llvm/lib/MC/MCAssembler.cpp
Daniel Dunbar 651804c3d6 MC/Mach-O x86_64: Switch to using fragment atom symbol.
- This eliminates getAtomForAddress() (which was a linear search) and
   simplifies getAtom().
 - This also fixes some correctness problems where local labels at the same
   address as non-local labels could be assigned to the wrong atom.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103480 91177308-0d34-0410-b5e6-96231b3b80d8
2010-05-11 17:22:50 +00:00

970 lines
31 KiB
C++

//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "assembler"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/Target/TargetAsmBackend.h"
#include <vector>
using namespace llvm;
namespace {
namespace stats {
STATISTIC(EmittedFragments, "Number of emitted assembler fragments");
STATISTIC(EvaluateFixup, "Number of evaluated fixups");
STATISTIC(FragmentLayouts, "Number of fragment layouts");
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
STATISTIC(SectionLayouts, "Number of section layouts");
}
}
// FIXME FIXME FIXME: There are number of places in this file where we convert
// what is a 64-bit assembler value used for computation into a value in the
// object file, which may truncate it. We should detect that truncation where
// invalid and report errors back.
/* *** */
void MCAsmLayout::UpdateForSlide(MCFragment *F, int SlideAmount) {
// We shouldn't have to do anything special to support negative slides, and it
// is a perfectly valid thing to do as long as other parts of the system can
// guarantee convergence.
assert(SlideAmount >= 0 && "Negative slides not yet supported");
// Update the layout by simply recomputing the layout for the entire
// file. This is trivially correct, but very slow.
//
// FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter.
// Layout the concrete sections and fragments.
MCAssembler &Asm = getAssembler();
uint64_t Address = 0;
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
// Skip virtual sections.
if (Asm.getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = Asm.LayoutSection(*it, *this, Address);
}
// Layout the virtual sections.
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
if (!Asm.getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = Asm.LayoutSection(*it, *this, Address);
}
}
uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
assert(F->getParent() && "Missing section()!");
return getSectionAddress(F->getParent()) + getFragmentOffset(F);
}
uint64_t MCAsmLayout::getFragmentEffectiveSize(const MCFragment *F) const {
assert(F->EffectiveSize != ~UINT64_C(0) && "Address not set!");
return F->EffectiveSize;
}
void MCAsmLayout::setFragmentEffectiveSize(MCFragment *F, uint64_t Value) {
F->EffectiveSize = Value;
}
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
return F->Offset;
}
void MCAsmLayout::setFragmentOffset(MCFragment *F, uint64_t Value) {
F->Offset = Value;
}
uint64_t MCAsmLayout::getSymbolAddress(const MCSymbolData *SD) const {
assert(SD->getFragment() && "Invalid getAddress() on undefined symbol!");
return getFragmentAddress(SD->getFragment()) + SD->getOffset();
}
uint64_t MCAsmLayout::getSectionAddress(const MCSectionData *SD) const {
assert(SD->Address != ~UINT64_C(0) && "Address not set!");
return SD->Address;
}
void MCAsmLayout::setSectionAddress(MCSectionData *SD, uint64_t Value) {
SD->Address = Value;
}
uint64_t MCAsmLayout::getSectionSize(const MCSectionData *SD) const {
assert(SD->Size != ~UINT64_C(0) && "File size not set!");
return SD->Size;
}
void MCAsmLayout::setSectionSize(MCSectionData *SD, uint64_t Value) {
SD->Size = Value;
}
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
assert(SD->FileSize != ~UINT64_C(0) && "File size not set!");
return SD->FileSize;
}
void MCAsmLayout::setSectionFileSize(MCSectionData *SD, uint64_t Value) {
SD->FileSize = Value;
}
/* *** */
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
}
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
: Kind(_Kind), Parent(_Parent), Atom(0), EffectiveSize(~UINT64_C(0))
{
if (Parent)
Parent->getFragmentList().push_back(this);
}
MCFragment::~MCFragment() {
}
/* *** */
MCSectionData::MCSectionData() : Section(0) {}
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
: Section(&_Section),
Alignment(1),
Address(~UINT64_C(0)),
Size(~UINT64_C(0)),
FileSize(~UINT64_C(0)),
HasInstructions(false)
{
if (A)
A->getSectionList().push_back(this);
}
/* *** */
MCSymbolData::MCSymbolData() : Symbol(0) {}
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
uint64_t _Offset, MCAssembler *A)
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
IsExternal(false), IsPrivateExtern(false),
CommonSize(0), CommonAlign(0), Flags(0), Index(0)
{
if (A)
A->getSymbolList().push_back(this);
}
/* *** */
MCAssembler::MCAssembler(MCContext &_Context, TargetAsmBackend &_Backend,
MCCodeEmitter &_Emitter, raw_ostream &_OS)
: Context(_Context), Backend(_Backend), Emitter(_Emitter),
OS(_OS), RelaxAll(false), SubsectionsViaSymbols(false)
{
}
MCAssembler::~MCAssembler() {
}
static bool isScatteredFixupFullyResolvedSimple(const MCAssembler &Asm,
const MCAsmFixup &Fixup,
const MCValue Target,
const MCSection *BaseSection) {
// The effective fixup address is
// addr(atom(A)) + offset(A)
// - addr(atom(B)) - offset(B)
// - addr(<base symbol>) + <fixup offset from base symbol>
// and the offsets are not relocatable, so the fixup is fully resolved when
// addr(atom(A)) - addr(atom(B)) - addr(<base symbol>)) == 0.
//
// The simple (Darwin, except on x86_64) way of dealing with this was to
// assume that any reference to a temporary symbol *must* be a temporary
// symbol in the same atom, unless the sections differ. Therefore, any PCrel
// relocation to a temporary symbol (in the same section) is fully
// resolved. This also works in conjunction with absolutized .set, which
// requires the compiler to use .set to absolutize the differences between
// symbols which the compiler knows to be assembly time constants, so we don't
// need to worry about considering symbol differences fully resolved.
// Non-relative fixups are only resolved if constant.
if (!BaseSection)
return Target.isAbsolute();
// Otherwise, relative fixups are only resolved if not a difference and the
// target is a temporary in the same section.
if (Target.isAbsolute() || Target.getSymB())
return false;
const MCSymbol *A = &Target.getSymA()->getSymbol();
if (!A->isTemporary() || !A->isInSection() ||
&A->getSection() != BaseSection)
return false;
return true;
}
static bool isScatteredFixupFullyResolved(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCAsmFixup &Fixup,
const MCValue Target,
const MCSymbolData *BaseSymbol) {
// The effective fixup address is
// addr(atom(A)) + offset(A)
// - addr(atom(B)) - offset(B)
// - addr(BaseSymbol) + <fixup offset from base symbol>
// and the offsets are not relocatable, so the fixup is fully resolved when
// addr(atom(A)) - addr(atom(B)) - addr(BaseSymbol) == 0.
//
// Note that "false" is almost always conservatively correct (it means we emit
// a relocation which is unnecessary), except when it would force us to emit a
// relocation which the target cannot encode.
const MCSymbolData *A_Base = 0, *B_Base = 0;
if (const MCSymbolRefExpr *A = Target.getSymA()) {
// Modified symbol references cannot be resolved.
if (A->getKind() != MCSymbolRefExpr::VK_None)
return false;
A_Base = Asm.getAtom(Layout, &Asm.getSymbolData(A->getSymbol()));
if (!A_Base)
return false;
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
// Modified symbol references cannot be resolved.
if (B->getKind() != MCSymbolRefExpr::VK_None)
return false;
B_Base = Asm.getAtom(Layout, &Asm.getSymbolData(B->getSymbol()));
if (!B_Base)
return false;
}
// If there is no base, A and B have to be the same atom for this fixup to be
// fully resolved.
if (!BaseSymbol)
return A_Base == B_Base;
// Otherwise, B must be missing and A must be the base.
return !B_Base && BaseSymbol == A_Base;
}
bool MCAssembler::isSymbolLinkerVisible(const MCSymbolData *SD) const {
// Non-temporary labels should always be visible to the linker.
if (!SD->getSymbol().isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!SD->getFragment())
return false;
// Otherwise, check if the section requires symbols even for temporary labels.
return getBackend().doesSectionRequireSymbols(
SD->getFragment()->getParent()->getSection());
}
const MCSymbolData *MCAssembler::getAtom(const MCAsmLayout &Layout,
const MCSymbolData *SD) const {
// Linker visible symbols define atoms.
if (isSymbolLinkerVisible(SD))
return SD;
// Absolute and undefined symbols have no defining atom.
if (!SD->getFragment())
return 0;
// Otherwise, return the atom for the containing fragment.
return SD->getFragment()->getAtom();
}
bool MCAssembler::EvaluateFixup(const MCAsmLayout &Layout,
const MCAsmFixup &Fixup, const MCFragment *DF,
MCValue &Target, uint64_t &Value) const {
++stats::EvaluateFixup;
if (!Fixup.Value->EvaluateAsRelocatable(Target, &Layout))
report_fatal_error("expected relocatable expression");
// FIXME: How do non-scattered symbols work in ELF? I presume the linker
// doesn't support small relocations, but then under what criteria does the
// assembler allow symbol differences?
Value = Target.getConstant();
bool IsPCRel =
Emitter.getFixupKindInfo(Fixup.Kind).Flags & MCFixupKindInfo::FKF_IsPCRel;
bool IsResolved = true;
if (const MCSymbolRefExpr *A = Target.getSymA()) {
if (A->getSymbol().isDefined())
Value += Layout.getSymbolAddress(&getSymbolData(A->getSymbol()));
else
IsResolved = false;
}
if (const MCSymbolRefExpr *B = Target.getSymB()) {
if (B->getSymbol().isDefined())
Value -= Layout.getSymbolAddress(&getSymbolData(B->getSymbol()));
else
IsResolved = false;
}
// If we are using scattered symbols, determine whether this value is actually
// resolved; scattering may cause atoms to move.
if (IsResolved && getBackend().hasScatteredSymbols()) {
if (getBackend().hasReliableSymbolDifference()) {
// If this is a PCrel relocation, find the base atom (identified by its
// symbol) that the fixup value is relative to.
const MCSymbolData *BaseSymbol = 0;
if (IsPCRel) {
BaseSymbol = DF->getAtom();
if (!BaseSymbol)
IsResolved = false;
}
if (IsResolved)
IsResolved = isScatteredFixupFullyResolved(*this, Layout, Fixup, Target,
BaseSymbol);
} else {
const MCSection *BaseSection = 0;
if (IsPCRel)
BaseSection = &DF->getParent()->getSection();
IsResolved = isScatteredFixupFullyResolvedSimple(*this, Fixup, Target,
BaseSection);
}
}
if (IsPCRel)
Value -= Layout.getFragmentAddress(DF) + Fixup.Offset;
return IsResolved;
}
uint64_t MCAssembler::LayoutSection(MCSectionData &SD,
MCAsmLayout &Layout,
uint64_t StartAddress) {
bool IsVirtual = getBackend().isVirtualSection(SD.getSection());
++stats::SectionLayouts;
// Align this section if necessary by adding padding bytes to the previous
// section. It is safe to adjust this out-of-band, because no symbol or
// fragment is allowed to point past the end of the section at any time.
if (uint64_t Pad = OffsetToAlignment(StartAddress, SD.getAlignment())) {
// Unless this section is virtual (where we are allowed to adjust the offset
// freely), the padding goes in the previous section.
if (!IsVirtual) {
// Find the previous non-virtual section.
iterator it = &SD;
assert(it != begin() && "Invalid initial section address!");
for (--it; getBackend().isVirtualSection(it->getSection()); --it) ;
Layout.setSectionFileSize(&*it, Layout.getSectionFileSize(&*it) + Pad);
}
StartAddress += Pad;
}
// Set the aligned section address.
Layout.setSectionAddress(&SD, StartAddress);
uint64_t Address = StartAddress;
for (MCSectionData::iterator it = SD.begin(), ie = SD.end(); it != ie; ++it) {
MCFragment &F = *it;
++stats::FragmentLayouts;
uint64_t FragmentOffset = Address - StartAddress;
Layout.setFragmentOffset(&F, FragmentOffset);
// Evaluate fragment size.
uint64_t EffectiveSize = 0;
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
EffectiveSize = OffsetToAlignment(Address, AF.getAlignment());
if (EffectiveSize > AF.getMaxBytesToEmit())
EffectiveSize = 0;
break;
}
case MCFragment::FT_Data:
EffectiveSize = cast<MCDataFragment>(F).getContents().size();
break;
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
EffectiveSize = FF.getValueSize() * FF.getCount();
break;
}
case MCFragment::FT_Inst:
EffectiveSize = cast<MCInstFragment>(F).getInstSize();
break;
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
int64_t TargetLocation;
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, &Layout))
report_fatal_error("expected assembly-time absolute expression");
// FIXME: We need a way to communicate this error.
int64_t Offset = TargetLocation - FragmentOffset;
if (Offset < 0)
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
"' (at offset '" + Twine(FragmentOffset) + "'");
EffectiveSize = Offset;
break;
}
case MCFragment::FT_ZeroFill: {
MCZeroFillFragment &ZFF = cast<MCZeroFillFragment>(F);
// Align the fragment offset; it is safe to adjust the offset freely since
// this is only in virtual sections.
//
// FIXME: We shouldn't be doing this here.
Address = RoundUpToAlignment(Address, ZFF.getAlignment());
Layout.setFragmentOffset(&F, Address - StartAddress);
EffectiveSize = ZFF.getSize();
break;
}
}
Layout.setFragmentEffectiveSize(&F, EffectiveSize);
Address += EffectiveSize;
}
// Set the section sizes.
Layout.setSectionSize(&SD, Address - StartAddress);
if (IsVirtual)
Layout.setSectionFileSize(&SD, 0);
else
Layout.setSectionFileSize(&SD, Address - StartAddress);
return Address;
}
/// WriteFragmentData - Write the \arg F data to the output file.
static void WriteFragmentData(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment &F, MCObjectWriter *OW) {
uint64_t Start = OW->getStream().tell();
(void) Start;
++stats::EmittedFragments;
// FIXME: Embed in fragments instead?
uint64_t FragmentSize = Layout.getFragmentEffectiveSize(&F);
switch (F.getKind()) {
case MCFragment::FT_Align: {
MCAlignFragment &AF = cast<MCAlignFragment>(F);
uint64_t Count = FragmentSize / AF.getValueSize();
// FIXME: This error shouldn't actually occur (the front end should emit
// multiple .align directives to enforce the semantics it wants), but is
// severe enough that we want to report it. How to handle this?
if (Count * AF.getValueSize() != FragmentSize)
report_fatal_error("undefined .align directive, value size '" +
Twine(AF.getValueSize()) +
"' is not a divisor of padding size '" +
Twine(FragmentSize) + "'");
// See if we are aligning with nops, and if so do that first to try to fill
// the Count bytes. Then if that did not fill any bytes or there are any
// bytes left to fill use the the Value and ValueSize to fill the rest.
// If we are aligning with nops, ask that target to emit the right data.
if (AF.getEmitNops()) {
if (!Asm.getBackend().WriteNopData(Count, OW))
report_fatal_error("unable to write nop sequence of " +
Twine(Count) + " bytes");
break;
}
// Otherwise, write out in multiples of the value size.
for (uint64_t i = 0; i != Count; ++i) {
switch (AF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
case 2: OW->Write16(uint16_t(AF.getValue())); break;
case 4: OW->Write32(uint32_t(AF.getValue())); break;
case 8: OW->Write64(uint64_t(AF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Data: {
MCDataFragment &DF = cast<MCDataFragment>(F);
assert(FragmentSize == DF.getContents().size() && "Invalid size!");
OW->WriteBytes(DF.getContents().str());
break;
}
case MCFragment::FT_Fill: {
MCFillFragment &FF = cast<MCFillFragment>(F);
for (uint64_t i = 0, e = FF.getCount(); i != e; ++i) {
switch (FF.getValueSize()) {
default:
assert(0 && "Invalid size!");
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
case 2: OW->Write16(uint16_t(FF.getValue())); break;
case 4: OW->Write32(uint32_t(FF.getValue())); break;
case 8: OW->Write64(uint64_t(FF.getValue())); break;
}
}
break;
}
case MCFragment::FT_Inst:
llvm_unreachable("unexpected inst fragment after lowering");
break;
case MCFragment::FT_Org: {
MCOrgFragment &OF = cast<MCOrgFragment>(F);
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
OW->Write8(uint8_t(OF.getValue()));
break;
}
case MCFragment::FT_ZeroFill: {
assert(0 && "Invalid zero fill fragment in concrete section!");
break;
}
}
assert(OW->getStream().tell() - Start == FragmentSize);
}
void MCAssembler::WriteSectionData(const MCSectionData *SD,
const MCAsmLayout &Layout,
MCObjectWriter *OW) const {
uint64_t SectionSize = Layout.getSectionSize(SD);
uint64_t SectionFileSize = Layout.getSectionFileSize(SD);
// Ignore virtual sections.
if (getBackend().isVirtualSection(SD->getSection())) {
assert(SectionFileSize == 0 && "Invalid size for section!");
return;
}
uint64_t Start = OW->getStream().tell();
(void) Start;
for (MCSectionData::const_iterator it = SD->begin(),
ie = SD->end(); it != ie; ++it)
WriteFragmentData(*this, Layout, *it, OW);
// Add section padding.
assert(SectionFileSize >= SectionSize && "Invalid section sizes!");
OW->WriteZeros(SectionFileSize - SectionSize);
assert(OW->getStream().tell() - Start == SectionFileSize);
}
void MCAssembler::Finish() {
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - pre-layout\n--\n";
dump(); });
// Assign section and fragment ordinals, all subsequent backend code is
// responsible for updating these in place.
unsigned SectionIndex = 0;
unsigned FragmentIndex = 0;
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
it->setOrdinal(SectionIndex++);
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2)
it2->setOrdinal(FragmentIndex++);
}
// Layout until everything fits.
MCAsmLayout Layout(*this);
while (LayoutOnce(Layout))
continue;
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - post-relaxation\n--\n";
dump(); });
// Finalize the layout, including fragment lowering.
FinishLayout(Layout);
DEBUG_WITH_TYPE("mc-dump", {
llvm::errs() << "assembler backend - final-layout\n--\n";
dump(); });
uint64_t StartOffset = OS.tell();
llvm::OwningPtr<MCObjectWriter> Writer(getBackend().createObjectWriter(OS));
if (!Writer)
report_fatal_error("unable to create object writer!");
// Allow the object writer a chance to perform post-layout binding (for
// example, to set the index fields in the symbol data).
Writer->ExecutePostLayoutBinding(*this);
// Evaluate and apply the fixups, generating relocation entries as necessary.
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
for (MCSectionData::iterator it2 = it->begin(),
ie2 = it->end(); it2 != ie2; ++it2) {
MCDataFragment *DF = dyn_cast<MCDataFragment>(it2);
if (!DF)
continue;
for (MCDataFragment::fixup_iterator it3 = DF->fixup_begin(),
ie3 = DF->fixup_end(); it3 != ie3; ++it3) {
MCAsmFixup &Fixup = *it3;
// Evaluate the fixup.
MCValue Target;
uint64_t FixedValue;
if (!EvaluateFixup(Layout, Fixup, DF, Target, FixedValue)) {
// The fixup was unresolved, we need a relocation. Inform the object
// writer of the relocation, and give it an opportunity to adjust the
// fixup value if need be.
Writer->RecordRelocation(*this, Layout, DF, Fixup, Target,FixedValue);
}
getBackend().ApplyFixup(Fixup, *DF, FixedValue);
}
}
}
// Write the object file.
Writer->WriteObject(*this, Layout);
OS.flush();
stats::ObjectBytes += OS.tell() - StartOffset;
}
bool MCAssembler::FixupNeedsRelaxation(const MCAsmFixup &Fixup,
const MCFragment *DF,
const MCAsmLayout &Layout) const {
if (getRelaxAll())
return true;
// If we cannot resolve the fixup value, it requires relaxation.
MCValue Target;
uint64_t Value;
if (!EvaluateFixup(Layout, Fixup, DF, Target, Value))
return true;
// Otherwise, relax if the value is too big for a (signed) i8.
//
// FIXME: This is target dependent!
return int64_t(Value) != int64_t(int8_t(Value));
}
bool MCAssembler::FragmentNeedsRelaxation(const MCInstFragment *IF,
const MCAsmLayout &Layout) const {
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
// are intentionally pushing out inst fragments, or because we relaxed a
// previous instruction to one that doesn't need relaxation.
if (!getBackend().MayNeedRelaxation(IF->getInst(), IF->getFixups()))
return false;
for (MCInstFragment::const_fixup_iterator it = IF->fixup_begin(),
ie = IF->fixup_end(); it != ie; ++it)
if (FixupNeedsRelaxation(*it, IF, Layout))
return true;
return false;
}
bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
// Layout the concrete sections and fragments.
uint64_t Address = 0;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
// Skip virtual sections.
if (getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = LayoutSection(*it, Layout, Address);
}
// Layout the virtual sections.
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (!getBackend().isVirtualSection(it->getSection()))
continue;
// Layout the section fragments and its size.
Address = LayoutSection(*it, Layout, Address);
}
// Scan for fragments that need relaxation.
bool WasRelaxed = false;
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
// Check if this is an instruction fragment that needs relaxation.
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (!IF || !FragmentNeedsRelaxation(IF, Layout))
continue;
++stats::RelaxedInstructions;
// FIXME-PERF: We could immediately lower out instructions if we can tell
// they are fully resolved, to avoid retesting on later passes.
// Relax the fragment.
MCInst Relaxed;
getBackend().RelaxInstruction(IF, Relaxed);
// Encode the new instruction.
//
// FIXME-PERF: If it matters, we could let the target do this. It can
// probably do so more efficiently in many cases.
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
VecOS.flush();
// Update the instruction fragment.
int SlideAmount = Code.size() - IF->getInstSize();
IF->setInst(Relaxed);
IF->getCode() = Code;
IF->getFixups().clear();
for (unsigned i = 0, e = Fixups.size(); i != e; ++i) {
MCFixup &F = Fixups[i];
IF->getFixups().push_back(MCAsmFixup(F.getOffset(), *F.getValue(),
F.getKind()));
}
// Update the layout, and remember that we relaxed. If we are relaxing
// everything, we can skip this step since nothing will depend on updating
// the values.
if (!getRelaxAll())
Layout.UpdateForSlide(IF, SlideAmount);
WasRelaxed = true;
}
}
return WasRelaxed;
}
void MCAssembler::FinishLayout(MCAsmLayout &Layout) {
// Lower out any instruction fragments, to simplify the fixup application and
// output.
//
// FIXME-PERF: We don't have to do this, but the assumption is that it is
// cheap (we will mostly end up eliminating fragments and appending on to data
// fragments), so the extra complexity downstream isn't worth it. Evaluate
// this assumption.
for (iterator it = begin(), ie = end(); it != ie; ++it) {
MCSectionData &SD = *it;
for (MCSectionData::iterator it2 = SD.begin(),
ie2 = SD.end(); it2 != ie2; ++it2) {
MCInstFragment *IF = dyn_cast<MCInstFragment>(it2);
if (!IF)
continue;
// Create a new data fragment for the instruction.
//
// FIXME-PERF: Reuse previous data fragment if possible.
MCDataFragment *DF = new MCDataFragment();
SD.getFragmentList().insert(it2, DF);
// Update the data fragments layout data.
//
// FIXME: Add MCAsmLayout utility for this.
DF->setParent(IF->getParent());
DF->setAtom(IF->getAtom());
DF->setOrdinal(IF->getOrdinal());
Layout.setFragmentOffset(DF, Layout.getFragmentOffset(IF));
Layout.setFragmentEffectiveSize(DF, Layout.getFragmentEffectiveSize(IF));
// Copy in the data and the fixups.
DF->getContents().append(IF->getCode().begin(), IF->getCode().end());
for (unsigned i = 0, e = IF->getFixups().size(); i != e; ++i)
DF->getFixups().push_back(IF->getFixups()[i]);
// Delete the instruction fragment and update the iterator.
SD.getFragmentList().erase(IF);
it2 = DF;
}
}
}
// Debugging methods
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const MCAsmFixup &AF) {
OS << "<MCAsmFixup" << " Offset:" << AF.Offset << " Value:" << *AF.Value
<< " Kind:" << AF.Kind << ">";
return OS;
}
}
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCFragment " << (void*) this << " Offset:" << Offset
<< " EffectiveSize:" << EffectiveSize;
OS << ">";
}
void MCAlignFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAlignFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Alignment:" << getAlignment()
<< " Value:" << getValue() << " ValueSize:" << getValueSize()
<< " MaxBytesToEmit:" << getMaxBytesToEmit() << ">";
}
void MCDataFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCDataFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Contents:[";
for (unsigned i = 0, e = getContents().size(); i != e; ++i) {
if (i) OS << ",";
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
}
OS << "] (" << getContents().size() << " bytes)";
if (!getFixups().empty()) {
OS << ",\n ";
OS << " Fixups:[";
for (fixup_iterator it = fixup_begin(), ie = fixup_end(); it != ie; ++it) {
if (it != fixup_begin()) OS << ",\n ";
OS << *it;
}
OS << "]";
}
OS << ">";
}
void MCFillFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCFillFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Value:" << getValue() << " ValueSize:" << getValueSize()
<< " Count:" << getCount() << ">";
}
void MCInstFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCInstFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Inst:";
getInst().dump_pretty(OS);
OS << ">";
}
void MCOrgFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCOrgFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Offset:" << getOffset() << " Value:" << getValue() << ">";
}
void MCZeroFillFragment::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCZeroFillFragment ";
this->MCFragment::dump();
OS << "\n ";
OS << " Size:" << getSize() << " Alignment:" << getAlignment() << ">";
}
void MCSectionData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSectionData";
OS << " Alignment:" << getAlignment() << " Address:" << Address
<< " Size:" << Size << " FileSize:" << FileSize
<< " Fragments:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "]>";
}
void MCSymbolData::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCSymbolData Symbol:" << getSymbol()
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
<< " Flags:" << getFlags() << " Index:" << getIndex();
if (isCommon())
OS << " (common, size:" << getCommonSize()
<< " align: " << getCommonAlignment() << ")";
if (isExternal())
OS << " (external)";
if (isPrivateExtern())
OS << " (private extern)";
OS << ">";
}
void MCAssembler::dump() {
raw_ostream &OS = llvm::errs();
OS << "<MCAssembler\n";
OS << " Sections:[\n ";
for (iterator it = begin(), ie = end(); it != ie; ++it) {
if (it != begin()) OS << ",\n ";
it->dump();
}
OS << "],\n";
OS << " Symbols:[";
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
if (it != symbol_begin()) OS << ",\n ";
it->dump();
}
OS << "]>\n";
}