llvm/test/Transforms/SROA/basictest.ll
Chandler Carruth a2b88163af Teach SROA how to split whole-alloca integer loads and stores into
smaller integer loads and stores.

The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.

Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.

If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.

Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@166662 91177308-0d34-0410-b5e6-96231b3b80d8
2012-10-25 04:37:07 +00:00

1137 lines
46 KiB
LLVM

; RUN: opt < %s -sroa -S | FileCheck %s
; RUN: opt < %s -sroa -force-ssa-updater -S | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
declare void @llvm.lifetime.start(i64, i8* nocapture)
declare void @llvm.lifetime.end(i64, i8* nocapture)
define i32 @test0() {
; CHECK: @test0
; CHECK-NOT: alloca
; CHECK: ret i32
entry:
%a1 = alloca i32
%a2 = alloca float
%a1.i8 = bitcast i32* %a1 to i8*
call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
store i32 0, i32* %a1
%v1 = load i32* %a1
call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
%a2.i8 = bitcast float* %a2 to i8*
call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
store float 0.0, float* %a2
%v2 = load float * %a2
%v2.int = bitcast float %v2 to i32
%sum1 = add i32 %v1, %v2.int
call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
ret i32 %sum1
}
define i32 @test1() {
; CHECK: @test1
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca { i32, float }
%Y = getelementptr { i32, float }* %X, i64 0, i32 0
store i32 0, i32* %Y
%Z = load i32* %Y
ret i32 %Z
}
define i64 @test2(i64 %X) {
; CHECK: @test2
; CHECK-NOT: alloca
; CHECK: ret i64 %X
entry:
%A = alloca [8 x i8]
%B = bitcast [8 x i8]* %A to i64*
store i64 %X, i64* %B
br label %L2
L2:
%Z = load i64* %B
ret i64 %Z
}
define void @test3(i8* %dst, i8* %src) {
; CHECK: @test3
entry:
%a = alloca [300 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test3_a1:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
%b = getelementptr [300 x i8]* %a, i64 0, i64 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
; CHECK-NEXT: %[[test3_r1:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 142
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 158
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 200
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 207
; CHECK-NEXT: %[[test3_r2:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 208
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 215
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
; Clobber a single element of the array, this should be promotable.
%c = getelementptr [300 x i8]* %a, i64 0, i64 42
store i8 0, i8* %c
; Make a sequence of overlapping stores to the array. These overlap both in
; forward strides and in shrinking accesses.
%overlap.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 142
%overlap.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 143
%overlap.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 144
%overlap.4.i8 = getelementptr [300 x i8]* %a, i64 0, i64 145
%overlap.5.i8 = getelementptr [300 x i8]* %a, i64 0, i64 146
%overlap.6.i8 = getelementptr [300 x i8]* %a, i64 0, i64 147
%overlap.7.i8 = getelementptr [300 x i8]* %a, i64 0, i64 148
%overlap.8.i8 = getelementptr [300 x i8]* %a, i64 0, i64 149
%overlap.9.i8 = getelementptr [300 x i8]* %a, i64 0, i64 150
%overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
%overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
%overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
%overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
%overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
%overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
%overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
%overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
%overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
%overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
%overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
store i8 1, i8* %overlap.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap.1.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap.1.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i64 1, i64* %overlap.1.i64
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
store i64 2, i64* %overlap.2.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
store i64 3, i64* %overlap.3.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
store i64 4, i64* %overlap.4.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
store i64 5, i64* %overlap.5.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 4
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
store i64 6, i64* %overlap.6.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 5
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
store i64 7, i64* %overlap.7.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 6
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
store i64 8, i64* %overlap.8.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 7
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
store i64 9, i64* %overlap.9.i64
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 8
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
; Make two sequences of overlapping stores with more gaps and irregularities.
%overlap2.1.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 200
%overlap2.1.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 201
%overlap2.1.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 202
%overlap2.1.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 203
%overlap2.2.0.i8 = getelementptr [300 x i8]* %a, i64 0, i64 208
%overlap2.2.1.i8 = getelementptr [300 x i8]* %a, i64 0, i64 209
%overlap2.2.2.i8 = getelementptr [300 x i8]* %a, i64 0, i64 210
%overlap2.2.3.i8 = getelementptr [300 x i8]* %a, i64 0, i64 211
%overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
%overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
%overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
%overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
%overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
store i8 1, i8* %overlap2.1.0.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap2.1.0.i16
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap2.1.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i32 2, i32* %overlap2.1.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
store i32 3, i32* %overlap2.1.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
store i32 4, i32* %overlap2.1.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
%overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
%overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
%overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
%overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
%overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
store i32 1, i32* %overlap2.2.0.i32
; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i8 1, i8* %overlap2.2.1.i8
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: store i8 1, i8* %[[gep]]
store i16 1, i16* %overlap2.2.1.i16
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
store i32 1, i32* %overlap2.2.1.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
store i32 3, i32* %overlap2.2.2.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
store i32 4, i32* %overlap2.2.3.i32
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 3
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
%overlap2.prefix = getelementptr i8* %overlap2.1.1.i8, i64 -4
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 39
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 3
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
; Bridge between the overlapping areas
call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
; ...promoted i8 store...
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
; Entirely within the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 1
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
; Trailing past the second overlap.
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 2
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 5
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
; CHECK-NEXT: store i8 0, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8]* %[[test3_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 142
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8]* %[[test3_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 158
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8]* %[[test3_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 200
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 207
; CHECK-NEXT: store i8 42, i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 208
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test3_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 215
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8]* %[[test3_a7]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
ret void
}
define void @test4(i8* %dst, i8* %src) {
; CHECK: @test4
entry:
%a = alloca [100 x i8]
; CHECK-NOT: alloca
; CHECK: %[[test4_a1:.*]] = alloca [20 x i8]
; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
%b = getelementptr [100 x i8]* %a, i64 0, i64 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r1:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 22
; CHECK-NEXT: %[[test4_r2:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 23
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 30
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r3:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 42
; CHECK-NEXT: %[[test4_r4:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 43
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: %[[test4_r5:.*]] = load i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %src, i64 52
; CHECK-NEXT: %[[test4_r6:.*]] = load i8* %[[gep]]
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 53
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8* %src, i64 60
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
%a.src.1 = getelementptr [100 x i8]* %a, i64 0, i64 20
%a.dst.1 = getelementptr [100 x i8]* %a, i64 0, i64 40
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; Clobber a single element of the array, this should be promotable, and be deleted.
%c = getelementptr [100 x i8]* %a, i64 0, i64 42
store i8 0, i8* %c
%a.src.2 = getelementptr [100 x i8]* %a, i64 0, i64 50
call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8]* %[[test4_a1]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 20
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 22
; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 23
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a2]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 30
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8]* %[[test4_a3]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 40
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 42
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 43
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a4]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 50
; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8* %dst, i64 52
; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 53
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8]* %[[test4_a5]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8* %dst, i64 60
; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8]* %[[test4_a6]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
ret void
}
declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
define i16 @test5() {
; CHECK: @test5
; CHECK-NOT: alloca float
; CHECK: %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
; CHECK-NEXT: ret i16 %[[trunc]]
entry:
%a = alloca [4 x i8]
%fptr = bitcast [4 x i8]* %a to float*
store float 0.0, float* %fptr
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 2
%iptr = bitcast i8* %ptr to i16*
%val = load i16* %iptr
ret i16 %val
}
define i32 @test6() {
; CHECK: @test6
; CHECK: alloca i32
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: load i32*
; CHECK-NEXT: ret i32
entry:
%a = alloca [4 x i8]
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
%iptr = bitcast i8* %ptr to i32*
%val = load i32* %iptr
ret i32 %val
}
define void @test7(i8* %src, i8* %dst) {
; CHECK: @test7
; CHECK: alloca i32
; CHECK-NEXT: bitcast i8* %src to i32*
; CHECK-NEXT: load volatile i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: bitcast i8* %dst to i32*
; CHECK-NEXT: load volatile i32*
; CHECK-NEXT: store volatile i32
; CHECK-NEXT: ret
entry:
%a = alloca [4 x i8]
%ptr = getelementptr [4 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
ret void
}
%S1 = type { i32, i32, [16 x i8] }
%S2 = type { %S1*, %S2* }
define %S2 @test8(%S2* %s2) {
; CHECK: @test8
entry:
%new = alloca %S2
; CHECK-NOT: alloca
%s2.next.ptr = getelementptr %S2* %s2, i64 0, i32 1
%s2.next = load %S2** %s2.next.ptr
; CHECK: %[[gep:.*]] = getelementptr %S2* %s2, i64 0, i32 1
; CHECK-NEXT: %[[next:.*]] = load %S2** %[[gep]]
%s2.next.s1.ptr = getelementptr %S2* %s2.next, i64 0, i32 0
%s2.next.s1 = load %S1** %s2.next.s1.ptr
%new.s1.ptr = getelementptr %S2* %new, i64 0, i32 0
store %S1* %s2.next.s1, %S1** %new.s1.ptr
%s2.next.next.ptr = getelementptr %S2* %s2.next, i64 0, i32 1
%s2.next.next = load %S2** %s2.next.next.ptr
%new.next.ptr = getelementptr %S2* %new, i64 0, i32 1
store %S2* %s2.next.next, %S2** %new.next.ptr
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 0
; CHECK-NEXT: %[[next_s1:.*]] = load %S1** %[[gep]]
; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2* %[[next]], i64 0, i32 1
; CHECK-NEXT: %[[next_next:.*]] = load %S2** %[[gep]]
%new.s1 = load %S1** %new.s1.ptr
%result1 = insertvalue %S2 undef, %S1* %new.s1, 0
; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
%new.next = load %S2** %new.next.ptr
%result2 = insertvalue %S2 %result1, %S2* %new.next, 1
; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
ret %S2 %result2
; CHECK-NEXT: ret %S2 %[[result2]]
}
define i64 @test9() {
; Ensure we can handle loads off the end of an alloca even when wrapped in
; weird bit casts and types. The result is undef, but this shouldn't crash
; anything.
; CHECK: @test9
; CHECK-NOT: alloca
; CHECK: ret i64 undef
entry:
%a = alloca { [3 x i8] }
%gep1 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 0
store i8 0, i8* %gep1, align 1
%gep2 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 1
store i8 0, i8* %gep2, align 1
%gep3 = getelementptr inbounds { [3 x i8] }* %a, i32 0, i32 0, i32 2
store i8 26, i8* %gep3, align 1
%cast = bitcast { [3 x i8] }* %a to { i64 }*
%elt = getelementptr inbounds { i64 }* %cast, i32 0, i32 0
%result = load i64* %elt
ret i64 %result
}
define %S2* @test10() {
; CHECK: @test10
; CHECK-NOT: alloca %S2*
; CHECK: ret %S2* null
entry:
%a = alloca [8 x i8]
%ptr = getelementptr [8 x i8]* %a, i32 0, i32 0
call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
%s2ptrptr = bitcast i8* %ptr to %S2**
%s2ptr = load %S2** %s2ptrptr
ret %S2* %s2ptr
}
define i32 @test11() {
; CHECK: @test11
; CHECK-NOT: alloca
; CHECK: ret i32 0
entry:
%X = alloca i32
br i1 undef, label %good, label %bad
good:
%Y = getelementptr i32* %X, i64 0
store i32 0, i32* %Y
%Z = load i32* %Y
ret i32 %Z
bad:
%Y2 = getelementptr i32* %X, i64 1
store i32 0, i32* %Y2
%Z2 = load i32* %Y2
ret i32 %Z2
}
define i8 @test12() {
; We fully promote these to the i24 load or store size, resulting in just masks
; and other operations that instcombine will fold, but no alloca.
;
; CHECK: @test12
entry:
%a = alloca [3 x i8]
%b = alloca [3 x i8]
; CHECK-NOT: alloca
%a0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %a0ptr
%a1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %a1ptr
%a2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %a2ptr
%aiptr = bitcast [3 x i8]* %a to i24*
%ai = load i24* %aiptr
; CHCEK-NOT: store
; CHCEK-NOT: load
; CHECK: %[[ext2:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
%biptr = bitcast [3 x i8]* %b to i24*
store i24 %ai, i24* %biptr
%b0ptr = getelementptr [3 x i8]* %b, i64 0, i32 0
%b0 = load i8* %b0ptr
%b1ptr = getelementptr [3 x i8]* %b, i64 0, i32 1
%b1 = load i8* %b1ptr
%b2ptr = getelementptr [3 x i8]* %b, i64 0, i32 2
%b2 = load i8* %b2ptr
; CHCEK-NOT: store
; CHCEK-NOT: load
; CHECK: %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
%bsum0 = add i8 %b0, %b1
%bsum1 = add i8 %bsum0, %b2
ret i8 %bsum1
; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
; CHECK-NEXT: ret i8 %[[sum1]]
}
define i32 @test13() {
; Ensure we don't crash and handle undefined loads that straddle the end of the
; allocation.
; CHECK: @test13
; CHECK: %[[ret:.*]] = zext i16 undef to i32
; CHECK: ret i32 %[[ret]]
entry:
%a = alloca [3 x i8]
%b0ptr = getelementptr [3 x i8]* %a, i64 0, i32 0
store i8 0, i8* %b0ptr
%b1ptr = getelementptr [3 x i8]* %a, i64 0, i32 1
store i8 0, i8* %b1ptr
%b2ptr = getelementptr [3 x i8]* %a, i64 0, i32 2
store i8 0, i8* %b2ptr
%iptrcast = bitcast [3 x i8]* %a to i16*
%iptrgep = getelementptr i16* %iptrcast, i64 1
%i = load i16* %iptrgep
%ret = zext i16 %i to i32
ret i32 %ret
}
%test14.struct = type { [3 x i32] }
define void @test14(...) nounwind uwtable {
; This is a strange case where we split allocas into promotable partitions, but
; also gain enough data to prove they must be dead allocas due to GEPs that walk
; across two adjacent allocas. Test that we don't try to promote or otherwise
; do bad things to these dead allocas, they should just be removed.
; CHECK: @test14
; CHECK-NEXT: entry:
; CHECK-NEXT: ret void
entry:
%a = alloca %test14.struct
%p = alloca %test14.struct*
%0 = bitcast %test14.struct* %a to i8*
%1 = getelementptr i8* %0, i64 12
%2 = bitcast i8* %1 to %test14.struct*
%3 = getelementptr inbounds %test14.struct* %2, i32 0, i32 0
%4 = getelementptr inbounds %test14.struct* %a, i32 0, i32 0
%5 = bitcast [3 x i32]* %3 to i32*
%6 = bitcast [3 x i32]* %4 to i32*
%7 = load i32* %6, align 4
store i32 %7, i32* %5, align 4
%8 = getelementptr inbounds i32* %5, i32 1
%9 = getelementptr inbounds i32* %6, i32 1
%10 = load i32* %9, align 4
store i32 %10, i32* %8, align 4
%11 = getelementptr inbounds i32* %5, i32 2
%12 = getelementptr inbounds i32* %6, i32 2
%13 = load i32* %12, align 4
store i32 %13, i32* %11, align 4
ret void
}
define i32 @test15(i1 %flag) nounwind uwtable {
; Ensure that when there are dead instructions using an alloca that are not
; loads or stores we still delete them during partitioning and rewriting.
; Otherwise we'll go to promote them while thy still have unpromotable uses.
; CHECK: @test15
; CHECK-NEXT: entry:
; CHECK-NEXT: br label %loop
; CHECK: loop:
; CHECK-NEXT: br label %loop
entry:
%l0 = alloca i64
%l1 = alloca i64
%l2 = alloca i64
%l3 = alloca i64
br label %loop
loop:
%dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
store i64 1879048192, i64* %l0, align 8
%bc0 = bitcast i64* %l0 to i8*
%gep0 = getelementptr i8* %bc0, i64 3
%dead0 = bitcast i8* %gep0 to i64*
store i64 1879048192, i64* %l1, align 8
%bc1 = bitcast i64* %l1 to i8*
%gep1 = getelementptr i8* %bc1, i64 3
%dead1 = getelementptr i8* %gep1, i64 1
store i64 1879048192, i64* %l2, align 8
%bc2 = bitcast i64* %l2 to i8*
%gep2.1 = getelementptr i8* %bc2, i64 1
%gep2.2 = getelementptr i8* %bc2, i64 3
; Note that this select should get visited multiple times due to using two
; different GEPs off the same alloca. We should only delete it once.
%dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
store i64 1879048192, i64* %l3, align 8
%bc3 = bitcast i64* %l3 to i8*
%gep3 = getelementptr i8* %bc3, i64 3
br label %loop
}
define void @test16(i8* %src, i8* %dst) {
; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
; CHECK: @test16
; CHECK-NOT: alloca
; CHECK: %[[srccast:.*]] = bitcast i8* %src to i24*
; CHECK-NEXT: load i24* %[[srccast]]
; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
%ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
%cast = bitcast i8* %ptr to i24*
store i24 0, i24* %cast
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
ret void
}
define void @test17(i8* %src, i8* %dst) {
; Ensure that we can rewrite unpromotable memcpys which extend past the end of
; the alloca.
; CHECK: @test17
; CHECK: %[[a:.*]] = alloca [3 x i8]
; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8]* %[[a]], i32 0, i32 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
; CHECK-NEXT: ret void
entry:
%a = alloca [3 x i8]
%ptr = getelementptr [3 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
ret void
}
define void @test18(i8* %src, i8* %dst, i32 %size) {
; Preserve transfer instrinsics with a variable size, even if they overlap with
; fixed size operations. Further, continue to split and promote allocas preceding
; the variable sized intrinsic.
; CHECK: @test18
; CHECK: %[[a:.*]] = alloca [34 x i8]
; CHECK: %[[srcgep1:.*]] = getelementptr inbounds i8* %src, i64 4
; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
; CHECK-NEXT: %[[srcload:.*]] = load i32* %[[srccast1]]
; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8* %dst, i64 4
; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8]* %[[a]], i64 0, i64 0
; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
; CHECK-NEXT: ret void
entry:
%a = alloca [42 x i8]
%ptr = getelementptr [42 x i8]* %a, i32 0, i32 0
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
%ptr2 = getelementptr [42 x i8]* %a, i32 0, i32 8
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
%cast = bitcast i8* %ptr to i32*
store i32 42, i32* %cast
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
ret void
}
%opaque = type opaque
define i32 @test19(%opaque* %x) {
; This input will cause us to try to compute a natural GEP when rewriting
; pointers in such a way that we try to GEP through the opaque type. Previously,
; a check for an unsized type was missing and this crashed. Ensure it behaves
; reasonably now.
; CHECK: @test19
; CHECK-NOT: alloca
; CHECK: ret i32 undef
entry:
%a = alloca { i64, i8* }
%cast1 = bitcast %opaque* %x to i8*
%cast2 = bitcast { i64, i8* }* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
%gep = getelementptr inbounds { i64, i8* }* %a, i32 0, i32 0
%val = load i64* %gep
ret i32 undef
}
define i32 @test20() {
; Ensure we can track negative offsets (before the beginning of the alloca) and
; negative relative offsets from offsets starting past the end of the alloca.
; CHECK: @test20
; CHECK-NOT: alloca
; CHECK: %[[sum1:.*]] = add i32 1, 2
; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
; CHECK: ret i32 %[[sum2]]
entry:
%a = alloca [3 x i32]
%gep1 = getelementptr [3 x i32]* %a, i32 0, i32 0
store i32 1, i32* %gep1
%gep2.1 = getelementptr [3 x i32]* %a, i32 0, i32 -2
%gep2.2 = getelementptr i32* %gep2.1, i32 3
store i32 2, i32* %gep2.2
%gep3.1 = getelementptr [3 x i32]* %a, i32 0, i32 14
%gep3.2 = getelementptr i32* %gep3.1, i32 -12
store i32 3, i32* %gep3.2
%load1 = load i32* %gep1
%load2 = load i32* %gep2.2
%load3 = load i32* %gep3.2
%sum1 = add i32 %load1, %load2
%sum2 = add i32 %sum1, %load3
ret i32 %sum2
}
declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
define i8 @test21() {
; Test allocations and offsets which border on overflow of the int64_t used
; internally. This is really awkward to really test as LLVM doesn't really
; support such extreme constructs cleanly.
; CHECK: @test21
; CHECK-NOT: alloca
; CHECK: or i8 -1, -1
entry:
%a = alloca [2305843009213693951 x i8]
%gep0 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
store i8 255, i8* %gep0
%gep1 = getelementptr [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
%gep2 = getelementptr i8* %gep1, i64 -1
call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
%gep3 = getelementptr i8* %gep1, i64 9223372036854775807
%gep4 = getelementptr i8* %gep3, i64 9223372036854775807
%gep5 = getelementptr i8* %gep4, i64 -6917529027641081857
store i8 255, i8* %gep5
%cast1 = bitcast i8* %gep4 to i32*
store i32 0, i32* %cast1
%load = load i8* %gep0
%gep6 = getelementptr i8* %gep0, i32 1
%load2 = load i8* %gep6
%result = or i8 %load, %load2
ret i8 %result
}
%PR13916.struct = type { i8 }
define void @PR13916.1() {
; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
; the case where there is a directly identical value for both source and dest.
; CHECK: @PR13916.1
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%a = alloca i8
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
%tmp2 = load i8* %a
ret void
}
define void @PR13916.2() {
; Check whether we continue to handle them correctly when they start off with
; different pointer value chains, but during rewriting we coalesce them into the
; same value.
; CHECK: @PR13916.2
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%a = alloca %PR13916.struct, align 1
br i1 undef, label %if.then, label %if.end
if.then:
%tmp0 = bitcast %PR13916.struct* %a to i8*
%tmp1 = bitcast %PR13916.struct* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
br label %if.end
if.end:
%gep = getelementptr %PR13916.struct* %a, i32 0, i32 0
%tmp2 = load i8* %gep
ret void
}
define void @PR13990() {
; Ensure we can handle cases where processing one alloca causes the other
; alloca to become dead and get deleted. This might crash or fail under
; Valgrind if we regress.
; CHECK: @PR13990
; CHECK-NOT: alloca
; CHECK: unreachable
; CHECK: unreachable
entry:
%tmp1 = alloca i8*
%tmp2 = alloca i8*
br i1 undef, label %bb1, label %bb2
bb1:
store i8* undef, i8** %tmp2
br i1 undef, label %bb2, label %bb3
bb2:
%tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
br i1 undef, label %bb3, label %bb4
bb3:
unreachable
bb4:
unreachable
}
define double @PR13969(double %x) {
; Check that we detect when promotion will un-escape an alloca and iterate to
; re-try running SROA over that alloca. Without that, the two allocas that are
; stored into a dead alloca don't get rewritten and promoted.
; CHECK: @PR13969
entry:
%a = alloca double
%b = alloca double*
%c = alloca double
; CHECK-NOT: alloca
store double %x, double* %a
store double* %c, double** %b
store double* %a, double** %b
store double %x, double* %c
%ret = load double* %a
; CHECK-NOT: store
; CHECK-NOT: load
ret double %ret
; CHECK: ret double %x
}
%PR14034.struct = type { { {} }, i32, %PR14034.list }
%PR14034.list = type { %PR14034.list*, %PR14034.list* }
define void @PR14034() {
; This test case tries to form GEPs into the empty leading struct members, and
; subsequently crashed (under valgrind) before we fixed the PR. The important
; thing is to handle empty structs gracefully.
; CHECK: @PR14034
entry:
%a = alloca %PR14034.struct
%list = getelementptr %PR14034.struct* %a, i32 0, i32 2
%prev = getelementptr %PR14034.list* %list, i32 0, i32 1
store %PR14034.list* undef, %PR14034.list** %prev
%cast0 = bitcast %PR14034.struct* undef to i8*
%cast1 = bitcast %PR14034.struct* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
ret void
}
define i32 @test22(i32 %x) {
; Test that SROA and promotion is not confused by a grab bax mixture of pointer
; types involving wrapper aggregates and zero-length aggregate members.
; CHECK: @test22
entry:
%a1 = alloca { { [1 x { i32 }] } }
%a2 = alloca { {}, { float }, [0 x i8] }
%a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
; CHECK-NOT: alloca
%wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
%gep1 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
%gep2 = getelementptr { { [1 x { i32 }] } }* %a1, i32 0, i32 0
%ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
%load1 = load { [1 x { float }] }* %ptrcast1
%unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
%wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
%gep3 = getelementptr { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
%ptrcast2 = bitcast float* %gep3 to <4 x i8>*
%load3 = load <4 x i8>* %ptrcast2
%valcast1 = bitcast <4 x i8> %load3 to i32
%wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
%wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
%gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
%ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
%gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
%ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
%load4 = load { {}, float, {} }* %ptrcast4
%unwrap2 = extractvalue { {}, float, {} } %load4, 1
%valcast2 = bitcast float %unwrap2 to i32
ret i32 %valcast2
; CHECK: ret i32
}
define void @PR14059.1(double* %d) {
; In PR14059 a peculiar construct was identified as something that is used
; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
; of doubles via an array of i32 in order to place the data into integer
; registers. This in turn was missed as an optimization by SROA due to the
; partial loads and stores of integers to the double alloca we were trying to
; form and promote. The solution is to widen the integer operations to be
; whole-alloca operations, and perform the appropriate bitcasting on the
; *values* rather than the pointers. When this works, partial reads and writes
; via integers can be promoted away.
; CHECK: @PR14059.1
; CHECK-NOT: alloca
; CHECK: ret void
entry:
%X.sroa.0.i = alloca double, align 8
%0 = bitcast double* %X.sroa.0.i to i8*
call void @llvm.lifetime.start(i64 -1, i8* %0)
; Store to the low 32-bits...
%X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
; Also use a memset to the middle 32-bits for fun.
%X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8* %0, i32 2
call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
; Or a memset of the whole thing.
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
; Write to the high 32-bits with a memcpy.
%X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8* %0, i32 4
%d.raw = bitcast double* %d to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
; Store to the high 32-bits...
%X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
; Do the actual math...
%X.sroa.0.0.load1.i = load double* %X.sroa.0.i, align 8
%accum.real.i = load double* %d, align 8
%add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
store double %add.r.i, double* %d, align 8
call void @llvm.lifetime.end(i64 -1, i8* %0)
ret void
}
define i64 @PR14059.2({ float, float }* %phi) {
; Check that SROA can split up alloca-wide integer loads and stores where the
; underlying alloca has smaller components that are accessed independently. This
; shows up particularly with ABI lowering patterns coming out of Clang that rely
; on the particular register placement of a single large integer return value.
; CHECK: @PR14059.2
entry:
%retval = alloca { float, float }, align 4
; CHECK-NOT: alloca
%0 = bitcast { float, float }* %retval to i64*
store i64 0, i64* %0
; CHECK-NOT: store
%phi.realp = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
%phi.real = load float* %phi.realp
%phi.imagp = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
%phi.imag = load float* %phi.imagp
; CHECK: %[[realp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 0
; CHECK-NEXT: %[[real:.*]] = load float* %[[realp]]
; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }* %phi, i32 0, i32 1
; CHECK-NEXT: %[[imag:.*]] = load float* %[[imagp]]
%real = getelementptr inbounds { float, float }* %retval, i32 0, i32 0
%imag = getelementptr inbounds { float, float }* %retval, i32 0, i32 1
store float %phi.real, float* %real
store float %phi.imag, float* %imag
; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
%1 = load i64* %0, align 1
ret i64 %1
; CHECK-NEXT: ret i64 %[[real_insert]]
}
define void @PR14105({ [16 x i8] }* %ptr) {
; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
; sign as negative. We use a volatile memcpy to ensure promotion never actually
; occurs.
; CHECK: @PR14105
entry:
%a = alloca { [16 x i8] }, align 8
; CHECK: alloca [16 x i8], align 8
%gep = getelementptr inbounds { [16 x i8] }* %ptr, i64 -1
; CHECK-NEXT: getelementptr inbounds { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
%cast1 = bitcast { [16 x i8 ] }* %gep to i8*
%cast2 = bitcast { [16 x i8 ] }* %a to i8*
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
ret void
; CHECK: ret
}