llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
2006-09-20 04:33:27 +00:00

1318 lines
50 KiB
C++

//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a pattern matching instruction selector for PowerPC,
// converting from a legalized dag to a PPC dag.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCTargetMachine.h"
#include "PPCISelLowering.h"
#include "PPCHazardRecognizers.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include <iostream>
#include <queue>
#include <set>
using namespace llvm;
namespace {
Statistic<> FrameOff("ppc-codegen", "Number of frame idx offsets collapsed");
//===--------------------------------------------------------------------===//
/// PPCDAGToDAGISel - PPC specific code to select PPC machine
/// instructions for SelectionDAG operations.
///
class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
PPCTargetMachine &TM;
PPCTargetLowering PPCLowering;
unsigned GlobalBaseReg;
public:
PPCDAGToDAGISel(PPCTargetMachine &tm)
: SelectionDAGISel(PPCLowering), TM(tm),
PPCLowering(*TM.getTargetLowering()) {}
virtual bool runOnFunction(Function &Fn) {
// Make sure we re-emit a set of the global base reg if necessary
GlobalBaseReg = 0;
SelectionDAGISel::runOnFunction(Fn);
InsertVRSaveCode(Fn);
return true;
}
/// getI32Imm - Return a target constant with the specified value, of type
/// i32.
inline SDOperand getI32Imm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i32);
}
/// getI64Imm - Return a target constant with the specified value, of type
/// i64.
inline SDOperand getI64Imm(uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, MVT::i64);
}
/// getSmallIPtrImm - Return a target constant of pointer type.
inline SDOperand getSmallIPtrImm(unsigned Imm) {
return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
}
/// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
/// base register. Return the virtual register that holds this value.
SDNode *getGlobalBaseReg();
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *Select(SDOperand Op);
SDNode *SelectBitfieldInsert(SDNode *N);
/// SelectCC - Select a comparison of the specified values with the
/// specified condition code, returning the CR# of the expression.
SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
/// SelectAddrImm - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement [r+imm].
bool SelectAddrImm(SDOperand N, SDOperand &Disp, SDOperand &Base);
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
/// represented as an indexed [r+r] operation. Returns false if it can
/// be represented by [r+imm], which are preferred.
bool SelectAddrIdx(SDOperand N, SDOperand &Base, SDOperand &Index);
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool SelectAddrIdxOnly(SDOperand N, SDOperand &Base, SDOperand &Index);
/// SelectAddrImmShift - Returns true if the address N can be represented by
/// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
/// for use by STD and friends.
bool SelectAddrImmShift(SDOperand N, SDOperand &Disp, SDOperand &Base);
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
char ConstraintCode,
std::vector<SDOperand> &OutOps,
SelectionDAG &DAG) {
SDOperand Op0, Op1;
switch (ConstraintCode) {
default: return true;
case 'm': // memory
if (!SelectAddrIdx(Op, Op0, Op1))
SelectAddrImm(Op, Op0, Op1);
break;
case 'o': // offsetable
if (!SelectAddrImm(Op, Op0, Op1)) {
Op0 = Op;
AddToISelQueue(Op0); // r+0.
Op1 = getSmallIPtrImm(0);
}
break;
case 'v': // not offsetable
SelectAddrIdxOnly(Op, Op0, Op1);
break;
}
OutOps.push_back(Op0);
OutOps.push_back(Op1);
return false;
}
SDOperand BuildSDIVSequence(SDNode *N);
SDOperand BuildUDIVSequence(SDNode *N);
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
void InsertVRSaveCode(Function &Fn);
virtual const char *getPassName() const {
return "PowerPC DAG->DAG Pattern Instruction Selection";
}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
virtual HazardRecognizer *CreateTargetHazardRecognizer() {
// Should use subtarget info to pick the right hazard recognizer. For
// now, always return a PPC970 recognizer.
const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
assert(II && "No InstrInfo?");
return new PPCHazardRecognizer970(*II);
}
// Include the pieces autogenerated from the target description.
#include "PPCGenDAGISel.inc"
private:
SDNode *SelectSETCC(SDOperand Op);
SDNode *MySelect_PPCbctrl(SDOperand N);
SDNode *MySelect_PPCcall(SDOperand N);
};
}
/// InstructionSelectBasicBlock - This callback is invoked by
/// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
DEBUG(BB->dump());
// Select target instructions for the DAG.
DAG.setRoot(SelectRoot(DAG.getRoot()));
DAG.RemoveDeadNodes();
// Emit machine code to BB.
ScheduleAndEmitDAG(DAG);
}
/// InsertVRSaveCode - Once the entire function has been instruction selected,
/// all virtual registers are created and all machine instructions are built,
/// check to see if we need to save/restore VRSAVE. If so, do it.
void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
// Check to see if this function uses vector registers, which means we have to
// save and restore the VRSAVE register and update it with the regs we use.
//
// In this case, there will be virtual registers of vector type type created
// by the scheduler. Detect them now.
MachineFunction &Fn = MachineFunction::get(&F);
SSARegMap *RegMap = Fn.getSSARegMap();
bool HasVectorVReg = false;
for (unsigned i = MRegisterInfo::FirstVirtualRegister,
e = RegMap->getLastVirtReg()+1; i != e; ++i)
if (RegMap->getRegClass(i) == &PPC::VRRCRegClass) {
HasVectorVReg = true;
break;
}
if (!HasVectorVReg) return; // nothing to do.
// If we have a vector register, we want to emit code into the entry and exit
// blocks to save and restore the VRSAVE register. We do this here (instead
// of marking all vector instructions as clobbering VRSAVE) for two reasons:
//
// 1. This (trivially) reduces the load on the register allocator, by not
// having to represent the live range of the VRSAVE register.
// 2. This (more significantly) allows us to create a temporary virtual
// register to hold the saved VRSAVE value, allowing this temporary to be
// register allocated, instead of forcing it to be spilled to the stack.
// Create two vregs - one to hold the VRSAVE register that is live-in to the
// function and one for the value after having bits or'd into it.
unsigned InVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
unsigned UpdatedVRSAVE = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
MachineBasicBlock &EntryBB = *Fn.begin();
// Emit the following code into the entry block:
// InVRSAVE = MFVRSAVE
// UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
// MTVRSAVE UpdatedVRSAVE
MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
BuildMI(EntryBB, IP, PPC::MFVRSAVE, 0, InVRSAVE);
BuildMI(EntryBB, IP, PPC::UPDATE_VRSAVE, 1, UpdatedVRSAVE).addReg(InVRSAVE);
BuildMI(EntryBB, IP, PPC::MTVRSAVE, 1).addReg(UpdatedVRSAVE);
// Find all return blocks, outputting a restore in each epilog.
const TargetInstrInfo &TII = *TM.getInstrInfo();
for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
if (!BB->empty() && TII.isReturn(BB->back().getOpcode())) {
IP = BB->end(); --IP;
// Skip over all terminator instructions, which are part of the return
// sequence.
MachineBasicBlock::iterator I2 = IP;
while (I2 != BB->begin() && TII.isTerminatorInstr((--I2)->getOpcode()))
IP = I2;
// Emit: MTVRSAVE InVRSave
BuildMI(*BB, IP, PPC::MTVRSAVE, 1).addReg(InVRSAVE);
}
}
}
/// getGlobalBaseReg - Output the instructions required to put the
/// base address to use for accessing globals into a register.
///
SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
if (!GlobalBaseReg) {
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = BB->getParent()->front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
SSARegMap *RegMap = BB->getParent()->getSSARegMap();
if (PPCLowering.getPointerTy() == MVT::i32)
GlobalBaseReg = RegMap->createVirtualRegister(PPC::GPRCRegisterClass);
else
GlobalBaseReg = RegMap->createVirtualRegister(PPC::G8RCRegisterClass);
BuildMI(FirstMBB, MBBI, PPC::MovePCtoLR, 0, PPC::LR);
BuildMI(FirstMBB, MBBI, PPC::MFLR, 1, GlobalBaseReg);
}
return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
}
/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
/// or 64-bit immediate, and if the value can be accurately represented as a
/// sign extension from a 16-bit value. If so, this returns true and the
/// immediate.
static bool isIntS16Immediate(SDNode *N, short &Imm) {
if (N->getOpcode() != ISD::Constant)
return false;
Imm = (short)cast<ConstantSDNode>(N)->getValue();
if (N->getValueType(0) == MVT::i32)
return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
else
return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
}
static bool isIntS16Immediate(SDOperand Op, short &Imm) {
return isIntS16Immediate(Op.Val, Imm);
}
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
/// operand. If so Imm will receive the 32-bit value.
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
Imm = cast<ConstantSDNode>(N)->getValue();
return true;
}
return false;
}
/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
/// operand. If so Imm will receive the 64-bit value.
static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
Imm = cast<ConstantSDNode>(N)->getValue();
return true;
}
return false;
}
// isInt32Immediate - This method tests to see if a constant operand.
// If so Imm will receive the 32 bit value.
static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
return isInt32Immediate(N.Val, Imm);
}
// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
}
// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
// any number of 0s on either side. The 1s are allowed to wrap from LSB to
// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
// not, since all 1s are not contiguous.
static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
if (isShiftedMask_32(Val)) {
// look for the first non-zero bit
MB = CountLeadingZeros_32(Val);
// look for the first zero bit after the run of ones
ME = CountLeadingZeros_32((Val - 1) ^ Val);
return true;
} else {
Val = ~Val; // invert mask
if (isShiftedMask_32(Val)) {
// effectively look for the first zero bit
ME = CountLeadingZeros_32(Val) - 1;
// effectively look for the first one bit after the run of zeros
MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
return true;
}
}
// no run present
return false;
}
// isRotateAndMask - Returns true if Mask and Shift can be folded into a rotate
// and mask opcode and mask operation.
static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
unsigned &SH, unsigned &MB, unsigned &ME) {
// Don't even go down this path for i64, since different logic will be
// necessary for rldicl/rldicr/rldimi.
if (N->getValueType(0) != MVT::i32)
return false;
unsigned Shift = 32;
unsigned Indeterminant = ~0; // bit mask marking indeterminant results
unsigned Opcode = N->getOpcode();
if (N->getNumOperands() != 2 ||
!isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
return false;
if (Opcode == ISD::SHL) {
// apply shift left to mask if it comes first
if (IsShiftMask) Mask = Mask << Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu << Shift);
} else if (Opcode == ISD::SRL) {
// apply shift right to mask if it comes first
if (IsShiftMask) Mask = Mask >> Shift;
// determine which bits are made indeterminant by shift
Indeterminant = ~(0xFFFFFFFFu >> Shift);
// adjust for the left rotate
Shift = 32 - Shift;
} else {
return false;
}
// if the mask doesn't intersect any Indeterminant bits
if (Mask && !(Mask & Indeterminant)) {
SH = Shift & 31;
// make sure the mask is still a mask (wrap arounds may not be)
return isRunOfOnes(Mask, MB, ME);
}
return false;
}
/// SelectBitfieldInsert - turn an or of two masked values into
/// the rotate left word immediate then mask insert (rlwimi) instruction.
SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
SDOperand Op0 = N->getOperand(0);
SDOperand Op1 = N->getOperand(1);
uint64_t LKZ, LKO, RKZ, RKO;
TLI.ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
TLI.ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
unsigned TargetMask = LKZ;
unsigned InsertMask = RKZ;
if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
unsigned Op0Opc = Op0.getOpcode();
unsigned Op1Opc = Op1.getOpcode();
unsigned Value, SH = 0;
TargetMask = ~TargetMask;
InsertMask = ~InsertMask;
// If the LHS has a foldable shift and the RHS does not, then swap it to the
// RHS so that we can fold the shift into the insert.
if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
Op0.getOperand(0).getOpcode() == ISD::SRL) {
if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
Op1.getOperand(0).getOpcode() != ISD::SRL) {
std::swap(Op0, Op1);
std::swap(Op0Opc, Op1Opc);
std::swap(TargetMask, InsertMask);
}
}
} else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
Op1.getOperand(0).getOpcode() != ISD::SRL) {
std::swap(Op0, Op1);
std::swap(Op0Opc, Op1Opc);
std::swap(TargetMask, InsertMask);
}
}
unsigned MB, ME;
if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
SDOperand Tmp1, Tmp2, Tmp3;
bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
isInt32Immediate(Op1.getOperand(1), Value)) {
Op1 = Op1.getOperand(0);
SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
}
if (Op1Opc == ISD::AND) {
unsigned SHOpc = Op1.getOperand(0).getOpcode();
if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
Op1 = Op1.getOperand(0).getOperand(0);
SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
} else {
Op1 = Op1.getOperand(0);
}
}
Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
AddToISelQueue(Tmp3);
AddToISelQueue(Op1);
SH &= 31;
SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
getI32Imm(ME) };
return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
}
}
return 0;
}
/// SelectAddrImm - Returns true if the address N can be represented by
/// a base register plus a signed 16-bit displacement [r+imm].
bool PPCDAGToDAGISel::SelectAddrImm(SDOperand N, SDOperand &Disp,
SDOperand &Base) {
// If this can be more profitably realized as r+r, fail.
if (SelectAddrIdx(N, Disp, Base))
return false;
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm)) {
Disp = getI32Imm((int)imm & 0xFFFF);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
// Match LOAD (ADD (X, Lo(G))).
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
&& "Cannot handle constant offsets yet!");
Disp = N.getOperand(1).getOperand(0); // The global address.
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
Disp.getOpcode() == ISD::TargetConstantPool ||
Disp.getOpcode() == ISD::TargetJumpTable);
Base = N.getOperand(0);
return true; // [&g+r]
}
} else if (N.getOpcode() == ISD::OR) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm)) {
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are
// provably disjoint.
uint64_t LHSKnownZero, LHSKnownOne;
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
LHSKnownZero, LHSKnownOne);
if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
Base = N.getOperand(0);
Disp = getI32Imm((int)imm & 0xFFFF);
return true;
}
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
// If this address fits entirely in a 16-bit sext immediate field, codegen
// this as "d, 0"
short Imm;
if (isIntS16Immediate(CN, Imm)) {
Disp = CurDAG->getTargetConstant(Imm, CN->getValueType(0));
Base = CurDAG->getRegister(PPC::R0, CN->getValueType(0));
return true;
}
// FIXME: Handle small sext constant offsets in PPC64 mode also!
if (CN->getValueType(0) == MVT::i32) {
int Addr = (int)CN->getValue();
// Otherwise, break this down into an LIS + disp.
Disp = getI32Imm((short)Addr);
Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
return true;
}
}
Disp = getSmallIPtrImm(0);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
else
Base = N;
return true; // [r+0]
}
/// SelectAddrIdx - Given the specified addressed, check to see if it can be
/// represented as an indexed [r+r] operation. Returns false if it can
/// be represented by [r+imm], which are preferred.
bool PPCDAGToDAGISel::SelectAddrIdx(SDOperand N, SDOperand &Base,
SDOperand &Index) {
short imm = 0;
if (N.getOpcode() == ISD::ADD) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i
if (N.getOperand(1).getOpcode() == PPCISD::Lo)
return false; // r+i
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
} else if (N.getOpcode() == ISD::OR) {
if (isIntS16Immediate(N.getOperand(1), imm))
return false; // r+i can fold it if we can.
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are provably
// disjoint.
uint64_t LHSKnownZero, LHSKnownOne;
uint64_t RHSKnownZero, RHSKnownOne;
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
LHSKnownZero, LHSKnownOne);
if (LHSKnownZero) {
PPCLowering.ComputeMaskedBits(N.getOperand(1), ~0U,
RHSKnownZero, RHSKnownOne);
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
if ((LHSKnownZero | RHSKnownZero) == ~0U) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
}
}
return false;
}
/// SelectAddrIdxOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool PPCDAGToDAGISel::SelectAddrIdxOnly(SDOperand N, SDOperand &Base,
SDOperand &Index) {
// Check to see if we can easily represent this as an [r+r] address. This
// will fail if it thinks that the address is more profitably represented as
// reg+imm, e.g. where imm = 0.
if (SelectAddrIdx(N, Base, Index))
return true;
// If the operand is an addition, always emit this as [r+r], since this is
// better (for code size, and execution, as the memop does the add for free)
// than emitting an explicit add.
if (N.getOpcode() == ISD::ADD) {
Base = N.getOperand(0);
Index = N.getOperand(1);
return true;
}
// Otherwise, do it the hard way, using R0 as the base register.
Base = CurDAG->getRegister(PPC::R0, N.getValueType());
Index = N;
return true;
}
/// SelectAddrImmShift - Returns true if the address N can be represented by
/// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
/// for use by STD and friends.
bool PPCDAGToDAGISel::SelectAddrImmShift(SDOperand N, SDOperand &Disp,
SDOperand &Base) {
// If this can be more profitably realized as r+r, fail.
if (SelectAddrIdx(N, Disp, Base))
return false;
if (N.getOpcode() == ISD::ADD) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
Disp = getI32Imm(((int)imm & 0xFFFF) >> 2);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
} else {
Base = N.getOperand(0);
}
return true; // [r+i]
} else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
// Match LOAD (ADD (X, Lo(G))).
assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
&& "Cannot handle constant offsets yet!");
Disp = N.getOperand(1).getOperand(0); // The global address.
assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
Disp.getOpcode() == ISD::TargetConstantPool ||
Disp.getOpcode() == ISD::TargetJumpTable);
Base = N.getOperand(0);
return true; // [&g+r]
}
} else if (N.getOpcode() == ISD::OR) {
short imm = 0;
if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
// If this is an or of disjoint bitfields, we can codegen this as an add
// (for better address arithmetic) if the LHS and RHS of the OR are
// provably disjoint.
uint64_t LHSKnownZero, LHSKnownOne;
PPCLowering.ComputeMaskedBits(N.getOperand(0), ~0U,
LHSKnownZero, LHSKnownOne);
if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
// If all of the bits are known zero on the LHS or RHS, the add won't
// carry.
Base = N.getOperand(0);
Disp = getI32Imm(((int)imm & 0xFFFF) >> 2);
return true;
}
}
} else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
// Loading from a constant address.
// If this address fits entirely in a 14-bit sext immediate field, codegen
// this as "d, 0"
short Imm;
if (isIntS16Immediate(CN, Imm)) {
Disp = getSmallIPtrImm((unsigned short)Imm >> 2);
Base = CurDAG->getRegister(PPC::R0, CN->getValueType(0));
return true;
}
// FIXME: Handle small sext constant offsets in PPC64 mode also!
if (CN->getValueType(0) == MVT::i32) {
int Addr = (int)CN->getValue();
// Otherwise, break this down into an LIS + disp.
Disp = getI32Imm((short)Addr >> 2);
Base = CurDAG->getConstant(Addr - (signed short)Addr, MVT::i32);
return true;
}
}
Disp = getSmallIPtrImm(0);
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
Base = CurDAG->getTargetFrameIndex(FI->getIndex(), N.getValueType());
else
Base = N;
return true; // [r+0]
}
/// SelectCC - Select a comparison of the specified values with the specified
/// condition code, returning the CR# of the expression.
SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
ISD::CondCode CC) {
// Always select the LHS.
AddToISelQueue(LHS);
unsigned Opc;
if (LHS.getValueType() == MVT::i32) {
unsigned Imm;
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
if (isInt32Immediate(RHS, Imm)) {
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
if (isUInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF)), 0);
// If this is a 16-bit signed immediate, fold it.
if (isInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF)), 0);
// For non-equality comparisons, the default code would materialize the
// constant, then compare against it, like this:
// lis r2, 4660
// ori r2, r2, 22136
// cmpw cr0, r3, r2
// Since we are just comparing for equality, we can emit this instead:
// xoris r0,r3,0x1234
// cmplwi cr0,r0,0x5678
// beq cr0,L6
SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
getI32Imm(Imm >> 16)), 0);
return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
getI32Imm(Imm & 0xFFFF)), 0);
}
Opc = PPC::CMPLW;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
getI32Imm(Imm & 0xFFFF)), 0);
Opc = PPC::CMPLW;
} else {
short SImm;
if (isIntS16Immediate(RHS, SImm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
getI32Imm((int)SImm & 0xFFFF)),
0);
Opc = PPC::CMPW;
}
} else if (LHS.getValueType() == MVT::i64) {
uint64_t Imm;
if (CC == ISD::SETEQ || CC == ISD::SETNE) {
if (isInt64Immediate(RHS.Val, Imm)) {
// SETEQ/SETNE comparison with 16-bit immediate, fold it.
if (isUInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
getI32Imm(Imm & 0xFFFF)), 0);
// If this is a 16-bit signed immediate, fold it.
if (isInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
getI32Imm(Imm & 0xFFFF)), 0);
// For non-equality comparisons, the default code would materialize the
// constant, then compare against it, like this:
// lis r2, 4660
// ori r2, r2, 22136
// cmpd cr0, r3, r2
// Since we are just comparing for equality, we can emit this instead:
// xoris r0,r3,0x1234
// cmpldi cr0,r0,0x5678
// beq cr0,L6
if (isUInt32(Imm)) {
SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
getI64Imm(Imm >> 16)), 0);
return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
getI64Imm(Imm & 0xFFFF)), 0);
}
}
Opc = PPC::CMPLD;
} else if (ISD::isUnsignedIntSetCC(CC)) {
if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
getI64Imm(Imm & 0xFFFF)), 0);
Opc = PPC::CMPLD;
} else {
short SImm;
if (isIntS16Immediate(RHS, SImm))
return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
getI64Imm(SImm & 0xFFFF)),
0);
Opc = PPC::CMPD;
}
} else if (LHS.getValueType() == MVT::f32) {
Opc = PPC::FCMPUS;
} else {
assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
Opc = PPC::FCMPUD;
}
AddToISelQueue(RHS);
return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
}
/// getBCCForSetCC - Returns the PowerPC condition branch mnemonic corresponding
/// to Condition.
static unsigned getBCCForSetCC(ISD::CondCode CC) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
case ISD::SETUEQ:
case ISD::SETEQ: return PPC::BEQ;
case ISD::SETONE: // FIXME: This is incorrect see PR642.
case ISD::SETUNE:
case ISD::SETNE: return PPC::BNE;
case ISD::SETOLT: // FIXME: This is incorrect see PR642.
case ISD::SETULT:
case ISD::SETLT: return PPC::BLT;
case ISD::SETOLE: // FIXME: This is incorrect see PR642.
case ISD::SETULE:
case ISD::SETLE: return PPC::BLE;
case ISD::SETOGT: // FIXME: This is incorrect see PR642.
case ISD::SETUGT:
case ISD::SETGT: return PPC::BGT;
case ISD::SETOGE: // FIXME: This is incorrect see PR642.
case ISD::SETUGE:
case ISD::SETGE: return PPC::BGE;
case ISD::SETO: return PPC::BUN;
case ISD::SETUO: return PPC::BNU;
}
return 0;
}
/// getCRIdxForSetCC - Return the index of the condition register field
/// associated with the SetCC condition, and whether or not the field is
/// treated as inverted. That is, lt = 0; ge = 0 inverted.
static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool& Inv) {
switch (CC) {
default: assert(0 && "Unknown condition!"); abort();
case ISD::SETOLT: // FIXME: This is incorrect see PR642.
case ISD::SETULT:
case ISD::SETLT: Inv = false; return 0;
case ISD::SETOGE: // FIXME: This is incorrect see PR642.
case ISD::SETUGE:
case ISD::SETGE: Inv = true; return 0;
case ISD::SETOGT: // FIXME: This is incorrect see PR642.
case ISD::SETUGT:
case ISD::SETGT: Inv = false; return 1;
case ISD::SETOLE: // FIXME: This is incorrect see PR642.
case ISD::SETULE:
case ISD::SETLE: Inv = true; return 1;
case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
case ISD::SETUEQ:
case ISD::SETEQ: Inv = false; return 2;
case ISD::SETONE: // FIXME: This is incorrect see PR642.
case ISD::SETUNE:
case ISD::SETNE: Inv = true; return 2;
case ISD::SETO: Inv = true; return 3;
case ISD::SETUO: Inv = false; return 3;
}
return 0;
}
SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
SDNode *N = Op.Val;
unsigned Imm;
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
if (isInt32Immediate(N->getOperand(1), Imm)) {
// We can codegen setcc op, imm very efficiently compared to a brcond.
// Check for those cases here.
// setcc op, 0
if (Imm == 0) {
SDOperand Op = N->getOperand(0);
AddToISelQueue(Op);
switch (CC) {
default: break;
case ISD::SETEQ: {
Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
case ISD::SETNE: {
SDOperand AD =
SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(~0U)), 0);
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
AD.getValue(1));
}
case ISD::SETLT: {
SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
case ISD::SETGT: {
SDOperand T =
SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
}
} else if (Imm == ~0U) { // setcc op, -1
SDOperand Op = N->getOperand(0);
AddToISelQueue(Op);
switch (CC) {
default: break;
case ISD::SETEQ:
Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(1)), 0);
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
getI32Imm(0)), 0),
Op.getValue(1));
case ISD::SETNE: {
Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
Op, getI32Imm(~0U));
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
Op, SDOperand(AD, 1));
}
case ISD::SETLT: {
SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
getI32Imm(1)), 0);
SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
Op), 0);
SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
case ISD::SETGT: {
SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
getI32Imm(1));
}
}
}
}
bool Inv;
unsigned Idx = getCRIdxForSetCC(CC, Inv);
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
SDOperand IntCR;
// Force the ccreg into CR7.
SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
SDOperand InFlag(0, 0); // Null incoming flag value.
CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
InFlag).getValue(1);
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
CCReg), 0);
else
IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
getI32Imm(31), getI32Imm(31) };
if (!Inv) {
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
} else {
SDOperand Tmp =
SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
}
}
// Select - Convert the specified operand from a target-independent to a
// target-specific node if it hasn't already been changed.
SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
SDNode *N = Op.Val;
if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
N->getOpcode() < PPCISD::FIRST_NUMBER)
return NULL; // Already selected.
switch (N->getOpcode()) {
default: break;
case ISD::SETCC:
return SelectSETCC(Op);
case PPCISD::GlobalBaseReg:
return getGlobalBaseReg();
case ISD::FrameIndex: {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
if (N->hasOneUse())
return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
getSmallIPtrImm(0));
return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
getSmallIPtrImm(0));
}
case PPCISD::MFCR: {
SDOperand InFlag = N->getOperand(1);
AddToISelQueue(InFlag);
// Use MFOCRF if supported.
if (TLI.getTargetMachine().getSubtarget<PPCSubtarget>().isGigaProcessor())
return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
N->getOperand(0), InFlag);
else
return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
}
case ISD::SDIV: {
// FIXME: since this depends on the setting of the carry flag from the srawi
// we should really be making notes about that for the scheduler.
// FIXME: It sure would be nice if we could cheaply recognize the
// srl/add/sra pattern the dag combiner will generate for this as
// sra/addze rather than having to handle sdiv ourselves. oh well.
unsigned Imm;
if (isInt32Immediate(N->getOperand(1), Imm)) {
SDOperand N0 = N->getOperand(0);
AddToISelQueue(N0);
if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
SDNode *Op =
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
N0, getI32Imm(Log2_32(Imm)));
return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
SDOperand(Op, 0), SDOperand(Op, 1));
} else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
SDNode *Op =
CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
N0, getI32Imm(Log2_32(-Imm)));
SDOperand PT =
SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
SDOperand(Op, 0), SDOperand(Op, 1)),
0);
return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
}
}
// Other cases are autogenerated.
break;
}
case ISD::AND: {
unsigned Imm, Imm2;
// If this is an and of a value rotated between 0 and 31 bits and then and'd
// with a mask, emit rlwinm
if (isInt32Immediate(N->getOperand(1), Imm) &&
(isShiftedMask_32(Imm) || isShiftedMask_32(~Imm))) {
SDOperand Val;
unsigned SH, MB, ME;
if (isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
Val = N->getOperand(0).getOperand(0);
AddToISelQueue(Val);
} else if (Imm == 0) {
// AND X, 0 -> 0, not "rlwinm 32".
AddToISelQueue(N->getOperand(1));
ReplaceUses(SDOperand(N, 0), N->getOperand(1));
return NULL;
} else {
Val = N->getOperand(0);
AddToISelQueue(Val);
isRunOfOnes(Imm, MB, ME);
SH = 0;
}
SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
// ISD::OR doesn't get all the bitfield insertion fun.
// (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
if (isInt32Immediate(N->getOperand(1), Imm) &&
N->getOperand(0).getOpcode() == ISD::OR &&
isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
unsigned MB, ME;
Imm = ~(Imm^Imm2);
if (isRunOfOnes(Imm, MB, ME)) {
AddToISelQueue(N->getOperand(0).getOperand(0));
AddToISelQueue(N->getOperand(0).getOperand(1));
SDOperand Ops[] = { N->getOperand(0).getOperand(0),
N->getOperand(0).getOperand(1),
getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
}
}
// Other cases are autogenerated.
break;
}
case ISD::OR:
if (N->getValueType(0) == MVT::i32)
if (SDNode *I = SelectBitfieldInsert(N))
return I;
// Other cases are autogenerated.
break;
case ISD::SHL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
AddToISelQueue(N->getOperand(0).getOperand(0));
SDOperand Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
// Other cases are autogenerated.
break;
}
case ISD::SRL: {
unsigned Imm, SH, MB, ME;
if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
isRotateAndMask(N, Imm, true, SH, MB, ME)) {
AddToISelQueue(N->getOperand(0).getOperand(0));
SDOperand Ops[] = { N->getOperand(0).getOperand(0),
getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
}
// Other cases are autogenerated.
break;
}
case ISD::SELECT_CC: {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
// Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
if (N1C->isNullValue() && N3C->isNullValue() &&
N2C->getValue() == 1ULL && CC == ISD::SETNE &&
// FIXME: Implement this optzn for PPC64.
N->getValueType(0) == MVT::i32) {
AddToISelQueue(N->getOperand(0));
SDNode *Tmp =
CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
N->getOperand(0), getI32Imm(~0U));
return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
SDOperand(Tmp, 0), N->getOperand(0),
SDOperand(Tmp, 1));
}
SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
unsigned BROpc = getBCCForSetCC(CC);
bool isFP = MVT::isFloatingPoint(N->getValueType(0));
unsigned SelectCCOp;
if (N->getValueType(0) == MVT::i32)
SelectCCOp = PPC::SELECT_CC_I4;
else if (N->getValueType(0) == MVT::i64)
SelectCCOp = PPC::SELECT_CC_I8;
else if (N->getValueType(0) == MVT::f32)
SelectCCOp = PPC::SELECT_CC_F4;
else if (N->getValueType(0) == MVT::f64)
SelectCCOp = PPC::SELECT_CC_F8;
else
SelectCCOp = PPC::SELECT_CC_VRRC;
AddToISelQueue(N->getOperand(2));
AddToISelQueue(N->getOperand(3));
SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
getI32Imm(BROpc) };
return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
}
case ISD::BR_CC: {
AddToISelQueue(N->getOperand(0));
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
SDOperand Ops[] = { CondCode, getI32Imm(getBCCForSetCC(CC)),
N->getOperand(4), N->getOperand(0) };
return CurDAG->SelectNodeTo(N, PPC::COND_BRANCH, MVT::Other, Ops, 4);
}
case ISD::BRIND: {
// FIXME: Should custom lower this.
SDOperand Chain = N->getOperand(0);
SDOperand Target = N->getOperand(1);
AddToISelQueue(Chain);
AddToISelQueue(Target);
unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
Chain), 0);
return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
}
// FIXME: These are manually selected because tblgen isn't handling varargs
// nodes correctly.
case PPCISD::BCTRL: return MySelect_PPCbctrl(Op);
case PPCISD::CALL: return MySelect_PPCcall(Op);
}
return SelectCode(Op);
}
// FIXME: This is manually selected because tblgen isn't handling varargs nodes
// correctly.
SDNode *PPCDAGToDAGISel::MySelect_PPCbctrl(SDOperand N) {
SDOperand Chain(0, 0);
bool hasFlag =
N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag;
SmallVector<SDOperand, 8> Ops;
// Push varargs arguments, including optional flag.
for (unsigned i = 1, e = N.getNumOperands()-hasFlag; i != e; ++i) {
Chain = N.getOperand(i);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
Chain = N.getOperand(0);
AddToISelQueue(Chain);
Ops.push_back(Chain);
if (hasFlag) {
Chain = N.getOperand(N.getNumOperands()-1);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
return CurDAG->getTargetNode(PPC::BCTRL, MVT::Other, MVT::Flag,
&Ops[0], Ops.size());
}
// FIXME: This is manually selected because tblgen isn't handling varargs nodes
// correctly.
SDNode *PPCDAGToDAGISel::MySelect_PPCcall(SDOperand N) {
SDOperand Chain(0, 0);
SDOperand N1(0, 0);
SDOperand Tmp0(0, 0);
SDNode *ResNode;
Chain = N.getOperand(0);
N1 = N.getOperand(1);
// Pattern: (PPCcall:void (imm:i32):$func)
// Emits: (BLA:void (imm:i32):$func)
// Pattern complexity = 4 cost = 1
if (N1.getOpcode() == ISD::Constant) {
unsigned Tmp0C = (unsigned)cast<ConstantSDNode>(N1)->getValue();
SmallVector<SDOperand, 8> Ops;
Ops.push_back(CurDAG->getTargetConstant(Tmp0C, MVT::i32));
bool hasFlag =
N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag;
// Push varargs arguments, not including optional flag.
for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) {
Chain = N.getOperand(i);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
Chain = N.getOperand(0);
AddToISelQueue(Chain);
Ops.push_back(Chain);
if (hasFlag) {
Chain = N.getOperand(N.getNumOperands()-1);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
return CurDAG->getTargetNode(PPC::BLA, MVT::Other, MVT::Flag,
&Ops[0], Ops.size());
}
// Pattern: (PPCcall:void (tglobaladdr:i32):$dst)
// Emits: (BL:void (tglobaladdr:i32):$dst)
// Pattern complexity = 4 cost = 1
if (N1.getOpcode() == ISD::TargetGlobalAddress) {
SmallVector<SDOperand, 8> Ops;
Ops.push_back(N1);
bool hasFlag =
N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag;
// Push varargs arguments, not including optional flag.
for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) {
Chain = N.getOperand(i);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
Chain = N.getOperand(0);
AddToISelQueue(Chain);
Ops.push_back(Chain);
if (hasFlag) {
Chain = N.getOperand(N.getNumOperands()-1);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
return CurDAG->getTargetNode(PPC::BL, MVT::Other, MVT::Flag,
&Ops[0], Ops.size());
}
// Pattern: (PPCcall:void (texternalsym:i32):$dst)
// Emits: (BL:void (texternalsym:i32):$dst)
// Pattern complexity = 4 cost = 1
if (N1.getOpcode() == ISD::TargetExternalSymbol) {
std::vector<SDOperand> Ops;
Ops.push_back(N1);
bool hasFlag =
N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag;
// Push varargs arguments, not including optional flag.
for (unsigned i = 2, e = N.getNumOperands()-hasFlag; i != e; ++i) {
Chain = N.getOperand(i);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
Chain = N.getOperand(0);
AddToISelQueue(Chain);
Ops.push_back(Chain);
if (hasFlag) {
Chain = N.getOperand(N.getNumOperands()-1);
AddToISelQueue(Chain);
Ops.push_back(Chain);
}
return CurDAG->getTargetNode(PPC::BL, MVT::Other, MVT::Flag,
&Ops[0], Ops.size());
}
std::cerr << "Cannot yet select: ";
N.Val->dump(CurDAG);
std::cerr << '\n';
abort();
return NULL;
}
/// createPPCISelDag - This pass converts a legalized DAG into a
/// PowerPC-specific DAG, ready for instruction scheduling.
///
FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
return new PPCDAGToDAGISel(TM);
}