mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-22 20:20:03 +00:00
d3a5adc5ba
Remove implicit ilist iterator conversions from LLVMAnalysis. I came across something really scary in `llvm::isKnownNotFullPoison()` which relied on `Instruction::getNextNode()` being completely broken (not surprising, but scary nevertheless). This function is documented (and coded to) return `nullptr` when it gets to the sentinel, but with an `ilist_half_node` as a sentinel, the sentinel check looks into some other memory and we don't recognize we've hit the end. Rooting out these scary cases is the reason I'm removing the implicit conversions before doing anything else with `ilist`; I'm not at all surprised that clients rely on badness. I found another scary case -- this time, not relying on badness, just bad (but I guess getting lucky so far) -- in `ObjectSizeOffsetEvaluator::compute_()`. Here, we save out the insertion point, do some things, and then restore it. Previously, we let the iterator auto-convert to `Instruction*`, and then set it back using the `Instruction*` version: Instruction *PrevInsertPoint = Builder.GetInsertPoint(); /* Logic that may change insert point */ if (PrevInsertPoint) Builder.SetInsertPoint(PrevInsertPoint); The check for `PrevInsertPoint` doesn't protect correctly against bad accesses. If the insertion point has been set to the end of a basic block (i.e., `SetInsertPoint(SomeBB)`), then `GetInsertPoint()` returns an iterator pointing at the list sentinel. The version of `SetInsertPoint()` that's getting called will then call `PrevInsertPoint->getParent()`, which explodes horribly. The only reason this hasn't blown up is that it's fairly unlikely the builder is adding to the end of the block; usually, we're adding instructions somewhere before the terminator. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@249925 91177308-0d34-0410-b5e6-96231b3b80d8
255 lines
10 KiB
C++
255 lines
10 KiB
C++
//===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for working with "normalized" expressions.
|
|
// See the comments at the top of ScalarEvolutionNormalization.h for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
|
|
using namespace llvm;
|
|
|
|
/// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
|
|
/// and now we need to decide whether the user should use the preinc or post-inc
|
|
/// value. If this user should use the post-inc version of the IV, return true.
|
|
///
|
|
/// Choosing wrong here can break dominance properties (if we choose to use the
|
|
/// post-inc value when we cannot) or it can end up adding extra live-ranges to
|
|
/// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
|
|
/// should use the post-inc value).
|
|
static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
|
|
const Loop *L, DominatorTree *DT) {
|
|
// If the user is in the loop, use the preinc value.
|
|
if (L->contains(User)) return false;
|
|
|
|
BasicBlock *LatchBlock = L->getLoopLatch();
|
|
if (!LatchBlock)
|
|
return false;
|
|
|
|
// Ok, the user is outside of the loop. If it is dominated by the latch
|
|
// block, use the post-inc value.
|
|
if (DT->dominates(LatchBlock, User->getParent()))
|
|
return true;
|
|
|
|
// There is one case we have to be careful of: PHI nodes. These little guys
|
|
// can live in blocks that are not dominated by the latch block, but (since
|
|
// their uses occur in the predecessor block, not the block the PHI lives in)
|
|
// should still use the post-inc value. Check for this case now.
|
|
PHINode *PN = dyn_cast<PHINode>(User);
|
|
if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
|
|
|
|
// Look at all of the uses of Operand by the PHI node. If any use corresponds
|
|
// to a block that is not dominated by the latch block, give up and use the
|
|
// preincremented value.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (PN->getIncomingValue(i) == Operand &&
|
|
!DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
|
|
return false;
|
|
|
|
// Okay, all uses of Operand by PN are in predecessor blocks that really are
|
|
// dominated by the latch block. Use the post-incremented value.
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Hold the state used during post-inc expression transformation, including a
|
|
/// map of transformed expressions.
|
|
class PostIncTransform {
|
|
TransformKind Kind;
|
|
PostIncLoopSet &Loops;
|
|
ScalarEvolution &SE;
|
|
DominatorTree &DT;
|
|
|
|
DenseMap<const SCEV*, const SCEV*> Transformed;
|
|
|
|
public:
|
|
PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
|
|
ScalarEvolution &se, DominatorTree &dt):
|
|
Kind(kind), Loops(loops), SE(se), DT(dt) {}
|
|
|
|
const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
|
|
Value *OperandValToReplace);
|
|
|
|
protected:
|
|
const SCEV *TransformImpl(const SCEV *S, Instruction *User,
|
|
Value *OperandValToReplace);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Implement post-inc transformation for all valid expression types.
|
|
const SCEV *PostIncTransform::
|
|
TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
|
|
|
|
if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
|
|
const SCEV *O = X->getOperand();
|
|
const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
|
|
if (O != N)
|
|
switch (S->getSCEVType()) {
|
|
case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
|
|
case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
|
|
case scTruncate: return SE.getTruncateExpr(N, S->getType());
|
|
default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
|
|
}
|
|
return S;
|
|
}
|
|
|
|
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
|
|
// An addrec. This is the interesting part.
|
|
SmallVector<const SCEV *, 8> Operands;
|
|
const Loop *L = AR->getLoop();
|
|
// The addrec conceptually uses its operands at loop entry.
|
|
Instruction *LUser = &L->getHeader()->front();
|
|
// Transform each operand.
|
|
for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
|
|
I != E; ++I) {
|
|
Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
|
|
}
|
|
// Conservatively use AnyWrap until/unless we need FlagNW.
|
|
const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
|
|
switch (Kind) {
|
|
case NormalizeAutodetect:
|
|
// Normalize this SCEV by subtracting the expression for the final step.
|
|
// We only allow affine AddRecs to be normalized, otherwise we would not
|
|
// be able to correctly denormalize.
|
|
// e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
|
|
// Normalized form: {-2,+,1,+,2}
|
|
// Denormalized form: {1,+,3,+,2}
|
|
//
|
|
// However, denormalization would use a different step expression than
|
|
// normalization (see getPostIncExpr), generating the wrong final
|
|
// expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
|
|
if (AR->isAffine() &&
|
|
IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
|
|
const SCEV *TransformedStep =
|
|
TransformSubExpr(AR->getStepRecurrence(SE),
|
|
User, OperandValToReplace);
|
|
Result = SE.getMinusSCEV(Result, TransformedStep);
|
|
Loops.insert(L);
|
|
}
|
|
#if 0
|
|
// This assert is conceptually correct, but ScalarEvolution currently
|
|
// sometimes fails to canonicalize two equal SCEVs to exactly the same
|
|
// form. It's possibly a pessimization when this happens, but it isn't a
|
|
// correctness problem, so disable this assert for now.
|
|
assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
|
|
"SCEV normalization is not invertible!");
|
|
#endif
|
|
break;
|
|
case Normalize:
|
|
// We want to normalize step expression, because otherwise we might not be
|
|
// able to denormalize to the original expression.
|
|
//
|
|
// Here is an example what will happen if we don't normalize step:
|
|
// ORIGINAL ISE:
|
|
// {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
|
|
// NORMALIZED ISE:
|
|
// {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
|
|
// (100 /u {0,+,1}<%bb16>)}<%bb25>
|
|
// DENORMALIZED BACK ISE:
|
|
// {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
|
|
// (100 /u {1,+,1}<%bb16>)}<%bb25>
|
|
// Note that the initial value changes after normalization +
|
|
// denormalization, which isn't correct.
|
|
if (Loops.count(L)) {
|
|
const SCEV *TransformedStep =
|
|
TransformSubExpr(AR->getStepRecurrence(SE),
|
|
User, OperandValToReplace);
|
|
Result = SE.getMinusSCEV(Result, TransformedStep);
|
|
}
|
|
#if 0
|
|
// See the comment on the assert above.
|
|
assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
|
|
"SCEV normalization is not invertible!");
|
|
#endif
|
|
break;
|
|
case Denormalize:
|
|
// Here we want to normalize step expressions for the same reasons, as
|
|
// stated above.
|
|
if (Loops.count(L)) {
|
|
const SCEV *TransformedStep =
|
|
TransformSubExpr(AR->getStepRecurrence(SE),
|
|
User, OperandValToReplace);
|
|
Result = SE.getAddExpr(Result, TransformedStep);
|
|
}
|
|
break;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
|
|
SmallVector<const SCEV *, 8> Operands;
|
|
bool Changed = false;
|
|
// Transform each operand.
|
|
for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
|
|
I != E; ++I) {
|
|
const SCEV *O = *I;
|
|
const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
|
|
Changed |= N != O;
|
|
Operands.push_back(N);
|
|
}
|
|
// If any operand actually changed, return a transformed result.
|
|
if (Changed)
|
|
switch (S->getSCEVType()) {
|
|
case scAddExpr: return SE.getAddExpr(Operands);
|
|
case scMulExpr: return SE.getMulExpr(Operands);
|
|
case scSMaxExpr: return SE.getSMaxExpr(Operands);
|
|
case scUMaxExpr: return SE.getUMaxExpr(Operands);
|
|
default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
|
|
}
|
|
return S;
|
|
}
|
|
|
|
if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
|
|
const SCEV *LO = X->getLHS();
|
|
const SCEV *RO = X->getRHS();
|
|
const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
|
|
const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
|
|
if (LO != LN || RO != RN)
|
|
return SE.getUDivExpr(LN, RN);
|
|
return S;
|
|
}
|
|
|
|
llvm_unreachable("Unexpected SCEV kind!");
|
|
}
|
|
|
|
/// Manage recursive transformation across an expression DAG. Revisiting
|
|
/// expressions would lead to exponential recursion.
|
|
const SCEV *PostIncTransform::
|
|
TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
|
|
|
|
if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
|
|
return S;
|
|
|
|
const SCEV *Result = Transformed.lookup(S);
|
|
if (Result)
|
|
return Result;
|
|
|
|
Result = TransformImpl(S, User, OperandValToReplace);
|
|
Transformed[S] = Result;
|
|
return Result;
|
|
}
|
|
|
|
/// Top level driver for transforming an expression DAG into its requested
|
|
/// post-inc form (either "Normalized" or "Denormalized").
|
|
const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
|
|
const SCEV *S,
|
|
Instruction *User,
|
|
Value *OperandValToReplace,
|
|
PostIncLoopSet &Loops,
|
|
ScalarEvolution &SE,
|
|
DominatorTree &DT) {
|
|
PostIncTransform Transform(Kind, Loops, SE, DT);
|
|
return Transform.TransformSubExpr(S, User, OperandValToReplace);
|
|
}
|