llvm/lib/Target/X86/X86TargetMachine.cpp
Rafael Espindola 0febc4657b Jim Asked us to move DataLayout on ARM back to the most specialized classes. Do
so and also change X86 for consistency.

Investigating if this can be improved a bit.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@115469 91177308-0d34-0410-b5e6-96231b3b80d8
2010-10-03 18:59:45 +00:00

264 lines
9.3 KiB
C++

//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the X86 specific subclass of TargetMachine.
//
//===----------------------------------------------------------------------===//
#include "X86MCAsmInfo.h"
#include "X86TargetMachine.h"
#include "X86.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
using namespace llvm;
static MCAsmInfo *createMCAsmInfo(const Target &T, StringRef TT) {
Triple TheTriple(TT);
switch (TheTriple.getOS()) {
case Triple::Darwin:
return new X86MCAsmInfoDarwin(TheTriple);
case Triple::MinGW32:
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return new X86MCAsmInfoCOFF(TheTriple);
default:
return new X86ELFMCAsmInfo(TheTriple);
}
}
static MCStreamer *createMCStreamer(const Target &T, const std::string &TT,
MCContext &Ctx, TargetAsmBackend &TAB,
raw_ostream &_OS,
MCCodeEmitter *_Emitter,
bool RelaxAll) {
Triple TheTriple(TT);
switch (TheTriple.getOS()) {
case Triple::Darwin:
return createMachOStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
case Triple::MinGW32:
case Triple::MinGW64:
case Triple::Cygwin:
case Triple::Win32:
return createWinCOFFStreamer(Ctx, TAB, *_Emitter, _OS, RelaxAll);
default:
return createELFStreamer(Ctx, TAB, _OS, _Emitter, RelaxAll);
}
}
extern "C" void LLVMInitializeX86Target() {
// Register the target.
RegisterTargetMachine<X86_32TargetMachine> X(TheX86_32Target);
RegisterTargetMachine<X86_64TargetMachine> Y(TheX86_64Target);
// Register the target asm info.
RegisterAsmInfoFn A(TheX86_32Target, createMCAsmInfo);
RegisterAsmInfoFn B(TheX86_64Target, createMCAsmInfo);
// Register the code emitter.
TargetRegistry::RegisterCodeEmitter(TheX86_32Target,
createX86_32MCCodeEmitter);
TargetRegistry::RegisterCodeEmitter(TheX86_64Target,
createX86_64MCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterAsmBackend(TheX86_32Target,
createX86_32AsmBackend);
TargetRegistry::RegisterAsmBackend(TheX86_64Target,
createX86_64AsmBackend);
// Register the object streamer.
TargetRegistry::RegisterObjectStreamer(TheX86_32Target,
createMCStreamer);
TargetRegistry::RegisterObjectStreamer(TheX86_64Target,
createMCStreamer);
}
X86_32TargetMachine::X86_32TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, false),
DataLayout(getSubtargetImpl()->isTargetDarwin() ?
"e-p:32:32-f64:32:64-i64:32:64-f80:128:128-n8:16:32" :
(getSubtargetImpl()->isTargetCygMing() ||
getSubtargetImpl()->isTargetWindows()) ?
"e-p:32:32-f64:64:64-i64:64:64-f80:32:32-n8:16:32" :
"e-p:32:32-f64:32:64-i64:32:64-f80:32:32-n8:16:32"),
InstrInfo(*this),
TSInfo(*this),
TLInfo(*this),
JITInfo(*this) {
}
X86_64TargetMachine::X86_64TargetMachine(const Target &T, const std::string &TT,
const std::string &FS)
: X86TargetMachine(T, TT, FS, true),
DataLayout("e-p:64:64-s:64-f64:64:64-i64:64:64-f80:128:128-n8:16:32:64"),
InstrInfo(*this),
TSInfo(*this),
TLInfo(*this),
JITInfo(*this) {
}
/// X86TargetMachine ctor - Create an X86 target.
///
X86TargetMachine::X86TargetMachine(const Target &T, const std::string &TT,
const std::string &FS, bool is64Bit)
: LLVMTargetMachine(T, TT),
Subtarget(TT, FS, is64Bit),
FrameInfo(TargetFrameInfo::StackGrowsDown,
Subtarget.getStackAlignment(),
(Subtarget.isTargetWin64() ? -40 :
(Subtarget.is64Bit() ? -8 : -4))),
ELFWriterInfo(is64Bit, true) {
DefRelocModel = getRelocationModel();
// If no relocation model was picked, default as appropriate for the target.
if (getRelocationModel() == Reloc::Default) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
// Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
// use static relocation model by default.
if (Subtarget.isTargetDarwin()) {
if (Subtarget.is64Bit())
setRelocationModel(Reloc::PIC_);
else
setRelocationModel(Reloc::DynamicNoPIC);
} else if (Subtarget.isTargetWin64())
setRelocationModel(Reloc::PIC_);
else
setRelocationModel(Reloc::Static);
}
assert(getRelocationModel() != Reloc::Default &&
"Relocation mode not picked");
// ELF and X86-64 don't have a distinct DynamicNoPIC model. DynamicNoPIC
// is defined as a model for code which may be used in static or dynamic
// executables but not necessarily a shared library. On X86-32 we just
// compile in -static mode, in x86-64 we use PIC.
if (getRelocationModel() == Reloc::DynamicNoPIC) {
if (is64Bit)
setRelocationModel(Reloc::PIC_);
else if (!Subtarget.isTargetDarwin())
setRelocationModel(Reloc::Static);
}
// If we are on Darwin, disallow static relocation model in X86-64 mode, since
// the Mach-O file format doesn't support it.
if (getRelocationModel() == Reloc::Static &&
Subtarget.isTargetDarwin() &&
is64Bit)
setRelocationModel(Reloc::PIC_);
// Determine the PICStyle based on the target selected.
if (getRelocationModel() == Reloc::Static) {
// Unless we're in PIC or DynamicNoPIC mode, set the PIC style to None.
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.is64Bit()) {
// PIC in 64 bit mode is always rip-rel.
Subtarget.setPICStyle(PICStyles::RIPRel);
} else if (Subtarget.isTargetCygMing()) {
Subtarget.setPICStyle(PICStyles::None);
} else if (Subtarget.isTargetDarwin()) {
if (getRelocationModel() == Reloc::PIC_)
Subtarget.setPICStyle(PICStyles::StubPIC);
else {
assert(getRelocationModel() == Reloc::DynamicNoPIC);
Subtarget.setPICStyle(PICStyles::StubDynamicNoPIC);
}
} else if (Subtarget.isTargetELF()) {
Subtarget.setPICStyle(PICStyles::GOT);
}
// Finally, if we have "none" as our PIC style, force to static mode.
if (Subtarget.getPICStyle() == PICStyles::None)
setRelocationModel(Reloc::Static);
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
// Install an instruction selector.
PM.add(createX86ISelDag(*this, OptLevel));
// For 32-bit, prepend instructions to set the "global base reg" for PIC.
if (!Subtarget.is64Bit())
PM.add(createGlobalBaseRegPass());
return false;
}
bool X86TargetMachine::addPreRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86MaxStackAlignmentHeuristicPass());
return false; // -print-machineinstr shouldn't print after this.
}
bool X86TargetMachine::addPostRegAlloc(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
PM.add(createX86FloatingPointStackifierPass());
return true; // -print-machineinstr should print after this.
}
bool X86TargetMachine::addPreEmitPass(PassManagerBase &PM,
CodeGenOpt::Level OptLevel) {
if (OptLevel != CodeGenOpt::None && Subtarget.hasSSE2()) {
PM.add(createSSEDomainFixPass());
return true;
}
return false;
}
bool X86TargetMachine::addCodeEmitter(PassManagerBase &PM,
CodeGenOpt::Level OptLevel,
JITCodeEmitter &JCE) {
// FIXME: Move this to TargetJITInfo!
// On Darwin, do not override 64-bit setting made in X86TargetMachine().
if (DefRelocModel == Reloc::Default &&
(!Subtarget.isTargetDarwin() || !Subtarget.is64Bit())) {
setRelocationModel(Reloc::Static);
Subtarget.setPICStyle(PICStyles::None);
}
PM.add(createX86JITCodeEmitterPass(*this, JCE));
return false;
}
void X86TargetMachine::setCodeModelForStatic() {
if (getCodeModel() != CodeModel::Default) return;
// For static codegen, if we're not already set, use Small codegen.
setCodeModel(CodeModel::Small);
}
void X86TargetMachine::setCodeModelForJIT() {
if (getCodeModel() != CodeModel::Default) return;
// 64-bit JIT places everything in the same buffer except external functions.
if (Subtarget.is64Bit())
setCodeModel(CodeModel::Large);
else
setCodeModel(CodeModel::Small);
}