mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-15 14:28:25 +00:00
9a7bf438b5
and update ELF header e_flags. Currently gathering information such as symbol, section and data is done by collecting it in an MCAssembler object. From MCAssembler and MCAsmLayout objects ELFObjectWriter::WriteObject() forms and streams out the ELF object file. This patch just adds a few members to the MCAssember class to store and access the e_flag settings. It allows for runtime additions to the e_flag by assembler directives. The standalone assembler can get to MCAssembler from getParser().getStreamer().getAssembler(). This patch is the generic infrastructure and will be followed by patches for ARM and Mips for their target specific use. Contributer: Jack Carter git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@173882 91177308-0d34-0410-b5e6-96231b3b80d8
1138 lines
38 KiB
C++
1138 lines
38 KiB
C++
//===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "assembler"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFixupKindInfo.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCSection.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/MC/MCValue.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
namespace stats {
|
|
STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
|
|
STATISTIC(EmittedRelaxableFragments,
|
|
"Number of emitted assembler fragments - relaxable");
|
|
STATISTIC(EmittedDataFragments,
|
|
"Number of emitted assembler fragments - data");
|
|
STATISTIC(EmittedCompactEncodedInstFragments,
|
|
"Number of emitted assembler fragments - compact encoded inst");
|
|
STATISTIC(EmittedAlignFragments,
|
|
"Number of emitted assembler fragments - align");
|
|
STATISTIC(EmittedFillFragments,
|
|
"Number of emitted assembler fragments - fill");
|
|
STATISTIC(EmittedOrgFragments,
|
|
"Number of emitted assembler fragments - org");
|
|
STATISTIC(evaluateFixup, "Number of evaluated fixups");
|
|
STATISTIC(FragmentLayouts, "Number of fragment layouts");
|
|
STATISTIC(ObjectBytes, "Number of emitted object file bytes");
|
|
STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
|
|
STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
|
|
}
|
|
}
|
|
|
|
// FIXME FIXME FIXME: There are number of places in this file where we convert
|
|
// what is a 64-bit assembler value used for computation into a value in the
|
|
// object file, which may truncate it. We should detect that truncation where
|
|
// invalid and report errors back.
|
|
|
|
/* *** */
|
|
|
|
MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
|
|
: Assembler(Asm), LastValidFragment()
|
|
{
|
|
// Compute the section layout order. Virtual sections must go last.
|
|
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
|
|
if (!it->getSection().isVirtualSection())
|
|
SectionOrder.push_back(&*it);
|
|
for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
|
|
if (it->getSection().isVirtualSection())
|
|
SectionOrder.push_back(&*it);
|
|
}
|
|
|
|
bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
|
|
const MCSectionData &SD = *F->getParent();
|
|
const MCFragment *LastValid = LastValidFragment.lookup(&SD);
|
|
if (!LastValid)
|
|
return false;
|
|
assert(LastValid->getParent() == F->getParent());
|
|
return F->getLayoutOrder() <= LastValid->getLayoutOrder();
|
|
}
|
|
|
|
void MCAsmLayout::invalidateFragmentsAfter(MCFragment *F) {
|
|
// If this fragment wasn't already valid, we don't need to do anything.
|
|
if (!isFragmentValid(F))
|
|
return;
|
|
|
|
// Otherwise, reset the last valid fragment to this fragment.
|
|
const MCSectionData &SD = *F->getParent();
|
|
LastValidFragment[&SD] = F;
|
|
}
|
|
|
|
void MCAsmLayout::ensureValid(const MCFragment *F) const {
|
|
MCSectionData &SD = *F->getParent();
|
|
|
|
MCFragment *Cur = LastValidFragment[&SD];
|
|
if (!Cur)
|
|
Cur = &*SD.begin();
|
|
else
|
|
Cur = Cur->getNextNode();
|
|
|
|
// Advance the layout position until the fragment is valid.
|
|
while (!isFragmentValid(F)) {
|
|
assert(Cur && "Layout bookkeeping error");
|
|
const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
|
|
Cur = Cur->getNextNode();
|
|
}
|
|
}
|
|
|
|
uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
|
|
ensureValid(F);
|
|
assert(F->Offset != ~UINT64_C(0) && "Address not set!");
|
|
return F->Offset;
|
|
}
|
|
|
|
uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
|
|
const MCSymbol &S = SD->getSymbol();
|
|
|
|
// If this is a variable, then recursively evaluate now.
|
|
if (S.isVariable()) {
|
|
MCValue Target;
|
|
if (!S.getVariableValue()->EvaluateAsRelocatable(Target, *this))
|
|
report_fatal_error("unable to evaluate offset for variable '" +
|
|
S.getName() + "'");
|
|
|
|
// Verify that any used symbols are defined.
|
|
if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined())
|
|
report_fatal_error("unable to evaluate offset to undefined symbol '" +
|
|
Target.getSymA()->getSymbol().getName() + "'");
|
|
if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined())
|
|
report_fatal_error("unable to evaluate offset to undefined symbol '" +
|
|
Target.getSymB()->getSymbol().getName() + "'");
|
|
|
|
uint64_t Offset = Target.getConstant();
|
|
if (Target.getSymA())
|
|
Offset += getSymbolOffset(&Assembler.getSymbolData(
|
|
Target.getSymA()->getSymbol()));
|
|
if (Target.getSymB())
|
|
Offset -= getSymbolOffset(&Assembler.getSymbolData(
|
|
Target.getSymB()->getSymbol()));
|
|
return Offset;
|
|
}
|
|
|
|
assert(SD->getFragment() && "Invalid getOffset() on undefined symbol!");
|
|
return getFragmentOffset(SD->getFragment()) + SD->getOffset();
|
|
}
|
|
|
|
uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
|
|
// The size is the last fragment's end offset.
|
|
const MCFragment &F = SD->getFragmentList().back();
|
|
return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
|
|
}
|
|
|
|
uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
|
|
// Virtual sections have no file size.
|
|
if (SD->getSection().isVirtualSection())
|
|
return 0;
|
|
|
|
// Otherwise, the file size is the same as the address space size.
|
|
return getSectionAddressSize(SD);
|
|
}
|
|
|
|
uint64_t MCAsmLayout::computeBundlePadding(const MCFragment *F,
|
|
uint64_t FOffset, uint64_t FSize) {
|
|
uint64_t BundleSize = Assembler.getBundleAlignSize();
|
|
assert(BundleSize > 0 &&
|
|
"computeBundlePadding should only be called if bundling is enabled");
|
|
uint64_t BundleMask = BundleSize - 1;
|
|
uint64_t OffsetInBundle = FOffset & BundleMask;
|
|
uint64_t EndOfFragment = OffsetInBundle + FSize;
|
|
|
|
// There are two kinds of bundling restrictions:
|
|
//
|
|
// 1) For alignToBundleEnd(), add padding to ensure that the fragment will
|
|
// *end* on a bundle boundary.
|
|
// 2) Otherwise, check if the fragment would cross a bundle boundary. If it
|
|
// would, add padding until the end of the bundle so that the fragment
|
|
// will start in a new one.
|
|
if (F->alignToBundleEnd()) {
|
|
// Three possibilities here:
|
|
//
|
|
// A) The fragment just happens to end at a bundle boundary, so we're good.
|
|
// B) The fragment ends before the current bundle boundary: pad it just
|
|
// enough to reach the boundary.
|
|
// C) The fragment ends after the current bundle boundary: pad it until it
|
|
// reaches the end of the next bundle boundary.
|
|
//
|
|
// Note: this code could be made shorter with some modulo trickery, but it's
|
|
// intentionally kept in its more explicit form for simplicity.
|
|
if (EndOfFragment == BundleSize)
|
|
return 0;
|
|
else if (EndOfFragment < BundleSize)
|
|
return BundleSize - EndOfFragment;
|
|
else { // EndOfFragment > BundleSize
|
|
return 2 * BundleSize - EndOfFragment;
|
|
}
|
|
} else if (EndOfFragment > BundleSize)
|
|
return BundleSize - OffsetInBundle;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCFragment::MCFragment() : Kind(FragmentType(~0)) {
|
|
}
|
|
|
|
MCFragment::~MCFragment() {
|
|
}
|
|
|
|
MCFragment::MCFragment(FragmentType _Kind, MCSectionData *_Parent)
|
|
: Kind(_Kind), Parent(_Parent), Atom(0), Offset(~UINT64_C(0))
|
|
{
|
|
if (Parent)
|
|
Parent->getFragmentList().push_back(this);
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCEncodedFragment::~MCEncodedFragment() {
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCSectionData::MCSectionData() : Section(0) {}
|
|
|
|
MCSectionData::MCSectionData(const MCSection &_Section, MCAssembler *A)
|
|
: Section(&_Section),
|
|
Ordinal(~UINT32_C(0)),
|
|
Alignment(1),
|
|
BundleLockState(NotBundleLocked), BundleGroupBeforeFirstInst(false),
|
|
HasInstructions(false)
|
|
{
|
|
if (A)
|
|
A->getSectionList().push_back(this);
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCSymbolData::MCSymbolData() : Symbol(0) {}
|
|
|
|
MCSymbolData::MCSymbolData(const MCSymbol &_Symbol, MCFragment *_Fragment,
|
|
uint64_t _Offset, MCAssembler *A)
|
|
: Symbol(&_Symbol), Fragment(_Fragment), Offset(_Offset),
|
|
IsExternal(false), IsPrivateExtern(false),
|
|
CommonSize(0), SymbolSize(0), CommonAlign(0),
|
|
Flags(0), Index(0)
|
|
{
|
|
if (A)
|
|
A->getSymbolList().push_back(this);
|
|
}
|
|
|
|
/* *** */
|
|
|
|
MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
|
|
MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
|
|
raw_ostream &OS_)
|
|
: Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
|
|
OS(OS_), BundleAlignSize(0), RelaxAll(false), NoExecStack(false),
|
|
SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
|
|
}
|
|
|
|
MCAssembler::~MCAssembler() {
|
|
}
|
|
|
|
void MCAssembler::reset() {
|
|
Sections.clear();
|
|
Symbols.clear();
|
|
SectionMap.clear();
|
|
SymbolMap.clear();
|
|
IndirectSymbols.clear();
|
|
DataRegions.clear();
|
|
ThumbFuncs.clear();
|
|
RelaxAll = false;
|
|
NoExecStack = false;
|
|
SubsectionsViaSymbols = false;
|
|
ELFHeaderEFlags = 0;
|
|
|
|
// reset objects owned by us
|
|
getBackend().reset();
|
|
getEmitter().reset();
|
|
getWriter().reset();
|
|
}
|
|
|
|
bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
|
|
// Non-temporary labels should always be visible to the linker.
|
|
if (!Symbol.isTemporary())
|
|
return true;
|
|
|
|
// Absolute temporary labels are never visible.
|
|
if (!Symbol.isInSection())
|
|
return false;
|
|
|
|
// Otherwise, check if the section requires symbols even for temporary labels.
|
|
return getBackend().doesSectionRequireSymbols(Symbol.getSection());
|
|
}
|
|
|
|
const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
|
|
// Linker visible symbols define atoms.
|
|
if (isSymbolLinkerVisible(SD->getSymbol()))
|
|
return SD;
|
|
|
|
// Absolute and undefined symbols have no defining atom.
|
|
if (!SD->getFragment())
|
|
return 0;
|
|
|
|
// Non-linker visible symbols in sections which can't be atomized have no
|
|
// defining atom.
|
|
if (!getBackend().isSectionAtomizable(
|
|
SD->getFragment()->getParent()->getSection()))
|
|
return 0;
|
|
|
|
// Otherwise, return the atom for the containing fragment.
|
|
return SD->getFragment()->getAtom();
|
|
}
|
|
|
|
bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
|
|
const MCFixup &Fixup, const MCFragment *DF,
|
|
MCValue &Target, uint64_t &Value) const {
|
|
++stats::evaluateFixup;
|
|
|
|
if (!Fixup.getValue()->EvaluateAsRelocatable(Target, Layout))
|
|
getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
|
|
|
|
bool IsPCRel = Backend.getFixupKindInfo(
|
|
Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
|
|
|
|
bool IsResolved;
|
|
if (IsPCRel) {
|
|
if (Target.getSymB()) {
|
|
IsResolved = false;
|
|
} else if (!Target.getSymA()) {
|
|
IsResolved = false;
|
|
} else {
|
|
const MCSymbolRefExpr *A = Target.getSymA();
|
|
const MCSymbol &SA = A->getSymbol();
|
|
if (A->getKind() != MCSymbolRefExpr::VK_None ||
|
|
SA.AliasedSymbol().isUndefined()) {
|
|
IsResolved = false;
|
|
} else {
|
|
const MCSymbolData &DataA = getSymbolData(SA);
|
|
IsResolved =
|
|
getWriter().IsSymbolRefDifferenceFullyResolvedImpl(*this, DataA,
|
|
*DF, false, true);
|
|
}
|
|
}
|
|
} else {
|
|
IsResolved = Target.isAbsolute();
|
|
}
|
|
|
|
Value = Target.getConstant();
|
|
|
|
if (const MCSymbolRefExpr *A = Target.getSymA()) {
|
|
const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
|
|
if (Sym.isDefined())
|
|
Value += Layout.getSymbolOffset(&getSymbolData(Sym));
|
|
}
|
|
if (const MCSymbolRefExpr *B = Target.getSymB()) {
|
|
const MCSymbol &Sym = B->getSymbol().AliasedSymbol();
|
|
if (Sym.isDefined())
|
|
Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
|
|
}
|
|
|
|
|
|
bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
|
|
MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
|
|
assert((ShouldAlignPC ? IsPCRel : true) &&
|
|
"FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
|
|
|
|
if (IsPCRel) {
|
|
uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
|
|
|
|
// A number of ARM fixups in Thumb mode require that the effective PC
|
|
// address be determined as the 32-bit aligned version of the actual offset.
|
|
if (ShouldAlignPC) Offset &= ~0x3;
|
|
Value -= Offset;
|
|
}
|
|
|
|
// Let the backend adjust the fixup value if necessary, including whether
|
|
// we need a relocation.
|
|
Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
|
|
IsResolved);
|
|
|
|
return IsResolved;
|
|
}
|
|
|
|
uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
|
|
const MCFragment &F) const {
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Data:
|
|
case MCFragment::FT_Relaxable:
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
return cast<MCEncodedFragment>(F).getContents().size();
|
|
case MCFragment::FT_Fill:
|
|
return cast<MCFillFragment>(F).getSize();
|
|
|
|
case MCFragment::FT_LEB:
|
|
return cast<MCLEBFragment>(F).getContents().size();
|
|
|
|
case MCFragment::FT_Align: {
|
|
const MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
unsigned Offset = Layout.getFragmentOffset(&AF);
|
|
unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
|
|
// If we are padding with nops, force the padding to be larger than the
|
|
// minimum nop size.
|
|
if (Size > 0 && AF.hasEmitNops()) {
|
|
while (Size % getBackend().getMinimumNopSize())
|
|
Size += AF.getAlignment();
|
|
}
|
|
if (Size > AF.getMaxBytesToEmit())
|
|
return 0;
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
int64_t TargetLocation;
|
|
if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
|
|
report_fatal_error("expected assembly-time absolute expression");
|
|
|
|
// FIXME: We need a way to communicate this error.
|
|
uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
|
|
int64_t Size = TargetLocation - FragmentOffset;
|
|
if (Size < 0 || Size >= 0x40000000)
|
|
report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
|
|
"' (at offset '" + Twine(FragmentOffset) + "')");
|
|
return Size;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf:
|
|
return cast<MCDwarfLineAddrFragment>(F).getContents().size();
|
|
case MCFragment::FT_DwarfFrame:
|
|
return cast<MCDwarfCallFrameFragment>(F).getContents().size();
|
|
}
|
|
|
|
llvm_unreachable("invalid fragment kind");
|
|
}
|
|
|
|
void MCAsmLayout::layoutFragment(MCFragment *F) {
|
|
MCFragment *Prev = F->getPrevNode();
|
|
|
|
// We should never try to recompute something which is valid.
|
|
assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
|
|
// We should never try to compute the fragment layout if its predecessor
|
|
// isn't valid.
|
|
assert((!Prev || isFragmentValid(Prev)) &&
|
|
"Attempt to compute fragment before its predecessor!");
|
|
|
|
++stats::FragmentLayouts;
|
|
|
|
// Compute fragment offset and size.
|
|
if (Prev)
|
|
F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
|
|
else
|
|
F->Offset = 0;
|
|
LastValidFragment[F->getParent()] = F;
|
|
|
|
// If bundling is enabled and this fragment has instructions in it, it has to
|
|
// obey the bundling restrictions. With padding, we'll have:
|
|
//
|
|
//
|
|
// BundlePadding
|
|
// |||
|
|
// -------------------------------------
|
|
// Prev |##########| F |
|
|
// -------------------------------------
|
|
// ^
|
|
// |
|
|
// F->Offset
|
|
//
|
|
// The fragment's offset will point to after the padding, and its computed
|
|
// size won't include the padding.
|
|
//
|
|
if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
|
|
assert(isa<MCEncodedFragment>(F) &&
|
|
"Only MCEncodedFragment implementations have instructions");
|
|
uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
|
|
|
|
if (FSize > Assembler.getBundleAlignSize())
|
|
report_fatal_error("Fragment can't be larger than a bundle size");
|
|
|
|
uint64_t RequiredBundlePadding = computeBundlePadding(F, F->Offset, FSize);
|
|
if (RequiredBundlePadding > UINT8_MAX)
|
|
report_fatal_error("Padding cannot exceed 255 bytes");
|
|
F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
|
|
F->Offset += RequiredBundlePadding;
|
|
}
|
|
}
|
|
|
|
/// \brief Write the contents of a fragment to the given object writer. Expects
|
|
/// a MCEncodedFragment.
|
|
static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
|
|
MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
|
|
OW->WriteBytes(EF.getContents());
|
|
}
|
|
|
|
/// \brief Write the fragment \p F to the output file.
|
|
static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
|
|
const MCFragment &F) {
|
|
MCObjectWriter *OW = &Asm.getWriter();
|
|
|
|
// Should NOP padding be written out before this fragment?
|
|
unsigned BundlePadding = F.getBundlePadding();
|
|
if (BundlePadding > 0) {
|
|
assert(Asm.isBundlingEnabled() &&
|
|
"Writing bundle padding with disabled bundling");
|
|
assert(F.hasInstructions() &&
|
|
"Writing bundle padding for a fragment without instructions");
|
|
|
|
if (!Asm.getBackend().writeNopData(BundlePadding, OW))
|
|
report_fatal_error("unable to write NOP sequence of " +
|
|
Twine(BundlePadding) + " bytes");
|
|
}
|
|
|
|
// This variable (and its dummy usage) is to participate in the assert at
|
|
// the end of the function.
|
|
uint64_t Start = OW->getStream().tell();
|
|
(void) Start;
|
|
|
|
++stats::EmittedFragments;
|
|
|
|
// FIXME: Embed in fragments instead?
|
|
uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
|
|
switch (F.getKind()) {
|
|
case MCFragment::FT_Align: {
|
|
++stats::EmittedAlignFragments;
|
|
MCAlignFragment &AF = cast<MCAlignFragment>(F);
|
|
uint64_t Count = FragmentSize / AF.getValueSize();
|
|
|
|
assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
|
|
|
|
// FIXME: This error shouldn't actually occur (the front end should emit
|
|
// multiple .align directives to enforce the semantics it wants), but is
|
|
// severe enough that we want to report it. How to handle this?
|
|
if (Count * AF.getValueSize() != FragmentSize)
|
|
report_fatal_error("undefined .align directive, value size '" +
|
|
Twine(AF.getValueSize()) +
|
|
"' is not a divisor of padding size '" +
|
|
Twine(FragmentSize) + "'");
|
|
|
|
// See if we are aligning with nops, and if so do that first to try to fill
|
|
// the Count bytes. Then if that did not fill any bytes or there are any
|
|
// bytes left to fill use the Value and ValueSize to fill the rest.
|
|
// If we are aligning with nops, ask that target to emit the right data.
|
|
if (AF.hasEmitNops()) {
|
|
if (!Asm.getBackend().writeNopData(Count, OW))
|
|
report_fatal_error("unable to write nop sequence of " +
|
|
Twine(Count) + " bytes");
|
|
break;
|
|
}
|
|
|
|
// Otherwise, write out in multiples of the value size.
|
|
for (uint64_t i = 0; i != Count; ++i) {
|
|
switch (AF.getValueSize()) {
|
|
default: llvm_unreachable("Invalid size!");
|
|
case 1: OW->Write8 (uint8_t (AF.getValue())); break;
|
|
case 2: OW->Write16(uint16_t(AF.getValue())); break;
|
|
case 4: OW->Write32(uint32_t(AF.getValue())); break;
|
|
case 8: OW->Write64(uint64_t(AF.getValue())); break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Data:
|
|
++stats::EmittedDataFragments;
|
|
writeFragmentContents(F, OW);
|
|
break;
|
|
|
|
case MCFragment::FT_Relaxable:
|
|
++stats::EmittedRelaxableFragments;
|
|
writeFragmentContents(F, OW);
|
|
break;
|
|
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
++stats::EmittedCompactEncodedInstFragments;
|
|
writeFragmentContents(F, OW);
|
|
break;
|
|
|
|
case MCFragment::FT_Fill: {
|
|
++stats::EmittedFillFragments;
|
|
MCFillFragment &FF = cast<MCFillFragment>(F);
|
|
|
|
assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
|
|
|
|
for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
|
|
switch (FF.getValueSize()) {
|
|
default: llvm_unreachable("Invalid size!");
|
|
case 1: OW->Write8 (uint8_t (FF.getValue())); break;
|
|
case 2: OW->Write16(uint16_t(FF.getValue())); break;
|
|
case 4: OW->Write32(uint32_t(FF.getValue())); break;
|
|
case 8: OW->Write64(uint64_t(FF.getValue())); break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_LEB: {
|
|
MCLEBFragment &LF = cast<MCLEBFragment>(F);
|
|
OW->WriteBytes(LF.getContents().str());
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Org: {
|
|
++stats::EmittedOrgFragments;
|
|
MCOrgFragment &OF = cast<MCOrgFragment>(F);
|
|
|
|
for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
|
|
OW->Write8(uint8_t(OF.getValue()));
|
|
|
|
break;
|
|
}
|
|
|
|
case MCFragment::FT_Dwarf: {
|
|
const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
|
|
OW->WriteBytes(OF.getContents().str());
|
|
break;
|
|
}
|
|
case MCFragment::FT_DwarfFrame: {
|
|
const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
|
|
OW->WriteBytes(CF.getContents().str());
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(OW->getStream().tell() - Start == FragmentSize &&
|
|
"The stream should advance by fragment size");
|
|
}
|
|
|
|
void MCAssembler::writeSectionData(const MCSectionData *SD,
|
|
const MCAsmLayout &Layout) const {
|
|
// Ignore virtual sections.
|
|
if (SD->getSection().isVirtualSection()) {
|
|
assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
|
|
|
|
// Check that contents are only things legal inside a virtual section.
|
|
for (MCSectionData::const_iterator it = SD->begin(),
|
|
ie = SD->end(); it != ie; ++it) {
|
|
switch (it->getKind()) {
|
|
default: llvm_unreachable("Invalid fragment in virtual section!");
|
|
case MCFragment::FT_Data: {
|
|
// Check that we aren't trying to write a non-zero contents (or fixups)
|
|
// into a virtual section. This is to support clients which use standard
|
|
// directives to fill the contents of virtual sections.
|
|
MCDataFragment &DF = cast<MCDataFragment>(*it);
|
|
assert(DF.fixup_begin() == DF.fixup_end() &&
|
|
"Cannot have fixups in virtual section!");
|
|
for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
|
|
assert(DF.getContents()[i] == 0 &&
|
|
"Invalid data value for virtual section!");
|
|
break;
|
|
}
|
|
case MCFragment::FT_Align:
|
|
// Check that we aren't trying to write a non-zero value into a virtual
|
|
// section.
|
|
assert((!cast<MCAlignFragment>(it)->getValueSize() ||
|
|
!cast<MCAlignFragment>(it)->getValue()) &&
|
|
"Invalid align in virtual section!");
|
|
break;
|
|
case MCFragment::FT_Fill:
|
|
assert(!cast<MCFillFragment>(it)->getValueSize() &&
|
|
"Invalid fill in virtual section!");
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
uint64_t Start = getWriter().getStream().tell();
|
|
(void)Start;
|
|
|
|
for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
|
|
it != ie; ++it)
|
|
writeFragment(*this, Layout, *it);
|
|
|
|
assert(getWriter().getStream().tell() - Start ==
|
|
Layout.getSectionAddressSize(SD));
|
|
}
|
|
|
|
|
|
uint64_t MCAssembler::handleFixup(const MCAsmLayout &Layout,
|
|
MCFragment &F,
|
|
const MCFixup &Fixup) {
|
|
// Evaluate the fixup.
|
|
MCValue Target;
|
|
uint64_t FixedValue;
|
|
if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
|
|
// The fixup was unresolved, we need a relocation. Inform the object
|
|
// writer of the relocation, and give it an opportunity to adjust the
|
|
// fixup value if need be.
|
|
getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
|
|
}
|
|
return FixedValue;
|
|
}
|
|
|
|
void MCAssembler::Finish() {
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
llvm::errs() << "assembler backend - pre-layout\n--\n";
|
|
dump(); });
|
|
|
|
// Create the layout object.
|
|
MCAsmLayout Layout(*this);
|
|
|
|
// Create dummy fragments and assign section ordinals.
|
|
unsigned SectionIndex = 0;
|
|
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
// Create dummy fragments to eliminate any empty sections, this simplifies
|
|
// layout.
|
|
if (it->getFragmentList().empty())
|
|
new MCDataFragment(it);
|
|
|
|
it->setOrdinal(SectionIndex++);
|
|
}
|
|
|
|
// Assign layout order indices to sections and fragments.
|
|
for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
|
|
MCSectionData *SD = Layout.getSectionOrder()[i];
|
|
SD->setLayoutOrder(i);
|
|
|
|
unsigned FragmentIndex = 0;
|
|
for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
|
|
iFrag != iFragEnd; ++iFrag)
|
|
iFrag->setLayoutOrder(FragmentIndex++);
|
|
}
|
|
|
|
// Layout until everything fits.
|
|
while (layoutOnce(Layout))
|
|
continue;
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
llvm::errs() << "assembler backend - post-relaxation\n--\n";
|
|
dump(); });
|
|
|
|
// Finalize the layout, including fragment lowering.
|
|
finishLayout(Layout);
|
|
|
|
DEBUG_WITH_TYPE("mc-dump", {
|
|
llvm::errs() << "assembler backend - final-layout\n--\n";
|
|
dump(); });
|
|
|
|
uint64_t StartOffset = OS.tell();
|
|
|
|
// Allow the object writer a chance to perform post-layout binding (for
|
|
// example, to set the index fields in the symbol data).
|
|
getWriter().ExecutePostLayoutBinding(*this, Layout);
|
|
|
|
// Evaluate and apply the fixups, generating relocation entries as necessary.
|
|
for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
for (MCSectionData::iterator it2 = it->begin(),
|
|
ie2 = it->end(); it2 != ie2; ++it2) {
|
|
MCEncodedFragmentWithFixups *F =
|
|
dyn_cast<MCEncodedFragmentWithFixups>(it2);
|
|
if (F) {
|
|
for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
|
|
ie3 = F->fixup_end(); it3 != ie3; ++it3) {
|
|
MCFixup &Fixup = *it3;
|
|
uint64_t FixedValue = handleFixup(Layout, *F, Fixup);
|
|
getBackend().applyFixup(Fixup, F->getContents().data(),
|
|
F->getContents().size(), FixedValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write the object file.
|
|
getWriter().WriteObject(*this, Layout);
|
|
|
|
stats::ObjectBytes += OS.tell() - StartOffset;
|
|
}
|
|
|
|
bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
|
|
const MCRelaxableFragment *DF,
|
|
const MCAsmLayout &Layout) const {
|
|
// If we cannot resolve the fixup value, it requires relaxation.
|
|
MCValue Target;
|
|
uint64_t Value;
|
|
if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
|
|
return true;
|
|
|
|
return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
|
|
}
|
|
|
|
bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
|
|
const MCAsmLayout &Layout) const {
|
|
// If this inst doesn't ever need relaxation, ignore it. This occurs when we
|
|
// are intentionally pushing out inst fragments, or because we relaxed a
|
|
// previous instruction to one that doesn't need relaxation.
|
|
if (!getBackend().mayNeedRelaxation(F->getInst()))
|
|
return false;
|
|
|
|
for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
|
|
ie = F->fixup_end(); it != ie; ++it)
|
|
if (fixupNeedsRelaxation(*it, F, Layout))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
|
|
MCRelaxableFragment &F) {
|
|
if (!fragmentNeedsRelaxation(&F, Layout))
|
|
return false;
|
|
|
|
++stats::RelaxedInstructions;
|
|
|
|
// FIXME-PERF: We could immediately lower out instructions if we can tell
|
|
// they are fully resolved, to avoid retesting on later passes.
|
|
|
|
// Relax the fragment.
|
|
|
|
MCInst Relaxed;
|
|
getBackend().relaxInstruction(F.getInst(), Relaxed);
|
|
|
|
// Encode the new instruction.
|
|
//
|
|
// FIXME-PERF: If it matters, we could let the target do this. It can
|
|
// probably do so more efficiently in many cases.
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
SmallString<256> Code;
|
|
raw_svector_ostream VecOS(Code);
|
|
getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups);
|
|
VecOS.flush();
|
|
|
|
// Update the fragment.
|
|
F.setInst(Relaxed);
|
|
F.getContents() = Code;
|
|
F.getFixups() = Fixups;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
|
|
int64_t Value = 0;
|
|
uint64_t OldSize = LF.getContents().size();
|
|
bool IsAbs = LF.getValue().EvaluateAsAbsolute(Value, Layout);
|
|
(void)IsAbs;
|
|
assert(IsAbs);
|
|
SmallString<8> &Data = LF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
if (LF.isSigned())
|
|
encodeSLEB128(Value, OSE);
|
|
else
|
|
encodeULEB128(Value, OSE);
|
|
OSE.flush();
|
|
return OldSize != LF.getContents().size();
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
|
|
MCDwarfLineAddrFragment &DF) {
|
|
int64_t AddrDelta = 0;
|
|
uint64_t OldSize = DF.getContents().size();
|
|
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
|
|
(void)IsAbs;
|
|
assert(IsAbs);
|
|
int64_t LineDelta;
|
|
LineDelta = DF.getLineDelta();
|
|
SmallString<8> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
MCDwarfLineAddr::Encode(LineDelta, AddrDelta, OSE);
|
|
OSE.flush();
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
|
|
MCDwarfCallFrameFragment &DF) {
|
|
int64_t AddrDelta = 0;
|
|
uint64_t OldSize = DF.getContents().size();
|
|
bool IsAbs = DF.getAddrDelta().EvaluateAsAbsolute(AddrDelta, Layout);
|
|
(void)IsAbs;
|
|
assert(IsAbs);
|
|
SmallString<8> &Data = DF.getContents();
|
|
Data.clear();
|
|
raw_svector_ostream OSE(Data);
|
|
MCDwarfFrameEmitter::EncodeAdvanceLoc(AddrDelta, OSE);
|
|
OSE.flush();
|
|
return OldSize != Data.size();
|
|
}
|
|
|
|
bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
|
|
// Holds the first fragment which needed relaxing during this layout. It will
|
|
// remain NULL if none were relaxed.
|
|
// When a fragment is relaxed, all the fragments following it should get
|
|
// invalidated because their offset is going to change.
|
|
MCFragment *FirstRelaxedFragment = NULL;
|
|
|
|
// Attempt to relax all the fragments in the section.
|
|
for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
|
|
// Check if this is a fragment that needs relaxation.
|
|
bool RelaxedFrag = false;
|
|
switch(I->getKind()) {
|
|
default:
|
|
break;
|
|
case MCFragment::FT_Relaxable:
|
|
assert(!getRelaxAll() &&
|
|
"Did not expect a MCRelaxableFragment in RelaxAll mode");
|
|
RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
|
|
break;
|
|
case MCFragment::FT_Dwarf:
|
|
RelaxedFrag = relaxDwarfLineAddr(Layout,
|
|
*cast<MCDwarfLineAddrFragment>(I));
|
|
break;
|
|
case MCFragment::FT_DwarfFrame:
|
|
RelaxedFrag =
|
|
relaxDwarfCallFrameFragment(Layout,
|
|
*cast<MCDwarfCallFrameFragment>(I));
|
|
break;
|
|
case MCFragment::FT_LEB:
|
|
RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
|
|
break;
|
|
}
|
|
if (RelaxedFrag && !FirstRelaxedFragment)
|
|
FirstRelaxedFragment = I;
|
|
}
|
|
if (FirstRelaxedFragment) {
|
|
Layout.invalidateFragmentsAfter(FirstRelaxedFragment);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
|
|
++stats::RelaxationSteps;
|
|
|
|
bool WasRelaxed = false;
|
|
for (iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
MCSectionData &SD = *it;
|
|
while (layoutSectionOnce(Layout, SD))
|
|
WasRelaxed = true;
|
|
}
|
|
|
|
return WasRelaxed;
|
|
}
|
|
|
|
void MCAssembler::finishLayout(MCAsmLayout &Layout) {
|
|
// The layout is done. Mark every fragment as valid.
|
|
for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
|
|
Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
|
|
}
|
|
}
|
|
|
|
// Debugging methods
|
|
|
|
namespace llvm {
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
|
|
OS << "<MCFixup" << " Offset:" << AF.getOffset()
|
|
<< " Value:" << *AF.getValue()
|
|
<< " Kind:" << AF.getKind() << ">";
|
|
return OS;
|
|
}
|
|
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void MCFragment::dump() {
|
|
raw_ostream &OS = llvm::errs();
|
|
|
|
OS << "<";
|
|
switch (getKind()) {
|
|
case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
|
|
case MCFragment::FT_Data: OS << "MCDataFragment"; break;
|
|
case MCFragment::FT_CompactEncodedInst:
|
|
OS << "MCCompactEncodedInstFragment"; break;
|
|
case MCFragment::FT_Fill: OS << "MCFillFragment"; break;
|
|
case MCFragment::FT_Relaxable: OS << "MCRelaxableFragment"; break;
|
|
case MCFragment::FT_Org: OS << "MCOrgFragment"; break;
|
|
case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
|
|
case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
|
|
case MCFragment::FT_LEB: OS << "MCLEBFragment"; break;
|
|
}
|
|
|
|
OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
|
|
<< " Offset:" << Offset
|
|
<< " HasInstructions:" << hasInstructions()
|
|
<< " BundlePadding:" << getBundlePadding() << ">";
|
|
|
|
switch (getKind()) {
|
|
case MCFragment::FT_Align: {
|
|
const MCAlignFragment *AF = cast<MCAlignFragment>(this);
|
|
if (AF->hasEmitNops())
|
|
OS << " (emit nops)";
|
|
OS << "\n ";
|
|
OS << " Alignment:" << AF->getAlignment()
|
|
<< " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
|
|
<< " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
|
|
break;
|
|
}
|
|
case MCFragment::FT_Data: {
|
|
const MCDataFragment *DF = cast<MCDataFragment>(this);
|
|
OS << "\n ";
|
|
OS << " Contents:[";
|
|
const SmallVectorImpl<char> &Contents = DF->getContents();
|
|
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
|
|
if (i) OS << ",";
|
|
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
|
|
}
|
|
OS << "] (" << Contents.size() << " bytes)";
|
|
|
|
if (DF->fixup_begin() != DF->fixup_end()) {
|
|
OS << ",\n ";
|
|
OS << " Fixups:[";
|
|
for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
|
|
ie = DF->fixup_end(); it != ie; ++it) {
|
|
if (it != DF->fixup_begin()) OS << ",\n ";
|
|
OS << *it;
|
|
}
|
|
OS << "]";
|
|
}
|
|
break;
|
|
}
|
|
case MCFragment::FT_CompactEncodedInst: {
|
|
const MCCompactEncodedInstFragment *CEIF =
|
|
cast<MCCompactEncodedInstFragment>(this);
|
|
OS << "\n ";
|
|
OS << " Contents:[";
|
|
const SmallVectorImpl<char> &Contents = CEIF->getContents();
|
|
for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
|
|
if (i) OS << ",";
|
|
OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
|
|
}
|
|
OS << "] (" << Contents.size() << " bytes)";
|
|
break;
|
|
}
|
|
case MCFragment::FT_Fill: {
|
|
const MCFillFragment *FF = cast<MCFillFragment>(this);
|
|
OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
|
|
<< " Size:" << FF->getSize();
|
|
break;
|
|
}
|
|
case MCFragment::FT_Relaxable: {
|
|
const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
|
|
OS << "\n ";
|
|
OS << " Inst:";
|
|
F->getInst().dump_pretty(OS);
|
|
break;
|
|
}
|
|
case MCFragment::FT_Org: {
|
|
const MCOrgFragment *OF = cast<MCOrgFragment>(this);
|
|
OS << "\n ";
|
|
OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
|
|
break;
|
|
}
|
|
case MCFragment::FT_Dwarf: {
|
|
const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
|
|
OS << "\n ";
|
|
OS << " AddrDelta:" << OF->getAddrDelta()
|
|
<< " LineDelta:" << OF->getLineDelta();
|
|
break;
|
|
}
|
|
case MCFragment::FT_DwarfFrame: {
|
|
const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
|
|
OS << "\n ";
|
|
OS << " AddrDelta:" << CF->getAddrDelta();
|
|
break;
|
|
}
|
|
case MCFragment::FT_LEB: {
|
|
const MCLEBFragment *LF = cast<MCLEBFragment>(this);
|
|
OS << "\n ";
|
|
OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
|
|
break;
|
|
}
|
|
}
|
|
OS << ">";
|
|
}
|
|
|
|
void MCSectionData::dump() {
|
|
raw_ostream &OS = llvm::errs();
|
|
|
|
OS << "<MCSectionData";
|
|
OS << " Alignment:" << getAlignment()
|
|
<< " Fragments:[\n ";
|
|
for (iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
if (it != begin()) OS << ",\n ";
|
|
it->dump();
|
|
}
|
|
OS << "]>";
|
|
}
|
|
|
|
void MCSymbolData::dump() {
|
|
raw_ostream &OS = llvm::errs();
|
|
|
|
OS << "<MCSymbolData Symbol:" << getSymbol()
|
|
<< " Fragment:" << getFragment() << " Offset:" << getOffset()
|
|
<< " Flags:" << getFlags() << " Index:" << getIndex();
|
|
if (isCommon())
|
|
OS << " (common, size:" << getCommonSize()
|
|
<< " align: " << getCommonAlignment() << ")";
|
|
if (isExternal())
|
|
OS << " (external)";
|
|
if (isPrivateExtern())
|
|
OS << " (private extern)";
|
|
OS << ">";
|
|
}
|
|
|
|
void MCAssembler::dump() {
|
|
raw_ostream &OS = llvm::errs();
|
|
|
|
OS << "<MCAssembler\n";
|
|
OS << " Sections:[\n ";
|
|
for (iterator it = begin(), ie = end(); it != ie; ++it) {
|
|
if (it != begin()) OS << ",\n ";
|
|
it->dump();
|
|
}
|
|
OS << "],\n";
|
|
OS << " Symbols:[";
|
|
|
|
for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
|
|
if (it != symbol_begin()) OS << ",\n ";
|
|
it->dump();
|
|
}
|
|
OS << "]>\n";
|
|
}
|
|
#endif
|
|
|
|
// anchors for MC*Fragment vtables
|
|
void MCEncodedFragment::anchor() { }
|
|
void MCEncodedFragmentWithFixups::anchor() { }
|
|
void MCDataFragment::anchor() { }
|
|
void MCCompactEncodedInstFragment::anchor() { }
|
|
void MCRelaxableFragment::anchor() { }
|
|
void MCAlignFragment::anchor() { }
|
|
void MCFillFragment::anchor() { }
|
|
void MCOrgFragment::anchor() { }
|
|
void MCLEBFragment::anchor() { }
|
|
void MCDwarfLineAddrFragment::anchor() { }
|
|
void MCDwarfCallFrameFragment::anchor() { }
|
|
|