llvm/lib/Support/Timer.cpp
Chris Lattner 8f0d824dd7 Add peak memory usage measurement capability
Add (currently disabled) faciility to try to filter out pool allocation overhead from memory usage stats


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4753 91177308-0d34-0410-b5e6-96231b3b80d8
2002-11-18 21:47:09 +00:00

304 lines
8.9 KiB
C++

//===-- Timer.cpp - Interval Timing Support -------------------------------===//
//
// Interval Timing implementation.
//
//===----------------------------------------------------------------------===//
#include "Support/Timer.h"
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include <unistd.h>
#include <malloc.h>
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <functional>
// getNumBytesToNotCount - This function is supposed to return the number of
// bytes that are to be considered not allocated, even though malloc thinks they
// are allocated.
//
static unsigned getNumBytesToNotCount();
static TimerGroup *DefaultTimerGroup = 0;
static TimerGroup *getDefaultTimerGroup() {
if (DefaultTimerGroup) return DefaultTimerGroup;
return DefaultTimerGroup = new TimerGroup("Miscellaneous Ungrouped Timers");
}
Timer::Timer(const std::string &N)
: Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
Started(false), TG(getDefaultTimerGroup()) {
TG->addTimer();
}
Timer::Timer(const std::string &N, TimerGroup &tg)
: Elapsed(0), UserTime(0), SystemTime(0), MemUsed(0), PeakMem(0), Name(N),
Started(false), TG(&tg) {
TG->addTimer();
}
Timer::Timer(const Timer &T) {
TG = T.TG;
if (TG) TG->addTimer();
operator=(T);
}
// Copy ctor, initialize with no TG member.
Timer::Timer(bool, const Timer &T) {
TG = T.TG; // Avoid assertion in operator=
operator=(T); // Copy contents
TG = 0;
}
Timer::~Timer() {
if (TG) {
if (Started) {
Started = false;
TG->addTimerToPrint(*this);
}
TG->removeTimer();
}
}
static long getMemUsage() {
struct mallinfo MI = mallinfo();
return MI.uordblks/*+MI.hblkhd-getNumBytesToNotCount()*/;
}
struct TimeRecord {
double Elapsed, UserTime, SystemTime;
long MemUsed;
};
static TimeRecord getTimeRecord(bool Start) {
struct rusage RU;
struct timeval T;
long MemUsed;
if (Start) {
MemUsed = getMemUsage();
if (getrusage(RUSAGE_SELF, &RU))
perror("getrusage call failed: -time-passes info incorrect!");
}
gettimeofday(&T, 0);
if (!Start) {
MemUsed = getMemUsage();
if (getrusage(RUSAGE_SELF, &RU))
perror("getrusage call failed: -time-passes info incorrect!");
}
TimeRecord Result;
Result.Elapsed = T.tv_sec + T.tv_usec/1000000.0;
Result.UserTime = RU.ru_utime.tv_sec + RU.ru_utime.tv_usec/1000000.0;
Result.SystemTime = RU.ru_stime.tv_sec + RU.ru_stime.tv_usec/1000000.0;
Result.MemUsed = MemUsed;
return Result;
}
static std::vector<Timer*> ActiveTimers;
void Timer::startTimer() {
Started = true;
TimeRecord TR = getTimeRecord(true);
Elapsed -= TR.Elapsed;
UserTime -= TR.UserTime;
SystemTime -= TR.SystemTime;
MemUsed -= TR.MemUsed;
PeakMemBase = TR.MemUsed;
ActiveTimers.push_back(this);
}
void Timer::stopTimer() {
TimeRecord TR = getTimeRecord(false);
Elapsed += TR.Elapsed;
UserTime += TR.UserTime;
SystemTime += TR.SystemTime;
MemUsed += TR.MemUsed;
if (ActiveTimers.back() == this) {
ActiveTimers.pop_back();
} else {
std::vector<Timer*>::iterator I =
std::find(ActiveTimers.begin(), ActiveTimers.end(), this);
assert(I != ActiveTimers.end() && "stop but no startTimer?");
ActiveTimers.erase(I);
}
}
void Timer::sum(const Timer &T) {
Elapsed += T.Elapsed;
UserTime += T.UserTime;
SystemTime += T.SystemTime;
MemUsed += T.MemUsed;
PeakMem += T.PeakMem;
}
/// addPeakMemoryMeasurement - This method should be called whenever memory
/// usage needs to be checked. It adds a peak memory measurement to the
/// currently active timers, which will be printed when the timer group prints
///
void Timer::addPeakMemoryMeasurement() {
long MemUsed = getMemUsage();
for (std::vector<Timer*>::iterator I = ActiveTimers.begin(),
E = ActiveTimers.end(); I != E; ++I)
(*I)->PeakMem = std::max((*I)->PeakMem, MemUsed-(*I)->PeakMemBase);
}
//===----------------------------------------------------------------------===//
// TimerGroup Implementation
//===----------------------------------------------------------------------===//
static void printVal(double Val, double Total) {
if (Total < 1e-7) // Avoid dividing by zero...
fprintf(stderr, " ----- ");
else
fprintf(stderr, " %7.4f (%5.1f%%)", Val, Val*100/Total);
}
void Timer::print(const Timer &Total) {
if (Total.UserTime)
printVal(UserTime, Total.UserTime);
if (Total.SystemTime)
printVal(SystemTime, Total.SystemTime);
if (Total.getProcessTime())
printVal(getProcessTime(), Total.getProcessTime());
printVal(Elapsed, Total.Elapsed);
fprintf(stderr, " ");
if (Total.MemUsed)
fprintf(stderr, " %8ld ", MemUsed);
if (Total.PeakMem) {
if (PeakMem)
fprintf(stderr, " %8ld ", PeakMem);
else
fprintf(stderr, " ");
}
std::cerr << Name << "\n";
Started = false; // Once printed, don't print again
}
void TimerGroup::removeTimer() {
if (--NumTimers == 0 && !TimersToPrint.empty()) { // Print timing report...
// Sort the timers in descending order by amount of time taken...
std::sort(TimersToPrint.begin(), TimersToPrint.end(),
std::greater<Timer>());
// Figure out how many spaces to indent TimerGroup name...
unsigned Padding = (80-Name.length())/2;
if (Padding > 80) Padding = 0; // Don't allow "negative" numbers
++NumTimers;
{ // Scope to contain Total timer... don't allow total timer to drop us to
// zero timers...
Timer Total("TOTAL");
for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
Total.sum(TimersToPrint[i]);
// Print out timing header...
std::cerr << "===" << std::string(73, '-') << "===\n"
<< std::string(Padding, ' ') << Name << "\n"
<< "===" << std::string(73, '-')
<< "===\n Total Execution Time: " << Total.getProcessTime()
<< " seconds (" << Total.getWallTime()
<< " wall clock)\n\n";
if (Total.UserTime)
std::cerr << " ---User Time---";
if (Total.SystemTime)
std::cerr << " --System Time--";
if (Total.getProcessTime())
std::cerr << " --User+System--";
std::cerr << " ---Wall Time---";
if (Total.getMemUsed())
std::cerr << " ---Mem---";
if (Total.getPeakMem())
std::cerr << " -PeakMem-";
std::cerr << " --- Name ---\n";
// Loop through all of the timing data, printing it out...
for (unsigned i = 0, e = TimersToPrint.size(); i != e; ++i)
TimersToPrint[i].print(Total);
Total.print(Total);
std::cerr << std::endl; // Flush output
}
--NumTimers;
TimersToPrint.clear();
}
// Delete default timer group!
if (NumTimers == 0 && this == DefaultTimerGroup) {
delete DefaultTimerGroup;
DefaultTimerGroup = 0;
}
}
#if (__GNUC__ == 3) && (__GNUC_MINOR__ == 2) && (__GNUC_PATCHLEVEL__ == 0)
// If we have GCC 3.2.0, we can calculate pool allocation bookkeeping info
#define HAVE_POOL
extern "C" {
// Taken from GCC 3.2's stl_alloc.h file:
enum {_ALIGN = 8, _MAX_BYTES = 128, NFREE = _MAX_BYTES / _ALIGN};
struct FreeList { FreeList *Next; };
FreeList *_ZNSt24__default_alloc_templateILb1ELi0EE12_S_free_listE[NFREE];
char *_ZNSt24__default_alloc_templateILb1ELi0EE13_S_start_freeE;
char *_ZNSt24__default_alloc_templateILb1ELi0EE11_S_end_freeE;
size_t _ZNSt24__default_alloc_templateILb1ELi0EE12_S_heap_sizeE;
// Make the symbols possible to use...
FreeList* (&TheFreeList)[NFREE] = _ZNSt24__default_alloc_templateILb1ELi0EE12_S_free_listE;
char * &StartFree = _ZNSt24__default_alloc_templateILb1ELi0EE13_S_start_freeE;
char * &EndFree = _ZNSt24__default_alloc_templateILb1ELi0EE11_S_end_freeE;
size_t &HeapSize = _ZNSt24__default_alloc_templateILb1ELi0EE12_S_heap_sizeE;
}
#endif
// getNumBytesToNotCount - This function is supposed to return the number of
// bytes that are to be considered not allocated, even though malloc thinks they
// are allocated.
//
static unsigned getNumBytesToNotCount() {
#ifdef HAVE_POOL
// If we have GCC 3.2.0, we can subtract off pool allocation bookkeeping info
// Size of the free slab section...
unsigned FreePoolMem = (unsigned)(EndFree-StartFree);
// Walk all of the free lists, adding memory to the free counter whenever we
// have a free bucket.
for (unsigned i = 0; i != NFREE; ++i) {
unsigned NumEntries = 0;
for (FreeList *FL = TheFreeList[i]; FL; ++NumEntries, FL = FL->Next)
/*empty*/ ;
#if 0
if (NumEntries)
std::cerr << " For Size[" << (i+1)*_ALIGN << "]: " << NumEntries
<< " Free entries\n";
#endif
FreePoolMem += NumEntries*(i+1)*_ALIGN;
}
return FreePoolMem;
#else
#warning "Don't know how to avoid pool allocation accounting overhead for this"
#warning " compiler: Space usage numbers (with -time-passes) may be off!"
return 0;
#endif
}