llvm/lib/Analysis/DataStructure/Steensgaard.cpp

238 lines
8.6 KiB
C++

//===- Steensgaard.cpp - Context Insensitive Alias Analysis ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass uses the data structure graphs to implement a simple context
// insensitive alias analysis. It does this by computing the local analysis
// graphs for all of the functions, then merging them together into a single big
// graph without cloning.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/DataStructure/DataStructure.h"
#include "llvm/Analysis/DataStructure/DSGraph.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Module.h"
#include "Support/Debug.h"
using namespace llvm;
namespace {
class Steens : public Pass, public AliasAnalysis {
DSGraph *ResultGraph;
DSGraph *GlobalsGraph; // FIXME: Eliminate globals graph stuff from DNE
public:
Steens() : ResultGraph(0), GlobalsGraph(0) {}
~Steens() {
releaseMyMemory();
assert(ResultGraph == 0 && "releaseMemory not called?");
}
//------------------------------------------------
// Implement the Pass API
//
// run - Build up the result graph, representing the pointer graph for the
// program.
//
bool run(Module &M);
virtual void releaseMyMemory() { delete ResultGraph; ResultGraph = 0; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AliasAnalysis::getAnalysisUsage(AU);
AU.setPreservesAll(); // Does not transform code...
AU.addRequired<LocalDataStructures>(); // Uses local dsgraph
}
// print - Implement the Pass::print method...
void print(std::ostream &O, const Module *M) const {
assert(ResultGraph && "Result graph has not yet been computed!");
ResultGraph->writeGraphToFile(O, "steensgaards");
}
//------------------------------------------------
// Implement the AliasAnalysis API
//
// alias - This is the only method here that does anything interesting...
AliasResult alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size);
private:
void ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal);
};
// Register the pass...
RegisterOpt<Steens> X("steens-aa",
"Steensgaard's alias analysis (DSGraph based)");
// Register as an implementation of AliasAnalysis
RegisterAnalysisGroup<AliasAnalysis, Steens> Y;
}
/// ResolveFunctionCall - Resolve the actual arguments of a call to function F
/// with the specified call site descriptor. This function links the arguments
/// and the return value for the call site context-insensitively.
///
void Steens::ResolveFunctionCall(Function *F, const DSCallSite &Call,
DSNodeHandle &RetVal) {
assert(ResultGraph != 0 && "Result graph not allocated!");
DSGraph::ScalarMapTy &ValMap = ResultGraph->getScalarMap();
// Handle the return value of the function...
if (Call.getRetVal().getNode() && RetVal.getNode())
RetVal.mergeWith(Call.getRetVal());
// Loop over all pointer arguments, resolving them to their provided pointers
unsigned PtrArgIdx = 0;
for (Function::aiterator AI = F->abegin(), AE = F->aend();
AI != AE && PtrArgIdx < Call.getNumPtrArgs(); ++AI) {
DSGraph::ScalarMapTy::iterator I = ValMap.find(AI);
if (I != ValMap.end()) // If its a pointer argument...
I->second.mergeWith(Call.getPtrArg(PtrArgIdx++));
}
}
/// run - Build up the result graph, representing the pointer graph for the
/// program.
///
bool Steens::run(Module &M) {
InitializeAliasAnalysis(this);
assert(ResultGraph == 0 && "Result graph already allocated!");
LocalDataStructures &LDS = getAnalysis<LocalDataStructures>();
// Create a new, empty, graph...
ResultGraph = new DSGraph(getTargetData());
GlobalsGraph = new DSGraph(getTargetData());
ResultGraph->setGlobalsGraph(GlobalsGraph);
ResultGraph->setPrintAuxCalls();
// RetValMap - Keep track of the return values for all functions that return
// valid pointers.
//
DSGraph::ReturnNodesTy RetValMap;
// Loop over the rest of the module, merging graphs for non-external functions
// into this graph.
//
unsigned Count = 0;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
DSGraph::ScalarMapTy ValMap;
{ // Scope to free NodeMap memory ASAP
DSGraph::NodeMapTy NodeMap;
const DSGraph &FDSG = LDS.getDSGraph(*I);
ResultGraph->cloneInto(FDSG, ValMap, RetValMap, NodeMap,
DSGraph::UpdateInlinedGlobals);
}
// Incorporate the inlined Function's ScalarMap into the global
// ScalarMap...
DSGraph::ScalarMapTy &GVM = ResultGraph->getScalarMap();
for (DSGraph::ScalarMapTy::iterator I = ValMap.begin(),
E = ValMap.end(); I != E; ++I)
GVM[I->first].mergeWith(I->second);
if ((++Count & 1) == 0) // Prune nodes out every other time...
ResultGraph->removeTriviallyDeadNodes();
}
// FIXME: Must recalculate and use the Incomplete markers!!
// Now that we have all of the graphs inlined, we can go about eliminating
// call nodes...
//
std::vector<DSCallSite> &Calls =
ResultGraph->getAuxFunctionCalls();
assert(Calls.empty() && "Aux call list is already in use??");
// Start with a copy of the original call sites...
Calls = ResultGraph->getFunctionCalls();
for (unsigned i = 0; i != Calls.size(); ) {
DSCallSite &CurCall = Calls[i];
// Loop over the called functions, eliminating as many as possible...
std::vector<GlobalValue*> CallTargets;
if (CurCall.isDirectCall())
CallTargets.push_back(CurCall.getCalleeFunc());
else
CallTargets = CurCall.getCalleeNode()->getGlobals();
for (unsigned c = 0; c != CallTargets.size(); ) {
// If we can eliminate this function call, do so!
bool Eliminated = false;
if (Function *F = dyn_cast<Function>(CallTargets[c]))
if (!F->isExternal()) {
ResolveFunctionCall(F, CurCall, RetValMap[F]);
Eliminated = true;
}
if (Eliminated) {
CallTargets[c] = CallTargets.back();
CallTargets.pop_back();
} else
++c; // Cannot eliminate this call, skip over it...
}
if (CallTargets.empty()) { // Eliminated all calls?
CurCall = Calls.back(); // Remove entry
Calls.pop_back();
} else
++i; // Skip this call site...
}
RetValMap.clear();
// Update the "incomplete" markers on the nodes, ignoring unknownness due to
// incoming arguments...
ResultGraph->maskIncompleteMarkers();
ResultGraph->markIncompleteNodes(DSGraph::IgnoreFormalArgs);
// Remove any nodes that are dead after all of the merging we have done...
// FIXME: We should be able to disable the globals graph for steens!
ResultGraph->removeDeadNodes(DSGraph::KeepUnreachableGlobals);
DEBUG(print(std::cerr, &M));
return false;
}
// alias - This is the only method here that does anything interesting...
AliasAnalysis::AliasResult Steens::alias(const Value *V1, unsigned V1Size,
const Value *V2, unsigned V2Size) {
// FIXME: HANDLE Size argument!
assert(ResultGraph && "Result graph has not been computed yet!");
DSGraph::ScalarMapTy &GSM = ResultGraph->getScalarMap();
DSGraph::ScalarMapTy::iterator I = GSM.find(const_cast<Value*>(V1));
if (I != GSM.end() && I->second.getNode()) {
DSNodeHandle &V1H = I->second;
DSGraph::ScalarMapTy::iterator J=GSM.find(const_cast<Value*>(V2));
if (J != GSM.end() && J->second.getNode()) {
DSNodeHandle &V2H = J->second;
// If the two pointers point to different data structure graph nodes, they
// cannot alias!
if (V1H.getNode() != V2H.getNode()) // FIXME: Handle incompleteness!
return NoAlias;
// FIXME: If the two pointers point to the same node, and the offsets are
// different, and the LinkIndex vector doesn't alias the section, then the
// two pointers do not alias. We need access size information for the two
// accesses though!
//
}
}
// If we cannot determine alias properties based on our graph, fall back on
// some other AA implementation.
//
return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
}