStreamer(Ctx, 0, MAB, OS, Emitter, RelaxAll, NoExecStack);
}
extern "C" void LLVMInitializeSystemZTargetMC() {
// Register the MCAsmInfo.
TargetRegistry::RegisterMCAsmInfo(TheSystemZTarget,
createSystemZMCAsmInfo);
// Register the MCCodeGenInfo.
TargetRegistry::RegisterMCCodeGenInfo(TheSystemZTarget,
createSystemZMCCodeGenInfo);
// Register the MCCodeEmitter.
TargetRegistry::RegisterMCCodeEmitter(TheSystemZTarget,
createSystemZMCCodeEmitter);
// Register the MCInstrInfo.
TargetRegistry::RegisterMCInstrInfo(TheSystemZTarget,
createSystemZMCInstrInfo);
// Register the MCRegisterInfo.
TargetRegistry::RegisterMCRegInfo(TheSystemZTarget,
createSystemZMCRegisterInfo);
// Register the MCSubtargetInfo.
TargetRegistry::RegisterMCSubtargetInfo(TheSystemZTarget,
createSystemZMCSubtargetInfo);
// Register the MCAsmBackend.
TargetRegistry::RegisterMCAsmBackend(TheSystemZTarget,
createSystemZMCAsmBackend);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(TheSystemZTarget,
createSystemZMCInstPrinter);
// Register the MCObjectStreamer;
TargetRegistry::RegisterMCObjectStreamer(TheSystemZTarget,
createSystemZMCObjectStreamer);
}