llvm/lib/Transforms/IPO/InlineSimple.cpp
Chris Lattner 6806f5614d DEBUG got moved to Support/Debug.h
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@7492 91177308-0d34-0410-b5e6-96231b3b80d8
2003-08-01 22:15:03 +00:00

174 lines
6.3 KiB
C++

//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
//
// This file implements bottom-up inlining of functions into callees.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include <set>
namespace {
Statistic<> NumInlined("inline", "Number of functions inlined");
cl::opt<unsigned> // FIXME: 200 is VERY conservative
InlineLimit("inline-threshold", cl::Hidden, cl::init(200),
cl::desc("Control the amount of inlining to perform (default = 200)"));
struct FunctionInlining : public Pass {
virtual bool run(Module &M) {
bool Changed = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
Changed |= doInlining(I);
ProcessedFunctions.clear();
return Changed;
}
private:
std::set<Function*> ProcessedFunctions; // Prevent infinite recursion
bool doInlining(Function *F);
};
RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
}
Pass *createFunctionInliningPass() { return new FunctionInlining(); }
// ShouldInlineFunction - The heuristic used to determine if we should inline
// the function call or not.
//
static inline bool ShouldInlineFunction(const CallInst *CI) {
assert(CI->getParent() && CI->getParent()->getParent() &&
"Call not embedded into a function!");
const Function *Callee = CI->getCalledFunction();
if (Callee == 0 || Callee->isExternal())
return false; // Cannot inline an indirect call... or external function.
// Don't inline a recursive call.
const Function *Caller = CI->getParent()->getParent();
if (Caller == Callee) return false;
// InlineQuality - This value measures how good of an inline candidate this
// call site is to inline. The initial value determines how aggressive the
// inliner is. If this value is negative after the final computation,
// inlining is not performed.
//
int InlineQuality = InlineLimit;
// If there is only one call of the function, and it has internal linkage,
// make it almost guaranteed to be inlined.
//
if (Callee->use_size() == 1 && Callee->hasInternalLinkage())
InlineQuality += 30000;
// Add to the inline quality for properties that make the call valueable to
// inline. This includes factors that indicate that the result of inlining
// the function will be optimizable. Currently this just looks at arguments
// passed into the function.
//
for (User::const_op_iterator I = CI->op_begin()+1, E = CI->op_end();
I != E; ++I){
// Each argument passed in has a cost at both the caller and the callee
// sides. This favors functions that take many arguments over functions
// that take few arguments.
InlineQuality += 20;
// If this is a function being passed in, it is very likely that we will be
// able to turn an indirect function call into a direct function call.
if (isa<Function>(I))
InlineQuality += 100;
// If a constant, global variable or alloca is passed in, inlining this
// function is likely to allow significant future optimization possibilities
// (constant propagation, scalar promotion, and scalarization), so encourage
// the inlining of the function.
//
else if (isa<Constant>(I) || isa<GlobalVariable>(I) || isa<AllocaInst>(I))
InlineQuality += 60;
}
// Now that we have considered all of the factors that make the call site more
// likely to be inlined, look at factors that make us not want to inline it.
// As soon as the inline quality gets negative, bail out.
// Look at the size of the callee. Each basic block counts as 20 units, and
// each instruction counts as 10.
for (Function::const_iterator BB = Callee->begin(), E = Callee->end();
BB != E; ++BB) {
InlineQuality -= BB->size()*10 + 20;
if (InlineQuality < 0) return false;
}
// Don't inline into something too big, which would make it bigger. Here, we
// count each basic block as a single unit.
for (Function::const_iterator BB = Caller->begin(), E = Caller->end();
BB != E; ++BB) {
--InlineQuality;
if (InlineQuality < 0) return false;
}
// If we get here, this call site is high enough "quality" to inline.
DEBUG(std::cerr << "Inlining in '" << Caller->getName()
<< "', quality = " << InlineQuality << ": " << *CI);
return true;
}
// doInlining - Use a heuristic based approach to inline functions that seem to
// look good.
//
bool FunctionInlining::doInlining(Function *F) {
// If we have already processed this function (ie, it is recursive) don't
// revisit.
std::set<Function*>::iterator PFI = ProcessedFunctions.lower_bound(F);
if (PFI != ProcessedFunctions.end() && *PFI == F) return false;
// Insert the function in the set so it doesn't get revisited.
ProcessedFunctions.insert(PFI, F);
bool Changed = false;
for (Function::iterator BB = F->begin(); BB != F->end(); ++BB)
for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ) {
bool ShouldInc = true;
// Found a call instruction? FIXME: This should also handle INVOKEs
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (Function *Callee = CI->getCalledFunction())
doInlining(Callee); // Inline in callees before callers!
// Decide whether we should inline this function...
if (ShouldInlineFunction(CI)) {
// Save an iterator to the instruction before the call if it exists,
// otherwise get an iterator at the end of the block... because the
// call will be destroyed.
//
BasicBlock::iterator SI;
if (I != BB->begin()) {
SI = I; --SI; // Instruction before the call...
} else {
SI = BB->end();
}
// Attempt to inline the function...
if (InlineFunction(CI)) {
++NumInlined;
Changed = true;
// Move to instruction before the call...
I = (SI == BB->end()) ? BB->begin() : SI;
ShouldInc = false; // Don't increment iterator until next time
}
}
}
if (ShouldInc) ++I;
}
return Changed;
}