llvm/lib/AsmParser/LLParser.cpp
Chris Lattner eeb4a84ac8 switch the .ll parser to use SourceMgr.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74735 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-02 23:08:13 +00:00

3349 lines
117 KiB
C++

//===-- LLParser.cpp - Parser Class ---------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#include "LLParser.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/MDNode.h"
#include "llvm/Module.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace llvm {
/// ValID - Represents a reference of a definition of some sort with no type.
/// There are several cases where we have to parse the value but where the
/// type can depend on later context. This may either be a numeric reference
/// or a symbolic (%var) reference. This is just a discriminated union.
struct ValID {
enum {
t_LocalID, t_GlobalID, // ID in UIntVal.
t_LocalName, t_GlobalName, // Name in StrVal.
t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
t_Null, t_Undef, t_Zero, // No value.
t_EmptyArray, // No value: []
t_Constant, // Value in ConstantVal.
t_InlineAsm // Value in StrVal/StrVal2/UIntVal.
} Kind;
LLParser::LocTy Loc;
unsigned UIntVal;
std::string StrVal, StrVal2;
APSInt APSIntVal;
APFloat APFloatVal;
Constant *ConstantVal;
ValID() : APFloatVal(0.0) {}
};
}
/// Run: module ::= toplevelentity*
bool LLParser::Run() {
// Prime the lexer.
Lex.Lex();
return ParseTopLevelEntities() ||
ValidateEndOfModule();
}
/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
/// module.
bool LLParser::ValidateEndOfModule() {
if (!ForwardRefTypes.empty())
return Error(ForwardRefTypes.begin()->second.second,
"use of undefined type named '" +
ForwardRefTypes.begin()->first + "'");
if (!ForwardRefTypeIDs.empty())
return Error(ForwardRefTypeIDs.begin()->second.second,
"use of undefined type '%" +
utostr(ForwardRefTypeIDs.begin()->first) + "'");
if (!ForwardRefVals.empty())
return Error(ForwardRefVals.begin()->second.second,
"use of undefined value '@" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '@" +
utostr(ForwardRefValIDs.begin()->first) + "'");
// Look for intrinsic functions and CallInst that need to be upgraded
for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
return false;
}
//===----------------------------------------------------------------------===//
// Top-Level Entities
//===----------------------------------------------------------------------===//
bool LLParser::ParseTopLevelEntities() {
while (1) {
switch (Lex.getKind()) {
default: return TokError("expected top-level entity");
case lltok::Eof: return false;
//case lltok::kw_define:
case lltok::kw_declare: if (ParseDeclare()) return true; break;
case lltok::kw_define: if (ParseDefine()) return true; break;
case lltok::kw_module: if (ParseModuleAsm()) return true; break;
case lltok::kw_target: if (ParseTargetDefinition()) return true; break;
case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
case lltok::kw_type: if (ParseUnnamedType()) return true; break;
case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
case lltok::LocalVar: if (ParseNamedType()) return true; break;
case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break;
case lltok::Metadata: if (ParseStandaloneMetadata()) return true; break;
// The Global variable production with no name can have many different
// optional leading prefixes, the production is:
// GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
// OptionalAddrSpace ('constant'|'global') ...
case lltok::kw_private: // OptionalLinkage
case lltok::kw_internal: // OptionalLinkage
case lltok::kw_weak: // OptionalLinkage
case lltok::kw_weak_odr: // OptionalLinkage
case lltok::kw_linkonce: // OptionalLinkage
case lltok::kw_linkonce_odr: // OptionalLinkage
case lltok::kw_appending: // OptionalLinkage
case lltok::kw_dllexport: // OptionalLinkage
case lltok::kw_common: // OptionalLinkage
case lltok::kw_dllimport: // OptionalLinkage
case lltok::kw_extern_weak: // OptionalLinkage
case lltok::kw_external: { // OptionalLinkage
unsigned Linkage, Visibility;
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
ParseGlobal("", SMLoc(), Linkage, true, Visibility))
return true;
break;
}
case lltok::kw_default: // OptionalVisibility
case lltok::kw_hidden: // OptionalVisibility
case lltok::kw_protected: { // OptionalVisibility
unsigned Visibility;
if (ParseOptionalVisibility(Visibility) ||
ParseGlobal("", SMLoc(), 0, false, Visibility))
return true;
break;
}
case lltok::kw_thread_local: // OptionalThreadLocal
case lltok::kw_addrspace: // OptionalAddrSpace
case lltok::kw_constant: // GlobalType
case lltok::kw_global: // GlobalType
if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
break;
}
}
}
/// toplevelentity
/// ::= 'module' 'asm' STRINGCONSTANT
bool LLParser::ParseModuleAsm() {
assert(Lex.getKind() == lltok::kw_module);
Lex.Lex();
std::string AsmStr;
if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
ParseStringConstant(AsmStr)) return true;
const std::string &AsmSoFar = M->getModuleInlineAsm();
if (AsmSoFar.empty())
M->setModuleInlineAsm(AsmStr);
else
M->setModuleInlineAsm(AsmSoFar+"\n"+AsmStr);
return false;
}
/// toplevelentity
/// ::= 'target' 'triple' '=' STRINGCONSTANT
/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
bool LLParser::ParseTargetDefinition() {
assert(Lex.getKind() == lltok::kw_target);
std::string Str;
switch (Lex.Lex()) {
default: return TokError("unknown target property");
case lltok::kw_triple:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target triple") ||
ParseStringConstant(Str))
return true;
M->setTargetTriple(Str);
return false;
case lltok::kw_datalayout:
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
ParseStringConstant(Str))
return true;
M->setDataLayout(Str);
return false;
}
}
/// toplevelentity
/// ::= 'deplibs' '=' '[' ']'
/// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
bool LLParser::ParseDepLibs() {
assert(Lex.getKind() == lltok::kw_deplibs);
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
ParseToken(lltok::lsquare, "expected '=' after deplibs"))
return true;
if (EatIfPresent(lltok::rsquare))
return false;
std::string Str;
if (ParseStringConstant(Str)) return true;
M->addLibrary(Str);
while (EatIfPresent(lltok::comma)) {
if (ParseStringConstant(Str)) return true;
M->addLibrary(Str);
}
return ParseToken(lltok::rsquare, "expected ']' at end of list");
}
/// toplevelentity
/// ::= 'type' type
bool LLParser::ParseUnnamedType() {
assert(Lex.getKind() == lltok::kw_type);
LocTy TypeLoc = Lex.getLoc();
Lex.Lex(); // eat kw_type
PATypeHolder Ty(Type::VoidTy);
if (ParseType(Ty)) return true;
unsigned TypeID = NumberedTypes.size();
// See if this type was previously referenced.
std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
FI = ForwardRefTypeIDs.find(TypeID);
if (FI != ForwardRefTypeIDs.end()) {
if (FI->second.first.get() == Ty)
return Error(TypeLoc, "self referential type is invalid");
cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
Ty = FI->second.first.get();
ForwardRefTypeIDs.erase(FI);
}
NumberedTypes.push_back(Ty);
return false;
}
/// toplevelentity
/// ::= LocalVar '=' 'type' type
bool LLParser::ParseNamedType() {
std::string Name = Lex.getStrVal();
LocTy NameLoc = Lex.getLoc();
Lex.Lex(); // eat LocalVar.
PATypeHolder Ty(Type::VoidTy);
if (ParseToken(lltok::equal, "expected '=' after name") ||
ParseToken(lltok::kw_type, "expected 'type' after name") ||
ParseType(Ty))
return true;
// Set the type name, checking for conflicts as we do so.
bool AlreadyExists = M->addTypeName(Name, Ty);
if (!AlreadyExists) return false;
// See if this type is a forward reference. We need to eagerly resolve
// types to allow recursive type redefinitions below.
std::map<std::string, std::pair<PATypeHolder, LocTy> >::iterator
FI = ForwardRefTypes.find(Name);
if (FI != ForwardRefTypes.end()) {
if (FI->second.first.get() == Ty)
return Error(NameLoc, "self referential type is invalid");
cast<DerivedType>(FI->second.first.get())->refineAbstractTypeTo(Ty);
Ty = FI->second.first.get();
ForwardRefTypes.erase(FI);
}
// Inserting a name that is already defined, get the existing name.
const Type *Existing = M->getTypeByName(Name);
assert(Existing && "Conflict but no matching type?!");
// Otherwise, this is an attempt to redefine a type. That's okay if
// the redefinition is identical to the original.
// FIXME: REMOVE REDEFINITIONS IN LLVM 3.0
if (Existing == Ty) return false;
// Any other kind of (non-equivalent) redefinition is an error.
return Error(NameLoc, "redefinition of type named '" + Name + "' of type '" +
Ty->getDescription() + "'");
}
/// toplevelentity
/// ::= 'declare' FunctionHeader
bool LLParser::ParseDeclare() {
assert(Lex.getKind() == lltok::kw_declare);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, false);
}
/// toplevelentity
/// ::= 'define' FunctionHeader '{' ...
bool LLParser::ParseDefine() {
assert(Lex.getKind() == lltok::kw_define);
Lex.Lex();
Function *F;
return ParseFunctionHeader(F, true) ||
ParseFunctionBody(*F);
}
/// ParseGlobalType
/// ::= 'constant'
/// ::= 'global'
bool LLParser::ParseGlobalType(bool &IsConstant) {
if (Lex.getKind() == lltok::kw_constant)
IsConstant = true;
else if (Lex.getKind() == lltok::kw_global)
IsConstant = false;
else {
IsConstant = false;
return TokError("expected 'global' or 'constant'");
}
Lex.Lex();
return false;
}
/// ParseNamedGlobal:
/// GlobalVar '=' OptionalVisibility ALIAS ...
/// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable
bool LLParser::ParseNamedGlobal() {
assert(Lex.getKind() == lltok::GlobalVar);
LocTy NameLoc = Lex.getLoc();
std::string Name = Lex.getStrVal();
Lex.Lex();
bool HasLinkage;
unsigned Linkage, Visibility;
if (ParseToken(lltok::equal, "expected '=' in global variable") ||
ParseOptionalLinkage(Linkage, HasLinkage) ||
ParseOptionalVisibility(Visibility))
return true;
if (HasLinkage || Lex.getKind() != lltok::kw_alias)
return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
return ParseAlias(Name, NameLoc, Visibility);
}
/// ParseStandaloneMetadata:
/// !42 = !{...}
bool LLParser::ParseStandaloneMetadata() {
assert(Lex.getKind() == lltok::Metadata);
Lex.Lex();
unsigned MetadataID = 0;
if (ParseUInt32(MetadataID))
return true;
if (MetadataCache.find(MetadataID) != MetadataCache.end())
return TokError("Metadata id is already used");
if (ParseToken(lltok::equal, "expected '=' here"))
return true;
LocTy TyLoc;
bool IsConstant;
PATypeHolder Ty(Type::VoidTy);
if (ParseGlobalType(IsConstant) ||
ParseType(Ty, TyLoc))
return true;
Constant *Init = 0;
if (ParseGlobalValue(Ty, Init))
return true;
MetadataCache[MetadataID] = Init;
return false;
}
/// ParseAlias:
/// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
/// Aliasee
/// ::= TypeAndValue
/// ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
/// ::= 'getelementptr' '(' ... ')'
///
/// Everything through visibility has already been parsed.
///
bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
unsigned Visibility) {
assert(Lex.getKind() == lltok::kw_alias);
Lex.Lex();
unsigned Linkage;
LocTy LinkageLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage))
return true;
if (Linkage != GlobalValue::ExternalLinkage &&
Linkage != GlobalValue::WeakAnyLinkage &&
Linkage != GlobalValue::WeakODRLinkage &&
Linkage != GlobalValue::InternalLinkage &&
Linkage != GlobalValue::PrivateLinkage)
return Error(LinkageLoc, "invalid linkage type for alias");
Constant *Aliasee;
LocTy AliaseeLoc = Lex.getLoc();
if (Lex.getKind() != lltok::kw_bitcast &&
Lex.getKind() != lltok::kw_getelementptr) {
if (ParseGlobalTypeAndValue(Aliasee)) return true;
} else {
// The bitcast dest type is not present, it is implied by the dest type.
ValID ID;
if (ParseValID(ID)) return true;
if (ID.Kind != ValID::t_Constant)
return Error(AliaseeLoc, "invalid aliasee");
Aliasee = ID.ConstantVal;
}
if (!isa<PointerType>(Aliasee->getType()))
return Error(AliaseeLoc, "alias must have pointer type");
// Okay, create the alias but do not insert it into the module yet.
GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
(GlobalValue::LinkageTypes)Linkage, Name,
Aliasee);
GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
// See if this value already exists in the symbol table. If so, it is either
// a redefinition or a definition of a forward reference.
if (GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name))) {
// See if this was a redefinition. If so, there is no entry in
// ForwardRefVals.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I == ForwardRefVals.end())
return Error(NameLoc, "redefinition of global named '@" + Name + "'");
// Otherwise, this was a definition of forward ref. Verify that types
// agree.
if (Val->getType() != GA->getType())
return Error(NameLoc,
"forward reference and definition of alias have different types");
// If they agree, just RAUW the old value with the alias and remove the
// forward ref info.
Val->replaceAllUsesWith(GA);
Val->eraseFromParent();
ForwardRefVals.erase(I);
}
// Insert into the module, we know its name won't collide now.
M->getAliasList().push_back(GA);
assert(GA->getNameStr() == Name && "Should not be a name conflict!");
return false;
}
/// ParseGlobal
/// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
/// OptionalAddrSpace GlobalType Type Const
/// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
/// OptionalAddrSpace GlobalType Type Const
///
/// Everything through visibility has been parsed already.
///
bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
unsigned Linkage, bool HasLinkage,
unsigned Visibility) {
unsigned AddrSpace;
bool ThreadLocal, IsConstant;
LocTy TyLoc;
PATypeHolder Ty(Type::VoidTy);
if (ParseOptionalToken(lltok::kw_thread_local, ThreadLocal) ||
ParseOptionalAddrSpace(AddrSpace) ||
ParseGlobalType(IsConstant) ||
ParseType(Ty, TyLoc))
return true;
// If the linkage is specified and is external, then no initializer is
// present.
Constant *Init = 0;
if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
Linkage != GlobalValue::ExternalWeakLinkage &&
Linkage != GlobalValue::ExternalLinkage)) {
if (ParseGlobalValue(Ty, Init))
return true;
}
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy)
return Error(TyLoc, "invalid type for global variable");
GlobalVariable *GV = 0;
// See if the global was forward referenced, if so, use the global.
if (!Name.empty()) {
if ((GV = M->getGlobalVariable(Name, true)) &&
!ForwardRefVals.erase(Name))
return Error(NameLoc, "redefinition of global '@" + Name + "'");
} else {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
GV = cast<GlobalVariable>(I->second.first);
ForwardRefValIDs.erase(I);
}
}
if (GV == 0) {
GV = new GlobalVariable(Ty, false, GlobalValue::ExternalLinkage, 0, Name,
M, false, AddrSpace);
} else {
if (GV->getType()->getElementType() != Ty)
return Error(TyLoc,
"forward reference and definition of global have different types");
// Move the forward-reference to the correct spot in the module.
M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
}
if (Name.empty())
NumberedVals.push_back(GV);
// Set the parsed properties on the global.
if (Init)
GV->setInitializer(Init);
GV->setConstant(IsConstant);
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
GV->setThreadLocal(ThreadLocal);
// Parse attributes on the global.
while (Lex.getKind() == lltok::comma) {
Lex.Lex();
if (Lex.getKind() == lltok::kw_section) {
Lex.Lex();
GV->setSection(Lex.getStrVal());
if (ParseToken(lltok::StringConstant, "expected global section string"))
return true;
} else if (Lex.getKind() == lltok::kw_align) {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment)) return true;
GV->setAlignment(Alignment);
} else {
TokError("unknown global variable property!");
}
}
return false;
}
//===----------------------------------------------------------------------===//
// GlobalValue Reference/Resolution Routines.
//===----------------------------------------------------------------------===//
/// GetGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *LLParser::GetGlobalVal(const std::string &Name, const Type *Ty,
LocTy Loc) {
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (PTy == 0) {
Error(Loc, "global variable reference must have pointer type");
return 0;
}
// Look this name up in the normal function symbol table.
GlobalValue *Val =
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + Name + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
// Function types can return opaque but functions can't.
if (isa<OpaqueType>(FT->getReturnType())) {
Error(Loc, "function may not return opaque type");
return 0;
}
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
} else {
FwdVal = new GlobalVariable(PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, 0, Name, M);
}
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
GlobalValue *LLParser::GetGlobalVal(unsigned ID, const Type *Ty, LocTy Loc) {
const PointerType *PTy = dyn_cast<PointerType>(Ty);
if (PTy == 0) {
Error(Loc, "global variable reference must have pointer type");
return 0;
}
GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
Error(Loc, "'@" + utostr(ID) + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
GlobalValue *FwdVal;
if (const FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) {
// Function types can return opaque but functions can't.
if (isa<OpaqueType>(FT->getReturnType())) {
Error(Loc, "function may not return opaque type");
return 0;
}
FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
} else {
FwdVal = new GlobalVariable(PTy->getElementType(), false,
GlobalValue::ExternalWeakLinkage, 0, "", M);
}
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
//===----------------------------------------------------------------------===//
// Helper Routines.
//===----------------------------------------------------------------------===//
/// ParseToken - If the current token has the specified kind, eat it and return
/// success. Otherwise, emit the specified error and return failure.
bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
if (Lex.getKind() != T)
return TokError(ErrMsg);
Lex.Lex();
return false;
}
/// ParseStringConstant
/// ::= StringConstant
bool LLParser::ParseStringConstant(std::string &Result) {
if (Lex.getKind() != lltok::StringConstant)
return TokError("expected string constant");
Result = Lex.getStrVal();
Lex.Lex();
return false;
}
/// ParseUInt32
/// ::= uint32
bool LLParser::ParseUInt32(unsigned &Val) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
return TokError("expected integer");
uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
if (Val64 != unsigned(Val64))
return TokError("expected 32-bit integer (too large)");
Val = Val64;
Lex.Lex();
return false;
}
/// ParseOptionalAddrSpace
/// := /*empty*/
/// := 'addrspace' '(' uint32 ')'
bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
AddrSpace = 0;
if (!EatIfPresent(lltok::kw_addrspace))
return false;
return ParseToken(lltok::lparen, "expected '(' in address space") ||
ParseUInt32(AddrSpace) ||
ParseToken(lltok::rparen, "expected ')' in address space");
}
/// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind
/// indicates what kind of attribute list this is: 0: function arg, 1: result,
/// 2: function attr.
/// 3: function arg after value: FIXME: REMOVE IN LLVM 3.0
bool LLParser::ParseOptionalAttrs(unsigned &Attrs, unsigned AttrKind) {
Attrs = Attribute::None;
LocTy AttrLoc = Lex.getLoc();
while (1) {
switch (Lex.getKind()) {
case lltok::kw_sext:
case lltok::kw_zext:
// Treat these as signext/zeroext if they occur in the argument list after
// the value, as in "call i8 @foo(i8 10 sext)". If they occur before the
// value, as in "call i8 @foo(i8 sext (" then it is part of a constant
// expr.
// FIXME: REMOVE THIS IN LLVM 3.0
if (AttrKind == 3) {
if (Lex.getKind() == lltok::kw_sext)
Attrs |= Attribute::SExt;
else
Attrs |= Attribute::ZExt;
break;
}
// FALL THROUGH.
default: // End of attributes.
if (AttrKind != 2 && (Attrs & Attribute::FunctionOnly))
return Error(AttrLoc, "invalid use of function-only attribute");
if (AttrKind != 0 && AttrKind != 3 && (Attrs & Attribute::ParameterOnly))
return Error(AttrLoc, "invalid use of parameter-only attribute");
return false;
case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break;
case lltok::kw_signext: Attrs |= Attribute::SExt; break;
case lltok::kw_inreg: Attrs |= Attribute::InReg; break;
case lltok::kw_sret: Attrs |= Attribute::StructRet; break;
case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break;
case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break;
case lltok::kw_byval: Attrs |= Attribute::ByVal; break;
case lltok::kw_nest: Attrs |= Attribute::Nest; break;
case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break;
case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break;
case lltok::kw_noinline: Attrs |= Attribute::NoInline; break;
case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break;
case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break;
case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break;
case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break;
case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break;
case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break;
case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break;
case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
case lltok::kw_align: {
unsigned Alignment;
if (ParseOptionalAlignment(Alignment))
return true;
Attrs |= Attribute::constructAlignmentFromInt(Alignment);
continue;
}
}
Lex.Lex();
}
}
/// ParseOptionalLinkage
/// ::= /*empty*/
/// ::= 'private'
/// ::= 'internal'
/// ::= 'weak'
/// ::= 'weak_odr'
/// ::= 'linkonce'
/// ::= 'linkonce_odr'
/// ::= 'appending'
/// ::= 'dllexport'
/// ::= 'common'
/// ::= 'dllimport'
/// ::= 'extern_weak'
/// ::= 'external'
bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
HasLinkage = false;
switch (Lex.getKind()) {
default: Res = GlobalValue::ExternalLinkage; return false;
case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break;
case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break;
case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break;
case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break;
case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break;
case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break;
case lltok::kw_available_externally:
Res = GlobalValue::AvailableExternallyLinkage;
break;
case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break;
case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break;
case lltok::kw_common: Res = GlobalValue::CommonLinkage; break;
case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break;
case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break;
case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break;
}
Lex.Lex();
HasLinkage = true;
return false;
}
/// ParseOptionalVisibility
/// ::= /*empty*/
/// ::= 'default'
/// ::= 'hidden'
/// ::= 'protected'
///
bool LLParser::ParseOptionalVisibility(unsigned &Res) {
switch (Lex.getKind()) {
default: Res = GlobalValue::DefaultVisibility; return false;
case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break;
case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break;
case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
}
Lex.Lex();
return false;
}
/// ParseOptionalCallingConv
/// ::= /*empty*/
/// ::= 'ccc'
/// ::= 'fastcc'
/// ::= 'coldcc'
/// ::= 'x86_stdcallcc'
/// ::= 'x86_fastcallcc'
/// ::= 'arm_apcscc'
/// ::= 'arm_aapcscc'
/// ::= 'arm_aapcs_vfpcc'
/// ::= 'cc' UINT
///
bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
switch (Lex.getKind()) {
default: CC = CallingConv::C; return false;
case lltok::kw_ccc: CC = CallingConv::C; break;
case lltok::kw_fastcc: CC = CallingConv::Fast; break;
case lltok::kw_coldcc: CC = CallingConv::Cold; break;
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
case lltok::kw_cc: Lex.Lex(); return ParseUInt32(CC);
}
Lex.Lex();
return false;
}
/// ParseOptionalAlignment
/// ::= /* empty */
/// ::= 'align' 4
bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::kw_align))
return false;
LocTy AlignLoc = Lex.getLoc();
if (ParseUInt32(Alignment)) return true;
if (!isPowerOf2_32(Alignment))
return Error(AlignLoc, "alignment is not a power of two");
return false;
}
/// ParseOptionalCommaAlignment
/// ::= /* empty */
/// ::= ',' 'align' 4
bool LLParser::ParseOptionalCommaAlignment(unsigned &Alignment) {
Alignment = 0;
if (!EatIfPresent(lltok::comma))
return false;
return ParseToken(lltok::kw_align, "expected 'align'") ||
ParseUInt32(Alignment);
}
/// ParseIndexList
/// ::= (',' uint32)+
bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
if (Lex.getKind() != lltok::comma)
return TokError("expected ',' as start of index list");
while (EatIfPresent(lltok::comma)) {
unsigned Idx;
if (ParseUInt32(Idx)) return true;
Indices.push_back(Idx);
}
return false;
}
//===----------------------------------------------------------------------===//
// Type Parsing.
//===----------------------------------------------------------------------===//
/// ParseType - Parse and resolve a full type.
bool LLParser::ParseType(PATypeHolder &Result, bool AllowVoid) {
LocTy TypeLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
// Verify no unresolved uprefs.
if (!UpRefs.empty())
return Error(UpRefs.back().Loc, "invalid unresolved type up reference");
if (!AllowVoid && Result.get() == Type::VoidTy)
return Error(TypeLoc, "void type only allowed for function results");
return false;
}
/// HandleUpRefs - Every time we finish a new layer of types, this function is
/// called. It loops through the UpRefs vector, which is a list of the
/// currently active types. For each type, if the up-reference is contained in
/// the newly completed type, we decrement the level count. When the level
/// count reaches zero, the up-referenced type is the type that is passed in:
/// thus we can complete the cycle.
///
PATypeHolder LLParser::HandleUpRefs(const Type *ty) {
// If Ty isn't abstract, or if there are no up-references in it, then there is
// nothing to resolve here.
if (!ty->isAbstract() || UpRefs.empty()) return ty;
PATypeHolder Ty(ty);
#if 0
errs() << "Type '" << Ty->getDescription()
<< "' newly formed. Resolving upreferences.\n"
<< UpRefs.size() << " upreferences active!\n";
#endif
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
// to zero), we resolve them all together before we resolve them to Ty. At
// the end of the loop, if there is anything to resolve to Ty, it will be in
// this variable.
OpaqueType *TypeToResolve = 0;
for (unsigned i = 0; i != UpRefs.size(); ++i) {
// Determine if 'Ty' directly contains this up-references 'LastContainedTy'.
bool ContainsType =
std::find(Ty->subtype_begin(), Ty->subtype_end(),
UpRefs[i].LastContainedTy) != Ty->subtype_end();
#if 0
errs() << " UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].LastContainedTy->getDescription() << ") = "
<< (ContainsType ? "true" : "false")
<< " level=" << UpRefs[i].NestingLevel << "\n";
#endif
if (!ContainsType)
continue;
// Decrement level of upreference
unsigned Level = --UpRefs[i].NestingLevel;
UpRefs[i].LastContainedTy = Ty;
// If the Up-reference has a non-zero level, it shouldn't be resolved yet.
if (Level != 0)
continue;
#if 0
errs() << " * Resolving upreference for " << UpRefs[i].UpRefTy << "\n";
#endif
if (!TypeToResolve)
TypeToResolve = UpRefs[i].UpRefTy;
else
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list.
--i; // Do not skip the next element.
}
if (TypeToResolve)
TypeToResolve->refineAbstractTypeTo(Ty);
return Ty;
}
/// ParseTypeRec - The recursive function used to process the internal
/// implementation details of types.
bool LLParser::ParseTypeRec(PATypeHolder &Result) {
switch (Lex.getKind()) {
default:
return TokError("expected type");
case lltok::Type:
// TypeRec ::= 'float' | 'void' (etc)
Result = Lex.getTyVal();
Lex.Lex();
break;
case lltok::kw_opaque:
// TypeRec ::= 'opaque'
Result = Context.getOpaqueType();
Lex.Lex();
break;
case lltok::lbrace:
// TypeRec ::= '{' ... '}'
if (ParseStructType(Result, false))
return true;
break;
case lltok::lsquare:
// TypeRec ::= '[' ... ']'
Lex.Lex(); // eat the lsquare.
if (ParseArrayVectorType(Result, false))
return true;
break;
case lltok::less: // Either vector or packed struct.
// TypeRec ::= '<' ... '>'
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
if (ParseStructType(Result, true) ||
ParseToken(lltok::greater, "expected '>' at end of packed struct"))
return true;
} else if (ParseArrayVectorType(Result, true))
return true;
break;
case lltok::LocalVar:
case lltok::StringConstant: // FIXME: REMOVE IN LLVM 3.0
// TypeRec ::= %foo
if (const Type *T = M->getTypeByName(Lex.getStrVal())) {
Result = T;
} else {
Result = Context.getOpaqueType();
ForwardRefTypes.insert(std::make_pair(Lex.getStrVal(),
std::make_pair(Result,
Lex.getLoc())));
M->addTypeName(Lex.getStrVal(), Result.get());
}
Lex.Lex();
break;
case lltok::LocalVarID:
// TypeRec ::= %4
if (Lex.getUIntVal() < NumberedTypes.size())
Result = NumberedTypes[Lex.getUIntVal()];
else {
std::map<unsigned, std::pair<PATypeHolder, LocTy> >::iterator
I = ForwardRefTypeIDs.find(Lex.getUIntVal());
if (I != ForwardRefTypeIDs.end())
Result = I->second.first;
else {
Result = Context.getOpaqueType();
ForwardRefTypeIDs.insert(std::make_pair(Lex.getUIntVal(),
std::make_pair(Result,
Lex.getLoc())));
}
}
Lex.Lex();
break;
case lltok::backslash: {
// TypeRec ::= '\' 4
Lex.Lex();
unsigned Val;
if (ParseUInt32(Val)) return true;
OpaqueType *OT = Context.getOpaqueType(); //Use temporary placeholder.
UpRefs.push_back(UpRefRecord(Lex.getLoc(), Val, OT));
Result = OT;
break;
}
}
// Parse the type suffixes.
while (1) {
switch (Lex.getKind()) {
// End of type.
default: return false;
// TypeRec ::= TypeRec '*'
case lltok::star:
if (Result.get() == Type::LabelTy)
return TokError("basic block pointers are invalid");
if (Result.get() == Type::VoidTy)
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result.get()))
return TokError("pointer to this type is invalid");
Result = HandleUpRefs(Context.getPointerTypeUnqual(Result.get()));
Lex.Lex();
break;
// TypeRec ::= TypeRec 'addrspace' '(' uint32 ')' '*'
case lltok::kw_addrspace: {
if (Result.get() == Type::LabelTy)
return TokError("basic block pointers are invalid");
if (Result.get() == Type::VoidTy)
return TokError("pointers to void are invalid; use i8* instead");
if (!PointerType::isValidElementType(Result.get()))
return TokError("pointer to this type is invalid");
unsigned AddrSpace;
if (ParseOptionalAddrSpace(AddrSpace) ||
ParseToken(lltok::star, "expected '*' in address space"))
return true;
Result = HandleUpRefs(Context.getPointerType(Result.get(), AddrSpace));
break;
}
/// Types '(' ArgTypeListI ')' OptFuncAttrs
case lltok::lparen:
if (ParseFunctionType(Result))
return true;
break;
}
}
}
/// ParseParameterList
/// ::= '(' ')'
/// ::= '(' Arg (',' Arg)* ')'
/// Arg
/// ::= Type OptionalAttributes Value OptionalAttributes
bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS) {
if (ParseToken(lltok::lparen, "expected '(' in call"))
return true;
while (Lex.getKind() != lltok::rparen) {
// If this isn't the first argument, we need a comma.
if (!ArgList.empty() &&
ParseToken(lltok::comma, "expected ',' in argument list"))
return true;
// Parse the argument.
LocTy ArgLoc;
PATypeHolder ArgTy(Type::VoidTy);
unsigned ArgAttrs1, ArgAttrs2;
Value *V;
if (ParseType(ArgTy, ArgLoc) ||
ParseOptionalAttrs(ArgAttrs1, 0) ||
ParseValue(ArgTy, V, PFS) ||
// FIXME: Should not allow attributes after the argument, remove this in
// LLVM 3.0.
ParseOptionalAttrs(ArgAttrs2, 3))
return true;
ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
}
Lex.Lex(); // Lex the ')'.
return false;
}
/// ParseArgumentList - Parse the argument list for a function type or function
/// prototype. If 'inType' is true then we are parsing a FunctionType.
/// ::= '(' ArgTypeListI ')'
/// ArgTypeListI
/// ::= /*empty*/
/// ::= '...'
/// ::= ArgTypeList ',' '...'
/// ::= ArgType (',' ArgType)*
///
bool LLParser::ParseArgumentList(std::vector<ArgInfo> &ArgList,
bool &isVarArg, bool inType) {
isVarArg = false;
assert(Lex.getKind() == lltok::lparen);
Lex.Lex(); // eat the (.
if (Lex.getKind() == lltok::rparen) {
// empty
} else if (Lex.getKind() == lltok::dotdotdot) {
isVarArg = true;
Lex.Lex();
} else {
LocTy TypeLoc = Lex.getLoc();
PATypeHolder ArgTy(Type::VoidTy);
unsigned Attrs;
std::string Name;
// If we're parsing a type, use ParseTypeRec, because we allow recursive
// types (such as a function returning a pointer to itself). If parsing a
// function prototype, we require fully resolved types.
if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
ParseOptionalAttrs(Attrs, 0)) return true;
if (ArgTy == Type::VoidTy)
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar ||
Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
Name = Lex.getStrVal();
Lex.Lex();
}
if (!FunctionType::isValidArgumentType(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
while (EatIfPresent(lltok::comma)) {
// Handle ... at end of arg list.
if (EatIfPresent(lltok::dotdotdot)) {
isVarArg = true;
break;
}
// Otherwise must be an argument type.
TypeLoc = Lex.getLoc();
if ((inType ? ParseTypeRec(ArgTy) : ParseType(ArgTy)) ||
ParseOptionalAttrs(Attrs, 0)) return true;
if (ArgTy == Type::VoidTy)
return Error(TypeLoc, "argument can not have void type");
if (Lex.getKind() == lltok::LocalVar ||
Lex.getKind() == lltok::StringConstant) { // FIXME: REMOVE IN LLVM 3.0
Name = Lex.getStrVal();
Lex.Lex();
} else {
Name = "";
}
if (!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy))
return Error(TypeLoc, "invalid type for function argument");
ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
}
}
return ParseToken(lltok::rparen, "expected ')' at end of argument list");
}
/// ParseFunctionType
/// ::= Type ArgumentList OptionalAttrs
bool LLParser::ParseFunctionType(PATypeHolder &Result) {
assert(Lex.getKind() == lltok::lparen);
if (!FunctionType::isValidReturnType(Result))
return TokError("invalid function return type");
std::vector<ArgInfo> ArgList;
bool isVarArg;
unsigned Attrs;
if (ParseArgumentList(ArgList, isVarArg, true) ||
// FIXME: Allow, but ignore attributes on function types!
// FIXME: Remove in LLVM 3.0
ParseOptionalAttrs(Attrs, 2))
return true;
// Reject names on the arguments lists.
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
if (!ArgList[i].Name.empty())
return Error(ArgList[i].Loc, "argument name invalid in function type");
if (!ArgList[i].Attrs != 0) {
// Allow but ignore attributes on function types; this permits
// auto-upgrade.
// FIXME: REJECT ATTRIBUTES ON FUNCTION TYPES in LLVM 3.0
}
}
std::vector<const Type*> ArgListTy;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ArgListTy.push_back(ArgList[i].Type);
Result = HandleUpRefs(Context.getFunctionType(Result.get(),
ArgListTy, isVarArg));
return false;
}
/// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere.
/// TypeRec
/// ::= '{' '}'
/// ::= '{' TypeRec (',' TypeRec)* '}'
/// ::= '<' '{' '}' '>'
/// ::= '<' '{' TypeRec (',' TypeRec)* '}' '>'
bool LLParser::ParseStructType(PATypeHolder &Result, bool Packed) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex(); // Consume the '{'
if (EatIfPresent(lltok::rbrace)) {
Result = Context.getStructType(Packed);
return false;
}
std::vector<PATypeHolder> ParamsList;
LocTy EltTyLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
ParamsList.push_back(Result);
if (Result == Type::VoidTy)
return Error(EltTyLoc, "struct element can not have void type");
if (!StructType::isValidElementType(Result))
return Error(EltTyLoc, "invalid element type for struct");
while (EatIfPresent(lltok::comma)) {
EltTyLoc = Lex.getLoc();
if (ParseTypeRec(Result)) return true;
if (Result == Type::VoidTy)
return Error(EltTyLoc, "struct element can not have void type");
if (!StructType::isValidElementType(Result))
return Error(EltTyLoc, "invalid element type for struct");
ParamsList.push_back(Result);
}
if (ParseToken(lltok::rbrace, "expected '}' at end of struct"))
return true;
std::vector<const Type*> ParamsListTy;
for (unsigned i = 0, e = ParamsList.size(); i != e; ++i)
ParamsListTy.push_back(ParamsList[i].get());
Result = HandleUpRefs(Context.getStructType(ParamsListTy, Packed));
return false;
}
/// ParseArrayVectorType - Parse an array or vector type, assuming the first
/// token has already been consumed.
/// TypeRec
/// ::= '[' APSINTVAL 'x' Types ']'
/// ::= '<' APSINTVAL 'x' Types '>'
bool LLParser::ParseArrayVectorType(PATypeHolder &Result, bool isVector) {
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
Lex.getAPSIntVal().getBitWidth() > 64)
return TokError("expected number in address space");
LocTy SizeLoc = Lex.getLoc();
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
Lex.Lex();
if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
return true;
LocTy TypeLoc = Lex.getLoc();
PATypeHolder EltTy(Type::VoidTy);
if (ParseTypeRec(EltTy)) return true;
if (EltTy == Type::VoidTy)
return Error(TypeLoc, "array and vector element type cannot be void");
if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
"expected end of sequential type"))
return true;
if (isVector) {
if (Size == 0)
return Error(SizeLoc, "zero element vector is illegal");
if ((unsigned)Size != Size)
return Error(SizeLoc, "size too large for vector");
if (!VectorType::isValidElementType(EltTy))
return Error(TypeLoc, "vector element type must be fp or integer");
Result = Context.getVectorType(EltTy, unsigned(Size));
} else {
if (!ArrayType::isValidElementType(EltTy))
return Error(TypeLoc, "invalid array element type");
Result = HandleUpRefs(Context.getArrayType(EltTy, Size));
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Semantic Analysis.
//===----------------------------------------------------------------------===//
LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f)
: P(p), F(f) {
// Insert unnamed arguments into the NumberedVals list.
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
AI != E; ++AI)
if (!AI->hasName())
NumberedVals.push_back(AI);
}
LLParser::PerFunctionState::~PerFunctionState() {
// If there were any forward referenced non-basicblock values, delete them.
for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
P.getContext().getUndef(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
if (!isa<BasicBlock>(I->second.first)) {
I->second.first->replaceAllUsesWith(
P.getContext().getUndef(I->second.first->getType()));
delete I->second.first;
I->second.first = 0;
}
}
bool LLParser::PerFunctionState::VerifyFunctionComplete() {
if (!ForwardRefVals.empty())
return P.Error(ForwardRefVals.begin()->second.second,
"use of undefined value '%" + ForwardRefVals.begin()->first +
"'");
if (!ForwardRefValIDs.empty())
return P.Error(ForwardRefValIDs.begin()->second.second,
"use of undefined value '%" +
utostr(ForwardRefValIDs.begin()->first) + "'");
return false;
}
/// GetVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
const Type *Ty, LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = F.getValueSymbolTable().lookup(Name);
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<std::string, std::pair<Value*, LocTy> >::iterator
I = ForwardRefVals.find(Name);
if (I != ForwardRefVals.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty == Type::LabelTy)
P.Error(Loc, "'%" + Name + "' is not a basic block");
else
P.Error(Loc, "'%" + Name + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
// Don't make placeholders with invalid type.
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty == Type::LabelTy)
FwdVal = BasicBlock::Create(Name, &F);
else
FwdVal = new Argument(Ty, Name);
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
Value *LLParser::PerFunctionState::GetVal(unsigned ID, const Type *Ty,
LocTy Loc) {
// Look this name up in the normal function symbol table.
Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
// If this is a forward reference for the value, see if we already created a
// forward ref record.
if (Val == 0) {
std::map<unsigned, std::pair<Value*, LocTy> >::iterator
I = ForwardRefValIDs.find(ID);
if (I != ForwardRefValIDs.end())
Val = I->second.first;
}
// If we have the value in the symbol table or fwd-ref table, return it.
if (Val) {
if (Val->getType() == Ty) return Val;
if (Ty == Type::LabelTy)
P.Error(Loc, "'%" + utostr(ID) + "' is not a basic block");
else
P.Error(Loc, "'%" + utostr(ID) + "' defined with type '" +
Val->getType()->getDescription() + "'");
return 0;
}
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty) && Ty != Type::LabelTy) {
P.Error(Loc, "invalid use of a non-first-class type");
return 0;
}
// Otherwise, create a new forward reference for this value and remember it.
Value *FwdVal;
if (Ty == Type::LabelTy)
FwdVal = BasicBlock::Create("", &F);
else
FwdVal = new Argument(Ty);
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
return FwdVal;
}
/// SetInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool LLParser::PerFunctionState::SetInstName(int NameID,
const std::string &NameStr,
LocTy NameLoc, Instruction *Inst) {
// If this instruction has void type, it cannot have a name or ID specified.
if (Inst->getType() == Type::VoidTy) {
if (NameID != -1 || !NameStr.empty())
return P.Error(NameLoc, "instructions returning void cannot have a name");
return false;
}
// If this was a numbered instruction, verify that the instruction is the
// expected value and resolve any forward references.
if (NameStr.empty()) {
// If neither a name nor an ID was specified, just use the next ID.
if (NameID == -1)
NameID = NumberedVals.size();
if (unsigned(NameID) != NumberedVals.size())
return P.Error(NameLoc, "instruction expected to be numbered '%" +
utostr(NumberedVals.size()) + "'");
std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
ForwardRefValIDs.find(NameID);
if (FI != ForwardRefValIDs.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
FI->second.first->getType()->getDescription() + "'");
FI->second.first->replaceAllUsesWith(Inst);
ForwardRefValIDs.erase(FI);
}
NumberedVals.push_back(Inst);
return false;
}
// Otherwise, the instruction had a name. Resolve forward refs and set it.
std::map<std::string, std::pair<Value*, LocTy> >::iterator
FI = ForwardRefVals.find(NameStr);
if (FI != ForwardRefVals.end()) {
if (FI->second.first->getType() != Inst->getType())
return P.Error(NameLoc, "instruction forward referenced with type '" +
FI->second.first->getType()->getDescription() + "'");
FI->second.first->replaceAllUsesWith(Inst);
ForwardRefVals.erase(FI);
}
// Set the name on the instruction.
Inst->setName(NameStr);
if (Inst->getNameStr() != NameStr)
return P.Error(NameLoc, "multiple definition of local value named '" +
NameStr + "'");
return false;
}
/// GetBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed.
BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
LocTy Loc) {
return cast_or_null<BasicBlock>(GetVal(Name, Type::LabelTy, Loc));
}
BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
return cast_or_null<BasicBlock>(GetVal(ID, Type::LabelTy, Loc));
}
/// DefineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
LocTy Loc) {
BasicBlock *BB;
if (Name.empty())
BB = GetBB(NumberedVals.size(), Loc);
else
BB = GetBB(Name, Loc);
if (BB == 0) return 0; // Already diagnosed error.
// Move the block to the end of the function. Forward ref'd blocks are
// inserted wherever they happen to be referenced.
F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
// Remove the block from forward ref sets.
if (Name.empty()) {
ForwardRefValIDs.erase(NumberedVals.size());
NumberedVals.push_back(BB);
} else {
// BB forward references are already in the function symbol table.
ForwardRefVals.erase(Name);
}
return BB;
}
//===----------------------------------------------------------------------===//
// Constants.
//===----------------------------------------------------------------------===//
/// ParseValID - Parse an abstract value that doesn't necessarily have a
/// type implied. For example, if we parse "4" we don't know what integer type
/// it has. The value will later be combined with its type and checked for
/// sanity.
bool LLParser::ParseValID(ValID &ID) {
ID.Loc = Lex.getLoc();
switch (Lex.getKind()) {
default: return TokError("expected value token");
case lltok::GlobalID: // @42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_GlobalID;
break;
case lltok::GlobalVar: // @foo
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_GlobalName;
break;
case lltok::LocalVarID: // %42
ID.UIntVal = Lex.getUIntVal();
ID.Kind = ValID::t_LocalID;
break;
case lltok::LocalVar: // %foo
case lltok::StringConstant: // "foo" - FIXME: REMOVE IN LLVM 3.0
ID.StrVal = Lex.getStrVal();
ID.Kind = ValID::t_LocalName;
break;
case lltok::Metadata: { // !{...} MDNode, !"foo" MDString
ID.Kind = ValID::t_Constant;
Lex.Lex();
if (Lex.getKind() == lltok::lbrace) {
SmallVector<Value*, 16> Elts;
if (ParseMDNodeVector(Elts) ||
ParseToken(lltok::rbrace, "expected end of metadata node"))
return true;
ID.ConstantVal = Context.getMDNode(Elts.data(), Elts.size());
return false;
}
// Standalone metadata reference
// !{ ..., !42, ... }
unsigned MID = 0;
if (!ParseUInt32(MID)) {
std::map<unsigned, Constant *>::iterator I = MetadataCache.find(MID);
if (I == MetadataCache.end())
return TokError("Unknown metadata reference");
ID.ConstantVal = I->second;
return false;
}
// MDString:
// ::= '!' STRINGCONSTANT
std::string Str;
if (ParseStringConstant(Str)) return true;
ID.ConstantVal = Context.getMDString(Str.data(), Str.data() + Str.size());
return false;
}
case lltok::APSInt:
ID.APSIntVal = Lex.getAPSIntVal();
ID.Kind = ValID::t_APSInt;
break;
case lltok::APFloat:
ID.APFloatVal = Lex.getAPFloatVal();
ID.Kind = ValID::t_APFloat;
break;
case lltok::kw_true:
ID.ConstantVal = Context.getConstantIntTrue();
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_false:
ID.ConstantVal = Context.getConstantIntFalse();
ID.Kind = ValID::t_Constant;
break;
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
case lltok::lbrace: {
// ValID ::= '{' ConstVector '}'
Lex.Lex();
SmallVector<Constant*, 16> Elts;
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rbrace, "expected end of struct constant"))
return true;
ID.ConstantVal = Context.getConstantStruct(Elts.data(), Elts.size(), false);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::less: {
// ValID ::= '<' ConstVector '>' --> Vector.
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
Lex.Lex();
bool isPackedStruct = EatIfPresent(lltok::lbrace);
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
(isPackedStruct &&
ParseToken(lltok::rbrace, "expected end of packed struct")) ||
ParseToken(lltok::greater, "expected end of constant"))
return true;
if (isPackedStruct) {
ID.ConstantVal =
Context.getConstantStruct(Elts.data(), Elts.size(), true);
ID.Kind = ValID::t_Constant;
return false;
}
if (Elts.empty())
return Error(ID.Loc, "constant vector must not be empty");
if (!Elts[0]->getType()->isInteger() &&
!Elts[0]->getType()->isFloatingPoint())
return Error(FirstEltLoc,
"vector elements must have integer or floating point type");
// Verify that all the vector elements have the same type.
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"vector element #" + utostr(i) +
" is not of type '" + Elts[0]->getType()->getDescription());
ID.ConstantVal = Context.getConstantVector(Elts.data(), Elts.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::lsquare: { // Array Constant
Lex.Lex();
SmallVector<Constant*, 16> Elts;
LocTy FirstEltLoc = Lex.getLoc();
if (ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rsquare, "expected end of array constant"))
return true;
// Handle empty element.
if (Elts.empty()) {
// Use undef instead of an array because it's inconvenient to determine
// the element type at this point, there being no elements to examine.
ID.Kind = ValID::t_EmptyArray;
return false;
}
if (!Elts[0]->getType()->isFirstClassType())
return Error(FirstEltLoc, "invalid array element type: " +
Elts[0]->getType()->getDescription());
ArrayType *ATy = Context.getArrayType(Elts[0]->getType(), Elts.size());
// Verify all elements are correct type!
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
if (Elts[i]->getType() != Elts[0]->getType())
return Error(FirstEltLoc,
"array element #" + utostr(i) +
" is not of type '" +Elts[0]->getType()->getDescription());
}
ID.ConstantVal = Context.getConstantArray(ATy, Elts.data(), Elts.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_c: // c "foo"
Lex.Lex();
ID.ConstantVal = Context.getConstantArray(Lex.getStrVal(), false);
if (ParseToken(lltok::StringConstant, "expected string")) return true;
ID.Kind = ValID::t_Constant;
return false;
case lltok::kw_asm: {
// ValID ::= 'asm' SideEffect? STRINGCONSTANT ',' STRINGCONSTANT
bool HasSideEffect;
Lex.Lex();
if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
ParseStringConstant(ID.StrVal) ||
ParseToken(lltok::comma, "expected comma in inline asm expression") ||
ParseToken(lltok::StringConstant, "expected constraint string"))
return true;
ID.StrVal2 = Lex.getStrVal();
ID.UIntVal = HasSideEffect;
ID.Kind = ValID::t_InlineAsm;
return false;
}
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: {
unsigned Opc = Lex.getUIntVal();
PATypeHolder DestTy(Type::VoidTy);
Constant *SrcVal;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
ParseGlobalTypeAndValue(SrcVal) ||
ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
ParseType(DestTy) ||
ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
return Error(ID.Loc, "invalid cast opcode for cast from '" +
SrcVal->getType()->getDescription() + "' to '" +
DestTy->getDescription() + "'");
ID.ConstantVal = Context.getConstantExprCast((Instruction::CastOps)Opc,
SrcVal, DestTy);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_extractvalue: {
Lex.Lex();
Constant *Val;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
ParseGlobalTypeAndValue(Val) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
return true;
if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
return Error(ID.Loc, "extractvalue operand must be array or struct");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
Indices.end()))
return Error(ID.Loc, "invalid indices for extractvalue");
ID.ConstantVal =
Context.getConstantExprExtractValue(Val, Indices.data(), Indices.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_insertvalue: {
Lex.Lex();
Constant *Val0, *Val1;
SmallVector<unsigned, 4> Indices;
if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
ParseGlobalTypeAndValue(Val1) ||
ParseIndexList(Indices) ||
ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
return true;
if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
return Error(ID.Loc, "extractvalue operand must be array or struct");
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
Indices.end()))
return Error(ID.Loc, "invalid indices for insertvalue");
ID.ConstantVal = Context.getConstantExprInsertValue(Val0, Val1,
Indices.data(), Indices.size());
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_icmp:
case lltok::kw_fcmp:
case lltok::kw_vicmp:
case lltok::kw_vfcmp: {
unsigned PredVal, Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseCmpPredicate(PredVal, Opc) ||
ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "compare operands must have the same type");
CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
if (Opc == Instruction::FCmp) {
if (!Val0->getType()->isFPOrFPVector())
return Error(ID.Loc, "fcmp requires floating point operands");
ID.ConstantVal = Context.getConstantExprFCmp(Pred, Val0, Val1);
} else if (Opc == Instruction::ICmp) {
if (!Val0->getType()->isIntOrIntVector() &&
!isa<PointerType>(Val0->getType()))
return Error(ID.Loc, "icmp requires pointer or integer operands");
ID.ConstantVal = Context.getConstantExprICmp(Pred, Val0, Val1);
} else if (Opc == Instruction::VFCmp) {
// FIXME: REMOVE VFCMP Support
if (!Val0->getType()->isFPOrFPVector() ||
!isa<VectorType>(Val0->getType()))
return Error(ID.Loc, "vfcmp requires vector floating point operands");
ID.ConstantVal = Context.getConstantExprVFCmp(Pred, Val0, Val1);
} else if (Opc == Instruction::VICmp) {
// FIXME: REMOVE VICMP Support
if (!Val0->getType()->isIntOrIntVector() ||
!isa<VectorType>(Val0->getType()))
return Error(ID.Loc, "vicmp requires vector floating point operands");
ID.ConstantVal = Context.getConstantExprVICmp(Pred, Val0, Val1);
}
ID.Kind = ValID::t_Constant;
return false;
}
// Binary Operators.
case lltok::kw_add:
case lltok::kw_fadd:
case lltok::kw_sub:
case lltok::kw_fsub:
case lltok::kw_mul:
case lltok::kw_fmul:
case lltok::kw_udiv:
case lltok::kw_sdiv:
case lltok::kw_fdiv:
case lltok::kw_urem:
case lltok::kw_srem:
case lltok::kw_frem: {
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVector() &&
!Val0->getType()->isFPOrFPVector())
return Error(ID.Loc,"constexpr requires integer, fp, or vector operands");
ID.ConstantVal = Context.getConstantExpr(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
}
// Logical Operations
case lltok::kw_shl:
case lltok::kw_lshr:
case lltok::kw_ashr:
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: {
unsigned Opc = Lex.getUIntVal();
Constant *Val0, *Val1;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
ParseGlobalTypeAndValue(Val0) ||
ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
ParseGlobalTypeAndValue(Val1) ||
ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
return true;
if (Val0->getType() != Val1->getType())
return Error(ID.Loc, "operands of constexpr must have same type");
if (!Val0->getType()->isIntOrIntVector())
return Error(ID.Loc,
"constexpr requires integer or integer vector operands");
ID.ConstantVal = Context.getConstantExpr(Opc, Val0, Val1);
ID.Kind = ValID::t_Constant;
return false;
}
case lltok::kw_getelementptr:
case lltok::kw_shufflevector:
case lltok::kw_insertelement:
case lltok::kw_extractelement:
case lltok::kw_select: {
unsigned Opc = Lex.getUIntVal();
SmallVector<Constant*, 16> Elts;
Lex.Lex();
if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
ParseGlobalValueVector(Elts) ||
ParseToken(lltok::rparen, "expected ')' in constantexpr"))
return true;
if (Opc == Instruction::GetElementPtr) {
if (Elts.size() == 0 || !isa<PointerType>(Elts[0]->getType()))
return Error(ID.Loc, "getelementptr requires pointer operand");
if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(),
(Value**)&Elts[1], Elts.size()-1))
return Error(ID.Loc, "invalid indices for getelementptr");
ID.ConstantVal = Context.getConstantExprGetElementPtr(Elts[0],
&Elts[1], Elts.size()-1);
} else if (Opc == Instruction::Select) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to select");
if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
Elts[2]))
return Error(ID.Loc, Reason);
ID.ConstantVal = Context.getConstantExprSelect(Elts[0], Elts[1], Elts[2]);
} else if (Opc == Instruction::ShuffleVector) {
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to shufflevector");
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid operands to shufflevector");
ID.ConstantVal =
Context.getConstantExprShuffleVector(Elts[0], Elts[1],Elts[2]);
} else if (Opc == Instruction::ExtractElement) {
if (Elts.size() != 2)
return Error(ID.Loc, "expected two operands to extractelement");
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
return Error(ID.Loc, "invalid extractelement operands");
ID.ConstantVal = Context.getConstantExprExtractElement(Elts[0], Elts[1]);
} else {
assert(Opc == Instruction::InsertElement && "Unknown opcode");
if (Elts.size() != 3)
return Error(ID.Loc, "expected three operands to insertelement");
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
return Error(ID.Loc, "invalid insertelement operands");
ID.ConstantVal =
Context.getConstantExprInsertElement(Elts[0], Elts[1],Elts[2]);
}
ID.Kind = ValID::t_Constant;
return false;
}
}
Lex.Lex();
return false;
}
/// ParseGlobalValue - Parse a global value with the specified type.
bool LLParser::ParseGlobalValue(const Type *Ty, Constant *&V) {
V = 0;
ValID ID;
return ParseValID(ID) ||
ConvertGlobalValIDToValue(Ty, ID, V);
}
/// ConvertGlobalValIDToValue - Apply a type to a ValID to get a fully resolved
/// constant.
bool LLParser::ConvertGlobalValIDToValue(const Type *Ty, ValID &ID,
Constant *&V) {
if (isa<FunctionType>(Ty))
return Error(ID.Loc, "functions are not values, refer to them as pointers");
switch (ID.Kind) {
default: assert(0 && "Unknown ValID!");
case ValID::t_LocalID:
case ValID::t_LocalName:
return Error(ID.Loc, "invalid use of function-local name");
case ValID::t_InlineAsm:
return Error(ID.Loc, "inline asm can only be an operand of call/invoke");
case ValID::t_GlobalName:
V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
return V == 0;
case ValID::t_GlobalID:
V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
return V == 0;
case ValID::t_APSInt:
if (!isa<IntegerType>(Ty))
return Error(ID.Loc, "integer constant must have integer type");
ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
V = Context.getConstantInt(ID.APSIntVal);
return false;
case ValID::t_APFloat:
if (!Ty->isFloatingPoint() ||
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
return Error(ID.Loc, "floating point constant invalid for type");
// The lexer has no type info, so builds all float and double FP constants
// as double. Fix this here. Long double does not need this.
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble &&
Ty == Type::FloatTy) {
bool Ignored;
ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
&Ignored);
}
V = Context.getConstantFP(ID.APFloatVal);
if (V->getType() != Ty)
return Error(ID.Loc, "floating point constant does not have type '" +
Ty->getDescription() + "'");
return false;
case ValID::t_Null:
if (!isa<PointerType>(Ty))
return Error(ID.Loc, "null must be a pointer type");
V = Context.getConstantPointerNull(cast<PointerType>(Ty));
return false;
case ValID::t_Undef:
// FIXME: LabelTy should not be a first-class type.
if ((!Ty->isFirstClassType() || Ty == Type::LabelTy) &&
!isa<OpaqueType>(Ty))
return Error(ID.Loc, "invalid type for undef constant");
V = Context.getUndef(Ty);
return false;
case ValID::t_EmptyArray:
if (!isa<ArrayType>(Ty) || cast<ArrayType>(Ty)->getNumElements() != 0)
return Error(ID.Loc, "invalid empty array initializer");
V = Context.getUndef(Ty);
return false;
case ValID::t_Zero:
// FIXME: LabelTy should not be a first-class type.
if (!Ty->isFirstClassType() || Ty == Type::LabelTy)
return Error(ID.Loc, "invalid type for null constant");
V = Context.getNullValue(Ty);
return false;
case ValID::t_Constant:
if (ID.ConstantVal->getType() != Ty)
return Error(ID.Loc, "constant expression type mismatch");
V = ID.ConstantVal;
return false;
}
}
bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
PATypeHolder Type(Type::VoidTy);
return ParseType(Type) ||
ParseGlobalValue(Type, V);
}
/// ParseGlobalValueVector
/// ::= /*empty*/
/// ::= TypeAndValue (',' TypeAndValue)*
bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
// Empty list.
if (Lex.getKind() == lltok::rbrace ||
Lex.getKind() == lltok::rsquare ||
Lex.getKind() == lltok::greater ||
Lex.getKind() == lltok::rparen)
return false;
Constant *C;
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
while (EatIfPresent(lltok::comma)) {
if (ParseGlobalTypeAndValue(C)) return true;
Elts.push_back(C);
}
return false;
}
//===----------------------------------------------------------------------===//
// Function Parsing.
//===----------------------------------------------------------------------===//
bool LLParser::ConvertValIDToValue(const Type *Ty, ValID &ID, Value *&V,
PerFunctionState &PFS) {
if (ID.Kind == ValID::t_LocalID)
V = PFS.GetVal(ID.UIntVal, Ty, ID.Loc);
else if (ID.Kind == ValID::t_LocalName)
V = PFS.GetVal(ID.StrVal, Ty, ID.Loc);
else if (ID.Kind == ValID::t_InlineAsm) {
const PointerType *PTy = dyn_cast<PointerType>(Ty);
const FunctionType *FTy =
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
return Error(ID.Loc, "invalid type for inline asm constraint string");
V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal);
return false;
} else {
Constant *C;
if (ConvertGlobalValIDToValue(Ty, ID, C)) return true;
V = C;
return false;
}
return V == 0;
}
bool LLParser::ParseValue(const Type *Ty, Value *&V, PerFunctionState &PFS) {
V = 0;
ValID ID;
return ParseValID(ID) ||
ConvertValIDToValue(Ty, ID, V, PFS);
}
bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
PATypeHolder T(Type::VoidTy);
return ParseType(T) ||
ParseValue(T, V, PFS);
}
/// FunctionHeader
/// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
/// Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
/// OptionalAlign OptGC
bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
// Parse the linkage.
LocTy LinkageLoc = Lex.getLoc();
unsigned Linkage;
unsigned Visibility, CC, RetAttrs;
PATypeHolder RetType(Type::VoidTy);
LocTy RetTypeLoc = Lex.getLoc();
if (ParseOptionalLinkage(Linkage) ||
ParseOptionalVisibility(Visibility) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/))
return true;
// Verify that the linkage is ok.
switch ((GlobalValue::LinkageTypes)Linkage) {
case GlobalValue::ExternalLinkage:
break; // always ok.
case GlobalValue::DLLImportLinkage:
case GlobalValue::ExternalWeakLinkage:
if (isDefine)
return Error(LinkageLoc, "invalid linkage for function definition");
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::DLLExportLinkage:
if (!isDefine)
return Error(LinkageLoc, "invalid linkage for function declaration");
break;
case GlobalValue::AppendingLinkage:
case GlobalValue::GhostLinkage:
case GlobalValue::CommonLinkage:
return Error(LinkageLoc, "invalid function linkage type");
}
if (!FunctionType::isValidReturnType(RetType) ||
isa<OpaqueType>(RetType))
return Error(RetTypeLoc, "invalid function return type");
LocTy NameLoc = Lex.getLoc();
std::string FunctionName;
if (Lex.getKind() == lltok::GlobalVar) {
FunctionName = Lex.getStrVal();
} else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
unsigned NameID = Lex.getUIntVal();
if (NameID != NumberedVals.size())
return TokError("function expected to be numbered '%" +
utostr(NumberedVals.size()) + "'");
} else {
return TokError("expected function name");
}
Lex.Lex();
if (Lex.getKind() != lltok::lparen)
return TokError("expected '(' in function argument list");
std::vector<ArgInfo> ArgList;
bool isVarArg;
unsigned FuncAttrs;
std::string Section;
unsigned Alignment;
std::string GC;
if (ParseArgumentList(ArgList, isVarArg, false) ||
ParseOptionalAttrs(FuncAttrs, 2) ||
(EatIfPresent(lltok::kw_section) &&
ParseStringConstant(Section)) ||
ParseOptionalAlignment(Alignment) ||
(EatIfPresent(lltok::kw_gc) &&
ParseStringConstant(GC)))
return true;
// If the alignment was parsed as an attribute, move to the alignment field.
if (FuncAttrs & Attribute::Alignment) {
Alignment = Attribute::getAlignmentFromAttrs(FuncAttrs);
FuncAttrs &= ~Attribute::Alignment;
}
// Okay, if we got here, the function is syntactically valid. Convert types
// and do semantic checks.
std::vector<const Type*> ParamTypeList;
SmallVector<AttributeWithIndex, 8> Attrs;
// FIXME : In 3.0, stop accepting zext, sext and inreg as optional function
// attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
if (FuncAttrs & ObsoleteFuncAttrs) {
RetAttrs |= FuncAttrs & ObsoleteFuncAttrs;
FuncAttrs &= ~ObsoleteFuncAttrs;
}
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
ParamTypeList.push_back(ArgList[i].Type);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (FuncAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
if (PAL.paramHasAttr(1, Attribute::StructRet) &&
RetType != Type::VoidTy)
return Error(RetTypeLoc, "functions with 'sret' argument must return void");
const FunctionType *FT =
Context.getFunctionType(RetType, ParamTypeList, isVarArg);
const PointerType *PFT = Context.getPointerTypeUnqual(FT);
Fn = 0;
if (!FunctionName.empty()) {
// If this was a definition of a forward reference, remove the definition
// from the forward reference table and fill in the forward ref.
std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
ForwardRefVals.find(FunctionName);
if (FRVI != ForwardRefVals.end()) {
Fn = M->getFunction(FunctionName);
ForwardRefVals.erase(FRVI);
} else if ((Fn = M->getFunction(FunctionName))) {
// If this function already exists in the symbol table, then it is
// multiply defined. We accept a few cases for old backwards compat.
// FIXME: Remove this stuff for LLVM 3.0.
if (Fn->getType() != PFT || Fn->getAttributes() != PAL ||
(!Fn->isDeclaration() && isDefine)) {
// If the redefinition has different type or different attributes,
// reject it. If both have bodies, reject it.
return Error(NameLoc, "invalid redefinition of function '" +
FunctionName + "'");
} else if (Fn->isDeclaration()) {
// Make sure to strip off any argument names so we can't get conflicts.
for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
AI != AE; ++AI)
AI->setName("");
}
}
} else if (FunctionName.empty()) {
// If this is a definition of a forward referenced function, make sure the
// types agree.
std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
= ForwardRefValIDs.find(NumberedVals.size());
if (I != ForwardRefValIDs.end()) {
Fn = cast<Function>(I->second.first);
if (Fn->getType() != PFT)
return Error(NameLoc, "type of definition and forward reference of '@" +
utostr(NumberedVals.size()) +"' disagree");
ForwardRefValIDs.erase(I);
}
}
if (Fn == 0)
Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
else // Move the forward-reference to the correct spot in the module.
M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
if (FunctionName.empty())
NumberedVals.push_back(Fn);
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
Fn->setCallingConv(CC);
Fn->setAttributes(PAL);
Fn->setAlignment(Alignment);
Fn->setSection(Section);
if (!GC.empty()) Fn->setGC(GC.c_str());
// Add all of the arguments we parsed to the function.
Function::arg_iterator ArgIt = Fn->arg_begin();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
// If the argument has a name, insert it into the argument symbol table.
if (ArgList[i].Name.empty()) continue;
// Set the name, if it conflicted, it will be auto-renamed.
ArgIt->setName(ArgList[i].Name);
if (ArgIt->getNameStr() != ArgList[i].Name)
return Error(ArgList[i].Loc, "redefinition of argument '%" +
ArgList[i].Name + "'");
}
return false;
}
/// ParseFunctionBody
/// ::= '{' BasicBlock+ '}'
/// ::= 'begin' BasicBlock+ 'end' // FIXME: remove in LLVM 3.0
///
bool LLParser::ParseFunctionBody(Function &Fn) {
if (Lex.getKind() != lltok::lbrace && Lex.getKind() != lltok::kw_begin)
return TokError("expected '{' in function body");
Lex.Lex(); // eat the {.
PerFunctionState PFS(*this, Fn);
while (Lex.getKind() != lltok::rbrace && Lex.getKind() != lltok::kw_end)
if (ParseBasicBlock(PFS)) return true;
// Eat the }.
Lex.Lex();
// Verify function is ok.
return PFS.VerifyFunctionComplete();
}
/// ParseBasicBlock
/// ::= LabelStr? Instruction*
bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
// If this basic block starts out with a name, remember it.
std::string Name;
LocTy NameLoc = Lex.getLoc();
if (Lex.getKind() == lltok::LabelStr) {
Name = Lex.getStrVal();
Lex.Lex();
}
BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
if (BB == 0) return true;
std::string NameStr;
// Parse the instructions in this block until we get a terminator.
Instruction *Inst;
do {
// This instruction may have three possibilities for a name: a) none
// specified, b) name specified "%foo =", c) number specified: "%4 =".
LocTy NameLoc = Lex.getLoc();
int NameID = -1;
NameStr = "";
if (Lex.getKind() == lltok::LocalVarID) {
NameID = Lex.getUIntVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction id"))
return true;
} else if (Lex.getKind() == lltok::LocalVar ||
// FIXME: REMOVE IN LLVM 3.0
Lex.getKind() == lltok::StringConstant) {
NameStr = Lex.getStrVal();
Lex.Lex();
if (ParseToken(lltok::equal, "expected '=' after instruction name"))
return true;
}
if (ParseInstruction(Inst, BB, PFS)) return true;
BB->getInstList().push_back(Inst);
// Set the name on the instruction.
if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
} while (!isa<TerminatorInst>(Inst));
return false;
}
//===----------------------------------------------------------------------===//
// Instruction Parsing.
//===----------------------------------------------------------------------===//
/// ParseInstruction - Parse one of the many different instructions.
///
bool LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
lltok::Kind Token = Lex.getKind();
if (Token == lltok::Eof)
return TokError("found end of file when expecting more instructions");
LocTy Loc = Lex.getLoc();
unsigned KeywordVal = Lex.getUIntVal();
Lex.Lex(); // Eat the keyword.
switch (Token) {
default: return Error(Loc, "expected instruction opcode");
// Terminator Instructions.
case lltok::kw_unwind: Inst = new UnwindInst(); return false;
case lltok::kw_unreachable: Inst = new UnreachableInst(); return false;
case lltok::kw_ret: return ParseRet(Inst, BB, PFS);
case lltok::kw_br: return ParseBr(Inst, PFS);
case lltok::kw_switch: return ParseSwitch(Inst, PFS);
case lltok::kw_invoke: return ParseInvoke(Inst, PFS);
// Binary Operators.
case lltok::kw_add:
case lltok::kw_sub:
case lltok::kw_mul:
// API compatibility: Accept either integer or floating-point types.
return ParseArithmetic(Inst, PFS, KeywordVal, 0);
case lltok::kw_fadd:
case lltok::kw_fsub:
case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
case lltok::kw_udiv:
case lltok::kw_sdiv:
case lltok::kw_urem:
case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1);
case lltok::kw_fdiv:
case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2);
case lltok::kw_shl:
case lltok::kw_lshr:
case lltok::kw_ashr:
case lltok::kw_and:
case lltok::kw_or:
case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal);
case lltok::kw_icmp:
case lltok::kw_fcmp:
case lltok::kw_vicmp:
case lltok::kw_vfcmp: return ParseCompare(Inst, PFS, KeywordVal);
// Casts.
case lltok::kw_trunc:
case lltok::kw_zext:
case lltok::kw_sext:
case lltok::kw_fptrunc:
case lltok::kw_fpext:
case lltok::kw_bitcast:
case lltok::kw_uitofp:
case lltok::kw_sitofp:
case lltok::kw_fptoui:
case lltok::kw_fptosi:
case lltok::kw_inttoptr:
case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal);
// Other.
case lltok::kw_select: return ParseSelect(Inst, PFS);
case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS);
case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS);
case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS);
case lltok::kw_phi: return ParsePHI(Inst, PFS);
case lltok::kw_call: return ParseCall(Inst, PFS, false);
case lltok::kw_tail: return ParseCall(Inst, PFS, true);
// Memory.
case lltok::kw_alloca:
case lltok::kw_malloc: return ParseAlloc(Inst, PFS, KeywordVal);
case lltok::kw_free: return ParseFree(Inst, PFS);
case lltok::kw_load: return ParseLoad(Inst, PFS, false);
case lltok::kw_store: return ParseStore(Inst, PFS, false);
case lltok::kw_volatile:
if (EatIfPresent(lltok::kw_load))
return ParseLoad(Inst, PFS, true);
else if (EatIfPresent(lltok::kw_store))
return ParseStore(Inst, PFS, true);
else
return TokError("expected 'load' or 'store'");
case lltok::kw_getresult: return ParseGetResult(Inst, PFS);
case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS);
case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS);
}
}
/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
// FIXME: REMOVE vicmp/vfcmp!
if (Opc == Instruction::FCmp || Opc == Instruction::VFCmp) {
switch (Lex.getKind()) {
default: TokError("expected fcmp predicate (e.g. 'oeq')");
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
}
} else {
switch (Lex.getKind()) {
default: TokError("expected icmp predicate (e.g. 'eq')");
case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
}
}
Lex.Lex();
return false;
}
//===----------------------------------------------------------------------===//
// Terminator Instructions.
//===----------------------------------------------------------------------===//
/// ParseRet - Parse a return instruction.
/// ::= 'ret' void
/// ::= 'ret' TypeAndValue
/// ::= 'ret' TypeAndValue (',' TypeAndValue)+ [[obsolete: LLVM 3.0]]
bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS) {
PATypeHolder Ty(Type::VoidTy);
if (ParseType(Ty, true /*void allowed*/)) return true;
if (Ty == Type::VoidTy) {
Inst = ReturnInst::Create();
return false;
}
Value *RV;
if (ParseValue(Ty, RV, PFS)) return true;
// The normal case is one return value.
if (Lex.getKind() == lltok::comma) {
// FIXME: LLVM 3.0 remove MRV support for 'ret i32 1, i32 2', requiring use
// of 'ret {i32,i32} {i32 1, i32 2}'
SmallVector<Value*, 8> RVs;
RVs.push_back(RV);
while (EatIfPresent(lltok::comma)) {
if (ParseTypeAndValue(RV, PFS)) return true;
RVs.push_back(RV);
}
RV = Context.getUndef(PFS.getFunction().getReturnType());
for (unsigned i = 0, e = RVs.size(); i != e; ++i) {
Instruction *I = InsertValueInst::Create(RV, RVs[i], i, "mrv");
BB->getInstList().push_back(I);
RV = I;
}
}
Inst = ReturnInst::Create(RV);
return false;
}
/// ParseBr
/// ::= 'br' TypeAndValue
/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc, Loc2;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
Inst = BranchInst::Create(BB);
return false;
}
if (Op0->getType() != Type::Int1Ty)
return Error(Loc, "branch condition must have 'i1' type");
if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
ParseTypeAndValue(Op1, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after true destination") ||
ParseTypeAndValue(Op2, Loc2, PFS))
return true;
if (!isa<BasicBlock>(Op1))
return Error(Loc, "true destination of branch must be a basic block");
if (!isa<BasicBlock>(Op2))
return Error(Loc2, "true destination of branch must be a basic block");
Inst = BranchInst::Create(cast<BasicBlock>(Op1), cast<BasicBlock>(Op2), Op0);
return false;
}
/// ParseSwitch
/// Instruction
/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
/// JumpTable
/// ::= (TypeAndValue ',' TypeAndValue)*
bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CondLoc, BBLoc;
Value *Cond, *DefaultBB;
if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after switch condition") ||
ParseTypeAndValue(DefaultBB, BBLoc, PFS) ||
ParseToken(lltok::lsquare, "expected '[' with switch table"))
return true;
if (!isa<IntegerType>(Cond->getType()))
return Error(CondLoc, "switch condition must have integer type");
if (!isa<BasicBlock>(DefaultBB))
return Error(BBLoc, "default destination must be a basic block");
// Parse the jump table pairs.
SmallPtrSet<Value*, 32> SeenCases;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
while (Lex.getKind() != lltok::rsquare) {
Value *Constant, *DestBB;
if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after case value") ||
ParseTypeAndValue(DestBB, BBLoc, PFS))
return true;
if (!SeenCases.insert(Constant))
return Error(CondLoc, "duplicate case value in switch");
if (!isa<ConstantInt>(Constant))
return Error(CondLoc, "case value is not a constant integer");
if (!isa<BasicBlock>(DestBB))
return Error(BBLoc, "case destination is not a basic block");
Table.push_back(std::make_pair(cast<ConstantInt>(Constant),
cast<BasicBlock>(DestBB)));
}
Lex.Lex(); // Eat the ']'.
SwitchInst *SI = SwitchInst::Create(Cond, cast<BasicBlock>(DefaultBB),
Table.size());
for (unsigned i = 0, e = Table.size(); i != e; ++i)
SI->addCase(Table[i].first, Table[i].second);
Inst = SI;
return false;
}
/// ParseInvoke
/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
LocTy CallLoc = Lex.getLoc();
unsigned CC, RetAttrs, FnAttrs;
PATypeHolder RetType(Type::VoidTy);
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
Value *NormalBB, *UnwindBB;
if (ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS) ||
ParseOptionalAttrs(FnAttrs, 2) ||
ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
ParseTypeAndValue(NormalBB, PFS) ||
ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
ParseTypeAndValue(UnwindBB, PFS))
return true;
if (!isa<BasicBlock>(NormalBB))
return Error(CallLoc, "normal destination is not a basic block");
if (!isa<BasicBlock>(UnwindBB))
return Error(CallLoc, "unwind destination is not a basic block");
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
const PointerType *PFTy = 0;
const FunctionType *Ty = 0;
if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = Context.getFunctionType(RetType, ParamTypes, false);
PFTy = Context.getPointerTypeUnqual(Ty);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
if (FnAttrs & ObsoleteFuncAttrs) {
RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
FnAttrs &= ~ObsoleteFuncAttrs;
}
// Set up the Attributes for the function.
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
const Type *ExpectedTy = 0;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
ExpectedTy->getDescription() + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
InvokeInst *II = InvokeInst::Create(Callee, cast<BasicBlock>(NormalBB),
cast<BasicBlock>(UnwindBB),
Args.begin(), Args.end());
II->setCallingConv(CC);
II->setAttributes(PAL);
Inst = II;
return false;
}
//===----------------------------------------------------------------------===//
// Binary Operators.
//===----------------------------------------------------------------------===//
/// ParseArithmetic
/// ::= ArithmeticOps TypeAndValue ',' Value
///
/// If OperandType is 0, then any FP or integer operand is allowed. If it is 1,
/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc, unsigned OperandType) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
bool Valid;
switch (OperandType) {
default: assert(0 && "Unknown operand type!");
case 0: // int or FP.
Valid = LHS->getType()->isIntOrIntVector() ||
LHS->getType()->isFPOrFPVector();
break;
case 1: Valid = LHS->getType()->isIntOrIntVector(); break;
case 2: Valid = LHS->getType()->isFPOrFPVector(); break;
}
if (!Valid)
return Error(Loc, "invalid operand type for instruction");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseLogical
/// ::= ArithmeticOps TypeAndValue ',' Value {
bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *LHS, *RHS;
if (ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' in logical operation") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (!LHS->getType()->isIntOrIntVector())
return Error(Loc,"instruction requires integer or integer vector operands");
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
return false;
}
/// ParseCompare
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
/// ::= 'vicmp' IPredicates TypeAndValue ',' Value
/// ::= 'vfcmp' FPredicates TypeAndValue ',' Value
bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
// Parse the integer/fp comparison predicate.
LocTy Loc;
unsigned Pred;
Value *LHS, *RHS;
if (ParseCmpPredicate(Pred, Opc) ||
ParseTypeAndValue(LHS, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after compare value") ||
ParseValue(LHS->getType(), RHS, PFS))
return true;
if (Opc == Instruction::FCmp) {
if (!LHS->getType()->isFPOrFPVector())
return Error(Loc, "fcmp requires floating point operands");
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else if (Opc == Instruction::ICmp) {
if (!LHS->getType()->isIntOrIntVector() &&
!isa<PointerType>(LHS->getType()))
return Error(Loc, "icmp requires integer operands");
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else if (Opc == Instruction::VFCmp) {
if (!LHS->getType()->isFPOrFPVector() || !isa<VectorType>(LHS->getType()))
return Error(Loc, "vfcmp requires vector floating point operands");
Inst = new VFCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
} else if (Opc == Instruction::VICmp) {
if (!LHS->getType()->isIntOrIntVector() || !isa<VectorType>(LHS->getType()))
return Error(Loc, "vicmp requires vector floating point operands");
Inst = new VICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
}
return false;
}
//===----------------------------------------------------------------------===//
// Other Instructions.
//===----------------------------------------------------------------------===//
/// ParseCast
/// ::= CastOpc TypeAndValue 'to' Type
bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
LocTy Loc; Value *Op;
PATypeHolder DestTy(Type::VoidTy);
if (ParseTypeAndValue(Op, Loc, PFS) ||
ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
ParseType(DestTy))
return true;
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
return Error(Loc, "invalid cast opcode for cast from '" +
Op->getType()->getDescription() + "' to '" +
DestTy->getDescription() + "'");
}
Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
return false;
}
/// ParseSelect
/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after select condition") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after select value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
return Error(Loc, Reason);
Inst = SelectInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseVA_Arg
/// ::= 'va_arg' TypeAndValue ',' Type
bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
Value *Op;
PATypeHolder EltTy(Type::VoidTy);
LocTy TypeLoc;
if (ParseTypeAndValue(Op, PFS) ||
ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
ParseType(EltTy, TypeLoc))
return true;
if (!EltTy->isFirstClassType())
return Error(TypeLoc, "va_arg requires operand with first class type");
Inst = new VAArgInst(Op, EltTy);
return false;
}
/// ParseExtractElement
/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after extract value") ||
ParseTypeAndValue(Op1, PFS))
return true;
if (!ExtractElementInst::isValidOperands(Op0, Op1))
return Error(Loc, "invalid extractelement operands");
Inst = new ExtractElementInst(Op0, Op1);
return false;
}
/// ParseInsertElement
/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid extractelement operands");
Inst = InsertElementInst::Create(Op0, Op1, Op2);
return false;
}
/// ParseShuffleVector
/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
LocTy Loc;
Value *Op0, *Op1, *Op2;
if (ParseTypeAndValue(Op0, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
ParseTypeAndValue(Op1, PFS) ||
ParseToken(lltok::comma, "expected ',' after shuffle value") ||
ParseTypeAndValue(Op2, PFS))
return true;
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return Error(Loc, "invalid extractelement operands");
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
return false;
}
/// ParsePHI
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Valueß ']')*
bool LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
PATypeHolder Ty(Type::VoidTy);
Value *Op0, *Op1;
LocTy TypeLoc = Lex.getLoc();
if (ParseType(Ty) ||
ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::LabelTy, Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
while (1) {
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
if (!EatIfPresent(lltok::comma))
break;
if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
ParseValue(Ty, Op0, PFS) ||
ParseToken(lltok::comma, "expected ',' after insertelement value") ||
ParseValue(Type::LabelTy, Op1, PFS) ||
ParseToken(lltok::rsquare, "expected ']' in phi value list"))
return true;
}
if (!Ty->isFirstClassType())
return Error(TypeLoc, "phi node must have first class type");
PHINode *PN = PHINode::Create(Ty);
PN->reserveOperandSpace(PHIVals.size());
for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
Inst = PN;
return false;
}
/// ParseCall
/// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
/// ParameterList OptionalAttrs
bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
bool isTail) {
unsigned CC, RetAttrs, FnAttrs;
PATypeHolder RetType(Type::VoidTy);
LocTy RetTypeLoc;
ValID CalleeID;
SmallVector<ParamInfo, 16> ArgList;
LocTy CallLoc = Lex.getLoc();
if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
ParseOptionalCallingConv(CC) ||
ParseOptionalAttrs(RetAttrs, 1) ||
ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
ParseValID(CalleeID) ||
ParseParameterList(ArgList, PFS) ||
ParseOptionalAttrs(FnAttrs, 2))
return true;
// If RetType is a non-function pointer type, then this is the short syntax
// for the call, which means that RetType is just the return type. Infer the
// rest of the function argument types from the arguments that are present.
const PointerType *PFTy = 0;
const FunctionType *Ty = 0;
if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
ParamTypes.push_back(ArgList[i].V->getType());
if (!FunctionType::isValidReturnType(RetType))
return Error(RetTypeLoc, "Invalid result type for LLVM function");
Ty = Context.getFunctionType(RetType, ParamTypes, false);
PFTy = Context.getPointerTypeUnqual(Ty);
}
// Look up the callee.
Value *Callee;
if (ConvertValIDToValue(PFTy, CalleeID, Callee, PFS)) return true;
// FIXME: In LLVM 3.0, stop accepting zext, sext and inreg as optional
// function attributes.
unsigned ObsoleteFuncAttrs = Attribute::ZExt|Attribute::SExt|Attribute::InReg;
if (FnAttrs & ObsoleteFuncAttrs) {
RetAttrs |= FnAttrs & ObsoleteFuncAttrs;
FnAttrs &= ~ObsoleteFuncAttrs;
}
// Set up the Attributes for the function.
SmallVector<AttributeWithIndex, 8> Attrs;
if (RetAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
SmallVector<Value*, 8> Args;
// Loop through FunctionType's arguments and ensure they are specified
// correctly. Also, gather any parameter attributes.
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
const Type *ExpectedTy = 0;
if (I != E) {
ExpectedTy = *I++;
} else if (!Ty->isVarArg()) {
return Error(ArgList[i].Loc, "too many arguments specified");
}
if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
return Error(ArgList[i].Loc, "argument is not of expected type '" +
ExpectedTy->getDescription() + "'");
Args.push_back(ArgList[i].V);
if (ArgList[i].Attrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
}
if (I != E)
return Error(CallLoc, "not enough parameters specified for call");
if (FnAttrs != Attribute::None)
Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
// Finish off the Attributes and check them
AttrListPtr PAL = AttrListPtr::get(Attrs.begin(), Attrs.end());
CallInst *CI = CallInst::Create(Callee, Args.begin(), Args.end());
CI->setTailCall(isTail);
CI->setCallingConv(CC);
CI->setAttributes(PAL);
Inst = CI;
return false;
}
//===----------------------------------------------------------------------===//
// Memory Instructions.
//===----------------------------------------------------------------------===//
/// ParseAlloc
/// ::= 'malloc' Type (',' TypeAndValue)? (',' OptionalAlignment)?
/// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalAlignment)?
bool LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS,
unsigned Opc) {
PATypeHolder Ty(Type::VoidTy);
Value *Size = 0;
LocTy SizeLoc;
unsigned Alignment = 0;
if (ParseType(Ty)) return true;
if (EatIfPresent(lltok::comma)) {
if (Lex.getKind() == lltok::kw_align) {
if (ParseOptionalAlignment(Alignment)) return true;
} else if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
ParseOptionalCommaAlignment(Alignment)) {
return true;
}
}
if (Size && Size->getType() != Type::Int32Ty)
return Error(SizeLoc, "element count must be i32");
if (Opc == Instruction::Malloc)
Inst = new MallocInst(Ty, Size, Alignment);
else
Inst = new AllocaInst(Ty, Size, Alignment);
return false;
}
/// ParseFree
/// ::= 'free' TypeAndValue
bool LLParser::ParseFree(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
if (ParseTypeAndValue(Val, Loc, PFS)) return true;
if (!isa<PointerType>(Val->getType()))
return Error(Loc, "operand to free must be a pointer");
Inst = new FreeInst(Val);
return false;
}
/// ParseLoad
/// ::= 'volatile'? 'load' TypeAndValue (',' 'align' i32)?
bool LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS,
bool isVolatile) {
Value *Val; LocTy Loc;
unsigned Alignment;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseOptionalCommaAlignment(Alignment))
return true;
if (!isa<PointerType>(Val->getType()) ||
!cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
return Error(Loc, "load operand must be a pointer to a first class type");
Inst = new LoadInst(Val, "", isVolatile, Alignment);
return false;
}
/// ParseStore
/// ::= 'volatile'? 'store' TypeAndValue ',' TypeAndValue (',' 'align' i32)?
bool LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS,
bool isVolatile) {
Value *Val, *Ptr; LocTy Loc, PtrLoc;
unsigned Alignment;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseToken(lltok::comma, "expected ',' after store operand") ||
ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
ParseOptionalCommaAlignment(Alignment))
return true;
if (!isa<PointerType>(Ptr->getType()))
return Error(PtrLoc, "store operand must be a pointer");
if (!Val->getType()->isFirstClassType())
return Error(Loc, "store operand must be a first class value");
if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
return Error(Loc, "stored value and pointer type do not match");
Inst = new StoreInst(Val, Ptr, isVolatile, Alignment);
return false;
}
/// ParseGetResult
/// ::= 'getresult' TypeAndValue ',' i32
/// FIXME: Remove support for getresult in LLVM 3.0
bool LLParser::ParseGetResult(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy ValLoc, EltLoc;
unsigned Element;
if (ParseTypeAndValue(Val, ValLoc, PFS) ||
ParseToken(lltok::comma, "expected ',' after getresult operand") ||
ParseUInt32(Element, EltLoc))
return true;
if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
return Error(ValLoc, "getresult inst requires an aggregate operand");
if (!ExtractValueInst::getIndexedType(Val->getType(), Element))
return Error(EltLoc, "invalid getresult index for value");
Inst = ExtractValueInst::Create(Val, Element);
return false;
}
/// ParseGetElementPtr
/// ::= 'getelementptr' TypeAndValue (',' TypeAndValue)*
bool LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
Value *Ptr, *Val; LocTy Loc, EltLoc;
if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
if (!isa<PointerType>(Ptr->getType()))
return Error(Loc, "base of getelementptr must be a pointer");
SmallVector<Value*, 16> Indices;
while (EatIfPresent(lltok::comma)) {
if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
if (!isa<IntegerType>(Val->getType()))
return Error(EltLoc, "getelementptr index must be an integer");
Indices.push_back(Val);
}
if (!GetElementPtrInst::getIndexedType(Ptr->getType(),
Indices.begin(), Indices.end()))
return Error(Loc, "invalid getelementptr indices");
Inst = GetElementPtrInst::Create(Ptr, Indices.begin(), Indices.end());
return false;
}
/// ParseExtractValue
/// ::= 'extractvalue' TypeAndValue (',' uint32)+
bool LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val; LocTy Loc;
SmallVector<unsigned, 4> Indices;
if (ParseTypeAndValue(Val, Loc, PFS) ||
ParseIndexList(Indices))
return true;
if (!isa<StructType>(Val->getType()) && !isa<ArrayType>(Val->getType()))
return Error(Loc, "extractvalue operand must be array or struct");
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices.begin(),
Indices.end()))
return Error(Loc, "invalid indices for extractvalue");
Inst = ExtractValueInst::Create(Val, Indices.begin(), Indices.end());
return false;
}
/// ParseInsertValue
/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
bool LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
Value *Val0, *Val1; LocTy Loc0, Loc1;
SmallVector<unsigned, 4> Indices;
if (ParseTypeAndValue(Val0, Loc0, PFS) ||
ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
ParseTypeAndValue(Val1, Loc1, PFS) ||
ParseIndexList(Indices))
return true;
if (!isa<StructType>(Val0->getType()) && !isa<ArrayType>(Val0->getType()))
return Error(Loc0, "extractvalue operand must be array or struct");
if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices.begin(),
Indices.end()))
return Error(Loc0, "invalid indices for insertvalue");
Inst = InsertValueInst::Create(Val0, Val1, Indices.begin(), Indices.end());
return false;
}
//===----------------------------------------------------------------------===//
// Embedded metadata.
//===----------------------------------------------------------------------===//
/// ParseMDNodeVector
/// ::= Element (',' Element)*
/// Element
/// ::= 'null' | TypeAndValue
bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts) {
assert(Lex.getKind() == lltok::lbrace);
Lex.Lex();
do {
Value *V;
if (Lex.getKind() == lltok::kw_null) {
Lex.Lex();
V = 0;
} else {
Constant *C;
if (ParseGlobalTypeAndValue(C)) return true;
V = C;
}
Elts.push_back(V);
} while (EatIfPresent(lltok::comma));
return false;
}