mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-27 22:55:15 +00:00
58cfa3b137
and introduce a new Instruction::isIdenticalTo which tests for full identity, including the SubclassOptionalData flags. Also, fix the Instruction::clone implementations to preserve the SubclassOptionalData flags. Finally, teach several optimizations how to handle SubclassOptionalData correctly, given these changes. This fixes the counterintuitive behavior of isIdenticalTo not comparing the full value, and clone not returning an identical clone, as well as some subtle bugs that could be caused by these. Thanks to Nick Lewycky for reporting this, and for an initial patch! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80038 91177308-0d34-0410-b5e6-96231b3b80d8
667 lines
21 KiB
C++
667 lines
21 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found, the functions are folded. We can only fold two
|
|
// functions when we know that the definition of one of them is not
|
|
// overridable.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * fold vector<T*>::push_back and vector<S*>::push_back.
|
|
//
|
|
// These two functions have different types, but in a way that doesn't matter
|
|
// to us. As long as we never see an S or T itself, using S* and S** is the
|
|
// same as using a T* and T**.
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such implementations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN MergeFunctions : public ModulePass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
MergeFunctions() : ModulePass(&ID) {}
|
|
|
|
bool runOnModule(Module &M);
|
|
};
|
|
}
|
|
|
|
char MergeFunctions::ID = 0;
|
|
static RegisterPass<MergeFunctions>
|
|
X("mergefunc", "Merge Functions");
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Comparison of functions
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
static unsigned long hash(const Function *F) {
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(F->size());
|
|
ID.AddInteger(F->getCallingConv());
|
|
ID.AddBoolean(F->hasGC());
|
|
ID.AddBoolean(FTy->isVarArg());
|
|
ID.AddInteger(FTy->getReturnType()->getTypeID());
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
ID.AddInteger(FTy->getParamType(i)->getTypeID());
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
/// IgnoreBitcasts - given a bitcast, returns the first non-bitcast found by
|
|
/// walking the chain of cast operands. Otherwise, returns the argument.
|
|
static Value* IgnoreBitcasts(Value *V) {
|
|
while (BitCastInst *BC = dyn_cast<BitCastInst>(V))
|
|
V = BC->getOperand(0);
|
|
|
|
return V;
|
|
}
|
|
|
|
/// isEquivalentType - any two pointers are equivalent. Otherwise, standard
|
|
/// type equivalence rules apply.
|
|
static bool isEquivalentType(const Type *Ty1, const Type *Ty2) {
|
|
if (Ty1 == Ty2)
|
|
return true;
|
|
if (Ty1->getTypeID() != Ty2->getTypeID())
|
|
return false;
|
|
|
|
switch(Ty1->getTypeID()) {
|
|
case Type::VoidTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
case Type::MetadataTyID:
|
|
return true;
|
|
|
|
case Type::IntegerTyID:
|
|
case Type::OpaqueTyID:
|
|
// Ty1 == Ty2 would have returned true earlier.
|
|
return false;
|
|
|
|
default:
|
|
llvm_unreachable("Unknown type!");
|
|
return false;
|
|
|
|
case Type::PointerTyID: {
|
|
const PointerType *PTy1 = cast<PointerType>(Ty1);
|
|
const PointerType *PTy2 = cast<PointerType>(Ty2);
|
|
return PTy1->getAddressSpace() == PTy2->getAddressSpace();
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
const StructType *STy1 = cast<StructType>(Ty1);
|
|
const StructType *STy2 = cast<StructType>(Ty2);
|
|
if (STy1->getNumElements() != STy2->getNumElements())
|
|
return false;
|
|
|
|
if (STy1->isPacked() != STy2->isPacked())
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
|
|
if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::FunctionTyID: {
|
|
const FunctionType *FTy1 = cast<FunctionType>(Ty1);
|
|
const FunctionType *FTy2 = cast<FunctionType>(Ty2);
|
|
if (FTy1->getNumParams() != FTy2->getNumParams() ||
|
|
FTy1->isVarArg() != FTy2->isVarArg())
|
|
return false;
|
|
|
|
if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
|
|
if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case Type::ArrayTyID:
|
|
case Type::VectorTyID: {
|
|
const SequentialType *STy1 = cast<SequentialType>(Ty1);
|
|
const SequentialType *STy2 = cast<SequentialType>(Ty2);
|
|
return isEquivalentType(STy1->getElementType(), STy2->getElementType());
|
|
}
|
|
}
|
|
}
|
|
|
|
/// isEquivalentOperation - determine whether the two operations are the same
|
|
/// except that pointer-to-A and pointer-to-B are equivalent. This should be
|
|
/// kept in sync with Instruction::isSameOperationAs.
|
|
static bool
|
|
isEquivalentOperation(const Instruction *I1, const Instruction *I2) {
|
|
if (I1->getOpcode() != I2->getOpcode() ||
|
|
I1->getNumOperands() != I2->getNumOperands() ||
|
|
!isEquivalentType(I1->getType(), I2->getType()) ||
|
|
!I1->hasSameSubclassOptionalData(I2))
|
|
return false;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
|
|
if (!isEquivalentType(I1->getOperand(i)->getType(),
|
|
I2->getOperand(i)->getType()))
|
|
return false;
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
|
|
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
|
|
LI->getAlignment() == cast<LoadInst>(I2)->getAlignment();
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
|
|
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
|
|
SI->getAlignment() == cast<StoreInst>(I2)->getAlignment();
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
|
|
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I1))
|
|
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
|
|
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<CallInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
|
|
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
|
|
CI->getAttributes().getRawPointer() ==
|
|
cast<InvokeInst>(I2)->getAttributes().getRawPointer();
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1)) {
|
|
if (IVI->getNumIndices() != cast<InsertValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = IVI->getNumIndices(); i != e; ++i)
|
|
if (IVI->idx_begin()[i] != cast<InsertValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1)) {
|
|
if (EVI->getNumIndices() != cast<ExtractValueInst>(I2)->getNumIndices())
|
|
return false;
|
|
for (unsigned i = 0, e = EVI->getNumIndices(); i != e; ++i)
|
|
if (EVI->idx_begin()[i] != cast<ExtractValueInst>(I2)->idx_begin()[i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool compare(const Value *V, const Value *U) {
|
|
assert(!isa<BasicBlock>(V) && !isa<BasicBlock>(U) &&
|
|
"Must not compare basic blocks.");
|
|
|
|
assert(isEquivalentType(V->getType(), U->getType()) &&
|
|
"Two of the same operation have operands of different type.");
|
|
|
|
// TODO: If the constant is an expression of F, we should accept that it's
|
|
// equal to the same expression in terms of G.
|
|
if (isa<Constant>(V))
|
|
return V == U;
|
|
|
|
// The caller has ensured that ValueMap[V] != U. Since Arguments are
|
|
// pre-loaded into the ValueMap, and Instructions are added as we go, we know
|
|
// that this can only be a mis-match.
|
|
if (isa<Instruction>(V) || isa<Argument>(V))
|
|
return false;
|
|
|
|
if (isa<InlineAsm>(V) && isa<InlineAsm>(U)) {
|
|
const InlineAsm *IAF = cast<InlineAsm>(V);
|
|
const InlineAsm *IAG = cast<InlineAsm>(U);
|
|
return IAF->getAsmString() == IAG->getAsmString() &&
|
|
IAF->getConstraintString() == IAG->getConstraintString();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool equals(const BasicBlock *BB1, const BasicBlock *BB2,
|
|
DenseMap<const Value *, const Value *> &ValueMap,
|
|
DenseMap<const Value *, const Value *> &SpeculationMap) {
|
|
// Speculatively add it anyways. If it's false, we'll notice a difference
|
|
// later, and this won't matter.
|
|
ValueMap[BB1] = BB2;
|
|
|
|
BasicBlock::const_iterator FI = BB1->begin(), FE = BB1->end();
|
|
BasicBlock::const_iterator GI = BB2->begin(), GE = BB2->end();
|
|
|
|
do {
|
|
if (isa<BitCastInst>(FI)) {
|
|
++FI;
|
|
continue;
|
|
}
|
|
if (isa<BitCastInst>(GI)) {
|
|
++GI;
|
|
continue;
|
|
}
|
|
|
|
if (!isEquivalentOperation(FI, GI))
|
|
return false;
|
|
|
|
if (isa<GetElementPtrInst>(FI)) {
|
|
const GetElementPtrInst *GEPF = cast<GetElementPtrInst>(FI);
|
|
const GetElementPtrInst *GEPG = cast<GetElementPtrInst>(GI);
|
|
if (GEPF->hasAllZeroIndices() && GEPG->hasAllZeroIndices()) {
|
|
// It's effectively a bitcast.
|
|
++FI, ++GI;
|
|
continue;
|
|
}
|
|
|
|
// TODO: we only really care about the elements before the index
|
|
if (FI->getOperand(0)->getType() != GI->getOperand(0)->getType())
|
|
return false;
|
|
}
|
|
|
|
if (ValueMap[FI] == GI) {
|
|
++FI, ++GI;
|
|
continue;
|
|
}
|
|
|
|
if (ValueMap[FI] != NULL)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = FI->getNumOperands(); i != e; ++i) {
|
|
Value *OpF = IgnoreBitcasts(FI->getOperand(i));
|
|
Value *OpG = IgnoreBitcasts(GI->getOperand(i));
|
|
|
|
if (ValueMap[OpF] == OpG)
|
|
continue;
|
|
|
|
if (ValueMap[OpF] != NULL)
|
|
return false;
|
|
|
|
if (OpF->getValueID() != OpG->getValueID() ||
|
|
!isEquivalentType(OpF->getType(), OpG->getType()))
|
|
return false;
|
|
|
|
if (isa<PHINode>(FI)) {
|
|
if (SpeculationMap[OpF] == NULL)
|
|
SpeculationMap[OpF] = OpG;
|
|
else if (SpeculationMap[OpF] != OpG)
|
|
return false;
|
|
continue;
|
|
} else if (isa<BasicBlock>(OpF)) {
|
|
assert(isa<TerminatorInst>(FI) &&
|
|
"BasicBlock referenced by non-Terminator non-PHI");
|
|
// This call changes the ValueMap, hence we can't use
|
|
// Value *& = ValueMap[...]
|
|
if (!equals(cast<BasicBlock>(OpF), cast<BasicBlock>(OpG), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
} else {
|
|
if (!compare(OpF, OpG))
|
|
return false;
|
|
}
|
|
|
|
ValueMap[OpF] = OpG;
|
|
}
|
|
|
|
ValueMap[FI] = GI;
|
|
++FI, ++GI;
|
|
} while (FI != FE && GI != GE);
|
|
|
|
return FI == FE && GI == GE;
|
|
}
|
|
|
|
static bool equals(const Function *F, const Function *G) {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
if (F->getAttributes() != G->getAttributes())
|
|
return false;
|
|
|
|
if (F->hasGC() != G->hasGC())
|
|
return false;
|
|
|
|
if (F->hasGC() && F->getGC() != G->getGC())
|
|
return false;
|
|
|
|
if (F->hasSection() != G->hasSection())
|
|
return false;
|
|
|
|
if (F->hasSection() && F->getSection() != G->getSection())
|
|
return false;
|
|
|
|
if (F->isVarArg() != G->isVarArg())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F->getCallingConv() != G->getCallingConv())
|
|
return false;
|
|
|
|
if (!isEquivalentType(F->getFunctionType(), G->getFunctionType()))
|
|
return false;
|
|
|
|
DenseMap<const Value *, const Value *> ValueMap;
|
|
DenseMap<const Value *, const Value *> SpeculationMap;
|
|
ValueMap[F] = G;
|
|
|
|
assert(F->arg_size() == G->arg_size() &&
|
|
"Identical functions have a different number of args.");
|
|
|
|
for (Function::const_arg_iterator fi = F->arg_begin(), gi = G->arg_begin(),
|
|
fe = F->arg_end(); fi != fe; ++fi, ++gi)
|
|
ValueMap[fi] = gi;
|
|
|
|
if (!equals(&F->getEntryBlock(), &G->getEntryBlock(), ValueMap,
|
|
SpeculationMap))
|
|
return false;
|
|
|
|
for (DenseMap<const Value *, const Value *>::iterator
|
|
I = SpeculationMap.begin(), E = SpeculationMap.end(); I != E; ++I) {
|
|
if (ValueMap[I->first] != I->second)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Folding of functions
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
// Cases:
|
|
// * F is external strong, G is external strong:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external strong, G is external weak:
|
|
// turn G into a thunk to F (1)
|
|
// * F is external weak, G is external weak:
|
|
// unfoldable
|
|
// * F is external strong, G is internal:
|
|
// address of G taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G not taken:
|
|
// make G an alias to F (2)
|
|
// * F is internal, G is external weak
|
|
// address of F is taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of F is not taken:
|
|
// make G an alias of F (2)
|
|
// * F is internal, G is internal:
|
|
// address of F and G are taken:
|
|
// turn G into a thunk to F (1)
|
|
// address of G is not taken:
|
|
// make G an alias to F (2)
|
|
//
|
|
// alias requires linkage == (external,local,weak) fallback to creating a thunk
|
|
// external means 'externally visible' linkage != (internal,private)
|
|
// internal means linkage == (internal,private)
|
|
// weak means linkage mayBeOverridable
|
|
// being external implies that the address is taken
|
|
//
|
|
// 1. turn G into a thunk to F
|
|
// 2. make G an alias to F
|
|
|
|
enum LinkageCategory {
|
|
ExternalStrong,
|
|
ExternalWeak,
|
|
Internal
|
|
};
|
|
|
|
static LinkageCategory categorize(const Function *F) {
|
|
switch (F->getLinkage()) {
|
|
case GlobalValue::InternalLinkage:
|
|
case GlobalValue::PrivateLinkage:
|
|
case GlobalValue::LinkerPrivateLinkage:
|
|
return Internal;
|
|
|
|
case GlobalValue::WeakAnyLinkage:
|
|
case GlobalValue::WeakODRLinkage:
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return ExternalWeak;
|
|
|
|
case GlobalValue::ExternalLinkage:
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
case GlobalValue::AppendingLinkage:
|
|
case GlobalValue::DLLImportLinkage:
|
|
case GlobalValue::DLLExportLinkage:
|
|
case GlobalValue::GhostLinkage:
|
|
case GlobalValue::CommonLinkage:
|
|
return ExternalStrong;
|
|
}
|
|
|
|
llvm_unreachable("Unknown LinkageType.");
|
|
return ExternalWeak;
|
|
}
|
|
|
|
static void ThunkGToF(Function *F, Function *G) {
|
|
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
|
G->getParent());
|
|
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
|
|
std::vector<Value *> Args;
|
|
unsigned i = 0;
|
|
const FunctionType *FFTy = F->getFunctionType();
|
|
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
|
AI != AE; ++AI) {
|
|
if (FFTy->getParamType(i) == AI->getType())
|
|
Args.push_back(AI);
|
|
else {
|
|
Value *BCI = new BitCastInst(AI, FFTy->getParamType(i), "", BB);
|
|
Args.push_back(BCI);
|
|
}
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = CallInst::Create(F, Args.begin(), Args.end(), "", BB);
|
|
CI->setTailCall();
|
|
CI->setCallingConv(F->getCallingConv());
|
|
if (NewG->getReturnType() == Type::getVoidTy(F->getContext())) {
|
|
ReturnInst::Create(F->getContext(), BB);
|
|
} else if (CI->getType() != NewG->getReturnType()) {
|
|
Value *BCI = new BitCastInst(CI, NewG->getReturnType(), "", BB);
|
|
ReturnInst::Create(F->getContext(), BCI, BB);
|
|
} else {
|
|
ReturnInst::Create(F->getContext(), CI, BB);
|
|
}
|
|
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
|
|
// TODO: look at direct callers to G and make them all direct callers to F.
|
|
}
|
|
|
|
static void AliasGToF(Function *F, Function *G) {
|
|
if (!G->hasExternalLinkage() && !G->hasLocalLinkage() && !G->hasWeakLinkage())
|
|
return ThunkGToF(F, G);
|
|
|
|
GlobalAlias *GA = new GlobalAlias(
|
|
G->getType(), G->getLinkage(), "",
|
|
ConstantExpr::getBitCast(F, G->getType()), G->getParent());
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
}
|
|
|
|
static bool fold(std::vector<Function *> &FnVec, unsigned i, unsigned j) {
|
|
Function *F = FnVec[i];
|
|
Function *G = FnVec[j];
|
|
|
|
LinkageCategory catF = categorize(F);
|
|
LinkageCategory catG = categorize(G);
|
|
|
|
if (catF == ExternalWeak || (catF == Internal && catG == ExternalStrong)) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(catF, catG);
|
|
}
|
|
|
|
switch (catF) {
|
|
case ExternalStrong:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
case ExternalWeak:
|
|
ThunkGToF(F, G);
|
|
break;
|
|
case Internal:
|
|
if (G->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ExternalWeak: {
|
|
assert(catG == ExternalWeak);
|
|
|
|
// Make them both thunks to the same internal function.
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
|
|
F->getParent());
|
|
H->copyAttributesFrom(F);
|
|
H->takeName(F);
|
|
F->replaceAllUsesWith(H);
|
|
|
|
ThunkGToF(F, G);
|
|
ThunkGToF(F, H);
|
|
|
|
F->setLinkage(GlobalValue::InternalLinkage);
|
|
} break;
|
|
|
|
case Internal:
|
|
switch (catG) {
|
|
case ExternalStrong:
|
|
llvm_unreachable(0);
|
|
// fall-through
|
|
case ExternalWeak:
|
|
if (F->hasAddressTaken())
|
|
ThunkGToF(F, G);
|
|
else
|
|
AliasGToF(F, G);
|
|
break;
|
|
case Internal: {
|
|
bool addrTakenF = F->hasAddressTaken();
|
|
bool addrTakenG = G->hasAddressTaken();
|
|
if (!addrTakenF && addrTakenG) {
|
|
std::swap(FnVec[i], FnVec[j]);
|
|
std::swap(F, G);
|
|
std::swap(addrTakenF, addrTakenG);
|
|
}
|
|
|
|
if (addrTakenF && addrTakenG) {
|
|
ThunkGToF(F, G);
|
|
} else {
|
|
assert(!addrTakenG);
|
|
AliasGToF(F, G);
|
|
}
|
|
} break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
++NumFunctionsMerged;
|
|
return true;
|
|
}
|
|
|
|
// ===----------------------------------------------------------------------===
|
|
// Pass definition
|
|
// ===----------------------------------------------------------------------===
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
|
|
std::map<unsigned long, std::vector<Function *> > FnMap;
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration() || F->isIntrinsic())
|
|
continue;
|
|
|
|
FnMap[hash(F)].push_back(F);
|
|
}
|
|
|
|
// TODO: instead of running in a loop, we could also fold functions in
|
|
// callgraph order. Constructing the CFG probably isn't cheaper than just
|
|
// running in a loop, unless it happened to already be available.
|
|
|
|
bool LocalChanged;
|
|
do {
|
|
LocalChanged = false;
|
|
DEBUG(errs() << "size: " << FnMap.size() << "\n");
|
|
for (std::map<unsigned long, std::vector<Function *> >::iterator
|
|
I = FnMap.begin(), E = FnMap.end(); I != E; ++I) {
|
|
std::vector<Function *> &FnVec = I->second;
|
|
DEBUG(errs() << "hash (" << I->first << "): " << FnVec.size() << "\n");
|
|
|
|
for (int i = 0, e = FnVec.size(); i != e; ++i) {
|
|
for (int j = i + 1; j != e; ++j) {
|
|
bool isEqual = equals(FnVec[i], FnVec[j]);
|
|
|
|
DEBUG(errs() << " " << FnVec[i]->getName()
|
|
<< (isEqual ? " == " : " != ")
|
|
<< FnVec[j]->getName() << "\n");
|
|
|
|
if (isEqual) {
|
|
if (fold(FnVec, i, j)) {
|
|
LocalChanged = true;
|
|
FnVec.erase(FnVec.begin() + j);
|
|
--j, --e;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
Changed |= LocalChanged;
|
|
} while (LocalChanged);
|
|
|
|
return Changed;
|
|
}
|