llvm/test/CodeGen/AArch64/ldst-unsignedimm.ll
Amara Emerson c2884320fe [AArch64] Make the use of FP instructions optional, but enabled by default.
This adds a new subtarget feature called FPARMv8 (implied by NEON), and
predicates the support of the FP instructions and registers on this feature.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193739 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-31 09:32:11 +00:00

257 lines
9.0 KiB
LLVM

; RUN: llc -verify-machineinstrs < %s -mtriple=aarch64-none-linux-gnu | FileCheck %s
; RUN: llc -verify-machineinstrs < %s -mtriple=aarch64-none-linux-gnu -mattr=-fp-armv8 | FileCheck --check-prefix=CHECK-NOFP %s
@var_8bit = global i8 0
@var_16bit = global i16 0
@var_32bit = global i32 0
@var_64bit = global i64 0
@var_float = global float 0.0
@var_double = global double 0.0
define void @ldst_8bit() {
; CHECK-LABEL: ldst_8bit:
; No architectural support for loads to 16-bit or 8-bit since we
; promote i8 during lowering.
; match a sign-extending load 8-bit -> 32-bit
%val8_sext32 = load volatile i8* @var_8bit
%val32_signed = sext i8 %val8_sext32 to i32
store volatile i32 %val32_signed, i32* @var_32bit
; CHECK: adrp {{x[0-9]+}}, var_8bit
; CHECK: ldrsb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; match a zero-extending load volatile 8-bit -> 32-bit
%val8_zext32 = load volatile i8* @var_8bit
%val32_unsigned = zext i8 %val8_zext32 to i32
store volatile i32 %val32_unsigned, i32* @var_32bit
; CHECK: ldrb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; match an any-extending load volatile 8-bit -> 32-bit
%val8_anyext = load volatile i8* @var_8bit
%newval8 = add i8 %val8_anyext, 1
store volatile i8 %newval8, i8* @var_8bit
; CHECK: ldrb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; match a sign-extending load volatile 8-bit -> 64-bit
%val8_sext64 = load volatile i8* @var_8bit
%val64_signed = sext i8 %val8_sext64 to i64
store volatile i64 %val64_signed, i64* @var_64bit
; CHECK: ldrsb {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; match a zero-extending load volatile 8-bit -> 64-bit.
; This uses the fact that ldrb w0, [x0] will zero out the high 32-bits
; of x0 so it's identical to load volatileing to 32-bits.
%val8_zext64 = load volatile i8* @var_8bit
%val64_unsigned = zext i8 %val8_zext64 to i64
store volatile i64 %val64_unsigned, i64* @var_64bit
; CHECK: ldrb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; truncating store volatile 32-bits to 8-bits
%val32 = load volatile i32* @var_32bit
%val8_trunc32 = trunc i32 %val32 to i8
store volatile i8 %val8_trunc32, i8* @var_8bit
; CHECK: strb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
; truncating store volatile 64-bits to 8-bits
%val64 = load volatile i64* @var_64bit
%val8_trunc64 = trunc i64 %val64 to i8
store volatile i8 %val8_trunc64, i8* @var_8bit
; CHECK: strb {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_8bit]
ret void
}
define void @ldst_16bit() {
; CHECK-LABEL: ldst_16bit:
; No architectural support for load volatiles to 16-bit promote i16 during
; lowering.
; match a sign-extending load volatile 16-bit -> 32-bit
%val16_sext32 = load volatile i16* @var_16bit
%val32_signed = sext i16 %val16_sext32 to i32
store volatile i32 %val32_signed, i32* @var_32bit
; CHECK: adrp {{x[0-9]+}}, var_16bit
; CHECK: ldrsh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; match a zero-extending load volatile 16-bit -> 32-bit
%val16_zext32 = load volatile i16* @var_16bit
%val32_unsigned = zext i16 %val16_zext32 to i32
store volatile i32 %val32_unsigned, i32* @var_32bit
; CHECK: ldrh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; match an any-extending load volatile 16-bit -> 32-bit
%val16_anyext = load volatile i16* @var_16bit
%newval16 = add i16 %val16_anyext, 1
store volatile i16 %newval16, i16* @var_16bit
; CHECK: ldrh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; match a sign-extending load volatile 16-bit -> 64-bit
%val16_sext64 = load volatile i16* @var_16bit
%val64_signed = sext i16 %val16_sext64 to i64
store volatile i64 %val64_signed, i64* @var_64bit
; CHECK: ldrsh {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; match a zero-extending load volatile 16-bit -> 64-bit.
; This uses the fact that ldrb w0, [x0] will zero out the high 32-bits
; of x0 so it's identical to load volatileing to 32-bits.
%val16_zext64 = load volatile i16* @var_16bit
%val64_unsigned = zext i16 %val16_zext64 to i64
store volatile i64 %val64_unsigned, i64* @var_64bit
; CHECK: ldrh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; truncating store volatile 32-bits to 16-bits
%val32 = load volatile i32* @var_32bit
%val16_trunc32 = trunc i32 %val32 to i16
store volatile i16 %val16_trunc32, i16* @var_16bit
; CHECK: strh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
; truncating store volatile 64-bits to 16-bits
%val64 = load volatile i64* @var_64bit
%val16_trunc64 = trunc i64 %val64 to i16
store volatile i16 %val16_trunc64, i16* @var_16bit
; CHECK: strh {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_16bit]
ret void
}
define void @ldst_32bit() {
; CHECK-LABEL: ldst_32bit:
; Straight 32-bit load/store
%val32_noext = load volatile i32* @var_32bit
store volatile i32 %val32_noext, i32* @var_32bit
; CHECK: adrp {{x[0-9]+}}, var_32bit
; CHECK: ldr {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_32bit]
; CHECK: str {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_32bit]
; Zero-extension to 64-bits
%val32_zext = load volatile i32* @var_32bit
%val64_unsigned = zext i32 %val32_zext to i64
store volatile i64 %val64_unsigned, i64* @var_64bit
; CHECK: ldr {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_32bit]
; CHECK: str {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_64bit]
; Sign-extension to 64-bits
%val32_sext = load volatile i32* @var_32bit
%val64_signed = sext i32 %val32_sext to i64
store volatile i64 %val64_signed, i64* @var_64bit
; CHECK: ldrsw {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_32bit]
; CHECK: str {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_64bit]
; Truncation from 64-bits
%val64_trunc = load volatile i64* @var_64bit
%val32_trunc = trunc i64 %val64_trunc to i32
store volatile i32 %val32_trunc, i32* @var_32bit
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_64bit]
; CHECK: str {{w[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_32bit]
ret void
}
@arr8 = global i8* null
@arr16 = global i16* null
@arr32 = global i32* null
@arr64 = global i64* null
; Now check that our selection copes with accesses more complex than a
; single symbol. Permitted offsets should be folded into the loads and
; stores. Since all forms use the same Operand it's only necessary to
; check the various access-sizes involved.
define void @ldst_complex_offsets() {
; CHECK: ldst_complex_offsets
%arr8_addr = load volatile i8** @arr8
; CHECK: adrp {{x[0-9]+}}, arr8
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:arr8]
%arr8_sub1_addr = getelementptr i8* %arr8_addr, i64 1
%arr8_sub1 = load volatile i8* %arr8_sub1_addr
store volatile i8 %arr8_sub1, i8* @var_8bit
; CHECK: ldrb {{w[0-9]+}}, [{{x[0-9]+}}, #1]
%arr8_sub4095_addr = getelementptr i8* %arr8_addr, i64 4095
%arr8_sub4095 = load volatile i8* %arr8_sub4095_addr
store volatile i8 %arr8_sub4095, i8* @var_8bit
; CHECK: ldrb {{w[0-9]+}}, [{{x[0-9]+}}, #4095]
%arr16_addr = load volatile i16** @arr16
; CHECK: adrp {{x[0-9]+}}, arr16
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:arr16]
%arr16_sub1_addr = getelementptr i16* %arr16_addr, i64 1
%arr16_sub1 = load volatile i16* %arr16_sub1_addr
store volatile i16 %arr16_sub1, i16* @var_16bit
; CHECK: ldrh {{w[0-9]+}}, [{{x[0-9]+}}, #2]
%arr16_sub4095_addr = getelementptr i16* %arr16_addr, i64 4095
%arr16_sub4095 = load volatile i16* %arr16_sub4095_addr
store volatile i16 %arr16_sub4095, i16* @var_16bit
; CHECK: ldrh {{w[0-9]+}}, [{{x[0-9]+}}, #8190]
%arr32_addr = load volatile i32** @arr32
; CHECK: adrp {{x[0-9]+}}, arr32
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:arr32]
%arr32_sub1_addr = getelementptr i32* %arr32_addr, i64 1
%arr32_sub1 = load volatile i32* %arr32_sub1_addr
store volatile i32 %arr32_sub1, i32* @var_32bit
; CHECK: ldr {{w[0-9]+}}, [{{x[0-9]+}}, #4]
%arr32_sub4095_addr = getelementptr i32* %arr32_addr, i64 4095
%arr32_sub4095 = load volatile i32* %arr32_sub4095_addr
store volatile i32 %arr32_sub4095, i32* @var_32bit
; CHECK: ldr {{w[0-9]+}}, [{{x[0-9]+}}, #16380]
%arr64_addr = load volatile i64** @arr64
; CHECK: adrp {{x[0-9]+}}, arr64
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #:lo12:arr64]
%arr64_sub1_addr = getelementptr i64* %arr64_addr, i64 1
%arr64_sub1 = load volatile i64* %arr64_sub1_addr
store volatile i64 %arr64_sub1, i64* @var_64bit
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #8]
%arr64_sub4095_addr = getelementptr i64* %arr64_addr, i64 4095
%arr64_sub4095 = load volatile i64* %arr64_sub4095_addr
store volatile i64 %arr64_sub4095, i64* @var_64bit
; CHECK: ldr {{x[0-9]+}}, [{{x[0-9]+}}, #32760]
ret void
}
define void @ldst_float() {
; CHECK-LABEL: ldst_float:
%valfp = load volatile float* @var_float
; CHECK: adrp {{x[0-9]+}}, var_float
; CHECK: ldr {{s[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_float]
; CHECK-NOFP-NOT: ldr {{s[0-9]+}},
store volatile float %valfp, float* @var_float
; CHECK: str {{s[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_float]
; CHECK-NOFP-NOT: str {{s[0-9]+}},
ret void
}
define void @ldst_double() {
; CHECK-LABEL: ldst_double:
%valfp = load volatile double* @var_double
; CHECK: adrp {{x[0-9]+}}, var_double
; CHECK: ldr {{d[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_double]
; CHECK-NOFP-NOT: ldr {{d[0-9]+}},
store volatile double %valfp, double* @var_double
; CHECK: str {{d[0-9]+}}, [{{x[0-9]+}}, #:lo12:var_double]
; CHECK-NOFP-NOT: str {{d[0-9]+}},
ret void
}