mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-16 23:19:37 +00:00
68b292b026
This patch enables the new ELFv2 ABI in the runtime dynamic loader. The loader has to implement the following features: - In the ELFv2 ABI, do not look up a function descriptor in .opd, but instead use the local entry point when resolving a direct call. - Update the TOC restore code to use the new TOC slot linkage area offset. - Create PLT stubs appropriate for the ELFv2 ABI. Note that this patch also adds common-code changes. These are necessary because the loader must check the newly added ELF flags: the e_flags header bits encoding the ABI version, and the st_other symbol table entry bits encoding the local entry point offset. There is currently no way to access these, so I've added ObjectFile::getPlatformFlags and SymbolRef::getOther accessors. Reviewed by Hal Finkel. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213491 91177308-0d34-0410-b5e6-96231b3b80d8
827 lines
30 KiB
C++
827 lines
30 KiB
C++
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the MC-JIT runtime dynamic linker.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
|
#include "JITRegistrar.h"
|
|
#include "ObjectImageCommon.h"
|
|
#include "RuntimeDyldELF.h"
|
|
#include "RuntimeDyldImpl.h"
|
|
#include "RuntimeDyldMachO.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MutexGuard.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
|
|
#define DEBUG_TYPE "dyld"
|
|
|
|
// Empty out-of-line virtual destructor as the key function.
|
|
RuntimeDyldImpl::~RuntimeDyldImpl() {}
|
|
|
|
// Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
|
|
void JITRegistrar::anchor() {}
|
|
void ObjectImage::anchor() {}
|
|
void ObjectImageCommon::anchor() {}
|
|
|
|
namespace llvm {
|
|
|
|
void RuntimeDyldImpl::registerEHFrames() {}
|
|
|
|
void RuntimeDyldImpl::deregisterEHFrames() {}
|
|
|
|
// Resolve the relocations for all symbols we currently know about.
|
|
void RuntimeDyldImpl::resolveRelocations() {
|
|
MutexGuard locked(lock);
|
|
|
|
// First, resolve relocations associated with external symbols.
|
|
resolveExternalSymbols();
|
|
|
|
// Just iterate over the sections we have and resolve all the relocations
|
|
// in them. Gross overkill, but it gets the job done.
|
|
for (int i = 0, e = Sections.size(); i != e; ++i) {
|
|
// The Section here (Sections[i]) refers to the section in which the
|
|
// symbol for the relocation is located. The SectionID in the relocation
|
|
// entry provides the section to which the relocation will be applied.
|
|
uint64_t Addr = Sections[i].LoadAddress;
|
|
DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
|
|
<< format("%p", (uint8_t *)Addr) << "\n");
|
|
resolveRelocationList(Relocations[i], Addr);
|
|
Relocations.erase(i);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
MutexGuard locked(lock);
|
|
for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
|
|
if (Sections[i].Address == LocalAddress) {
|
|
reassignSectionAddress(i, TargetAddress);
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Attempting to remap address of unknown section!");
|
|
}
|
|
|
|
static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
|
|
uint64_t Address;
|
|
if (std::error_code EC = Sym.getAddress(Address))
|
|
return EC;
|
|
|
|
if (Address == UnknownAddressOrSize) {
|
|
Result = UnknownAddressOrSize;
|
|
return object_error::success;
|
|
}
|
|
|
|
const ObjectFile *Obj = Sym.getObject();
|
|
section_iterator SecI(Obj->section_begin());
|
|
if (std::error_code EC = Sym.getSection(SecI))
|
|
return EC;
|
|
|
|
if (SecI == Obj->section_end()) {
|
|
Result = UnknownAddressOrSize;
|
|
return object_error::success;
|
|
}
|
|
|
|
uint64_t SectionAddress;
|
|
if (std::error_code EC = SecI->getAddress(SectionAddress))
|
|
return EC;
|
|
|
|
Result = Address - SectionAddress;
|
|
return object_error::success;
|
|
}
|
|
|
|
ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
|
|
MutexGuard locked(lock);
|
|
|
|
std::unique_ptr<ObjectImage> Obj(InputObject);
|
|
if (!Obj)
|
|
return nullptr;
|
|
|
|
// Save information about our target
|
|
Arch = (Triple::ArchType)Obj->getArch();
|
|
IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
|
|
|
|
// Compute the memory size required to load all sections to be loaded
|
|
// and pass this information to the memory manager
|
|
if (MemMgr->needsToReserveAllocationSpace()) {
|
|
uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
|
|
computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
|
|
MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
|
|
}
|
|
|
|
// Symbols found in this object
|
|
StringMap<SymbolLoc> LocalSymbols;
|
|
// Used sections from the object file
|
|
ObjSectionToIDMap LocalSections;
|
|
|
|
// Common symbols requiring allocation, with their sizes and alignments
|
|
CommonSymbolMap CommonSymbols;
|
|
// Maximum required total memory to allocate all common symbols
|
|
uint64_t CommonSize = 0;
|
|
|
|
// Parse symbols
|
|
DEBUG(dbgs() << "Parse symbols:\n");
|
|
for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
|
|
++I) {
|
|
object::SymbolRef::Type SymType;
|
|
StringRef Name;
|
|
Check(I->getType(SymType));
|
|
Check(I->getName(Name));
|
|
|
|
uint32_t Flags = I->getFlags();
|
|
|
|
bool IsCommon = Flags & SymbolRef::SF_Common;
|
|
if (IsCommon) {
|
|
// Add the common symbols to a list. We'll allocate them all below.
|
|
if (!GlobalSymbolTable.count(Name)) {
|
|
uint32_t Align;
|
|
Check(I->getAlignment(Align));
|
|
uint64_t Size = 0;
|
|
Check(I->getSize(Size));
|
|
CommonSize += Size + Align;
|
|
CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
|
|
}
|
|
} else {
|
|
if (SymType == object::SymbolRef::ST_Function ||
|
|
SymType == object::SymbolRef::ST_Data ||
|
|
SymType == object::SymbolRef::ST_Unknown) {
|
|
uint64_t SectOffset;
|
|
StringRef SectionData;
|
|
bool IsCode;
|
|
section_iterator SI = Obj->end_sections();
|
|
Check(getOffset(*I, SectOffset));
|
|
Check(I->getSection(SI));
|
|
if (SI == Obj->end_sections())
|
|
continue;
|
|
Check(SI->getContents(SectionData));
|
|
Check(SI->isText(IsCode));
|
|
unsigned SectionID =
|
|
findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
|
|
LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
|
|
DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
|
|
<< " flags: " << Flags << " SID: " << SectionID);
|
|
GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
|
|
}
|
|
|
|
// Allocate common symbols
|
|
if (CommonSize != 0)
|
|
emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
|
|
|
|
// Parse and process relocations
|
|
DEBUG(dbgs() << "Parse relocations:\n");
|
|
for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
|
|
SI != SE; ++SI) {
|
|
unsigned SectionID = 0;
|
|
StubMap Stubs;
|
|
section_iterator RelocatedSection = SI->getRelocatedSection();
|
|
|
|
relocation_iterator I = SI->relocation_begin();
|
|
relocation_iterator E = SI->relocation_end();
|
|
|
|
if (I == E && !ProcessAllSections)
|
|
continue;
|
|
|
|
bool IsCode = false;
|
|
Check(RelocatedSection->isText(IsCode));
|
|
SectionID =
|
|
findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
|
|
DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
|
|
|
|
for (; I != E;)
|
|
I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
|
|
Stubs);
|
|
}
|
|
|
|
// Give the subclasses a chance to tie-up any loose ends.
|
|
finalizeLoad(*Obj, LocalSections);
|
|
|
|
return Obj.release();
|
|
}
|
|
|
|
// A helper method for computeTotalAllocSize.
|
|
// Computes the memory size required to allocate sections with the given sizes,
|
|
// assuming that all sections are allocated with the given alignment
|
|
static uint64_t
|
|
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
|
|
uint64_t Alignment) {
|
|
uint64_t TotalSize = 0;
|
|
for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
|
|
uint64_t AlignedSize =
|
|
(SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
|
|
TotalSize += AlignedSize;
|
|
}
|
|
return TotalSize;
|
|
}
|
|
|
|
// Compute an upper bound of the memory size that is required to load all
|
|
// sections
|
|
void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
|
|
uint64_t &CodeSize,
|
|
uint64_t &DataSizeRO,
|
|
uint64_t &DataSizeRW) {
|
|
// Compute the size of all sections required for execution
|
|
std::vector<uint64_t> CodeSectionSizes;
|
|
std::vector<uint64_t> ROSectionSizes;
|
|
std::vector<uint64_t> RWSectionSizes;
|
|
uint64_t MaxAlignment = sizeof(void *);
|
|
|
|
// Collect sizes of all sections to be loaded;
|
|
// also determine the max alignment of all sections
|
|
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
|
|
SI != SE; ++SI) {
|
|
const SectionRef &Section = *SI;
|
|
|
|
bool IsRequired;
|
|
Check(Section.isRequiredForExecution(IsRequired));
|
|
|
|
// Consider only the sections that are required to be loaded for execution
|
|
if (IsRequired) {
|
|
uint64_t DataSize = 0;
|
|
uint64_t Alignment64 = 0;
|
|
bool IsCode = false;
|
|
bool IsReadOnly = false;
|
|
StringRef Name;
|
|
Check(Section.getSize(DataSize));
|
|
Check(Section.getAlignment(Alignment64));
|
|
Check(Section.isText(IsCode));
|
|
Check(Section.isReadOnlyData(IsReadOnly));
|
|
Check(Section.getName(Name));
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
|
|
uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
|
|
uint64_t SectionSize = DataSize + StubBufSize;
|
|
|
|
// The .eh_frame section (at least on Linux) needs an extra four bytes
|
|
// padded
|
|
// with zeroes added at the end. For MachO objects, this section has a
|
|
// slightly different name, so this won't have any effect for MachO
|
|
// objects.
|
|
if (Name == ".eh_frame")
|
|
SectionSize += 4;
|
|
|
|
if (SectionSize > 0) {
|
|
// save the total size of the section
|
|
if (IsCode) {
|
|
CodeSectionSizes.push_back(SectionSize);
|
|
} else if (IsReadOnly) {
|
|
ROSectionSizes.push_back(SectionSize);
|
|
} else {
|
|
RWSectionSizes.push_back(SectionSize);
|
|
}
|
|
// update the max alignment
|
|
if (Alignment > MaxAlignment) {
|
|
MaxAlignment = Alignment;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the size of all common symbols
|
|
uint64_t CommonSize = 0;
|
|
for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
|
|
++I) {
|
|
uint32_t Flags = I->getFlags();
|
|
if (Flags & SymbolRef::SF_Common) {
|
|
// Add the common symbols to a list. We'll allocate them all below.
|
|
uint64_t Size = 0;
|
|
Check(I->getSize(Size));
|
|
CommonSize += Size;
|
|
}
|
|
}
|
|
if (CommonSize != 0) {
|
|
RWSectionSizes.push_back(CommonSize);
|
|
}
|
|
|
|
// Compute the required allocation space for each different type of sections
|
|
// (code, read-only data, read-write data) assuming that all sections are
|
|
// allocated with the max alignment. Note that we cannot compute with the
|
|
// individual alignments of the sections, because then the required size
|
|
// depends on the order, in which the sections are allocated.
|
|
CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
|
|
DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
|
|
DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
|
|
}
|
|
|
|
// compute stub buffer size for the given section
|
|
unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
|
|
const SectionRef &Section) {
|
|
unsigned StubSize = getMaxStubSize();
|
|
if (StubSize == 0) {
|
|
return 0;
|
|
}
|
|
// FIXME: this is an inefficient way to handle this. We should computed the
|
|
// necessary section allocation size in loadObject by walking all the sections
|
|
// once.
|
|
unsigned StubBufSize = 0;
|
|
for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
|
|
SI != SE; ++SI) {
|
|
section_iterator RelSecI = SI->getRelocatedSection();
|
|
if (!(RelSecI == Section))
|
|
continue;
|
|
|
|
for (const RelocationRef &Reloc : SI->relocations()) {
|
|
(void)Reloc;
|
|
StubBufSize += StubSize;
|
|
}
|
|
}
|
|
|
|
// Get section data size and alignment
|
|
uint64_t Alignment64;
|
|
uint64_t DataSize;
|
|
Check(Section.getSize(DataSize));
|
|
Check(Section.getAlignment(Alignment64));
|
|
|
|
// Add stubbuf size alignment
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
unsigned StubAlignment = getStubAlignment();
|
|
unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
|
|
if (StubAlignment > EndAlignment)
|
|
StubBufSize += StubAlignment - EndAlignment;
|
|
return StubBufSize;
|
|
}
|
|
|
|
void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
|
|
const CommonSymbolMap &CommonSymbols,
|
|
uint64_t TotalSize,
|
|
SymbolTableMap &SymbolTable) {
|
|
// Allocate memory for the section
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
|
|
SectionID, StringRef(), false);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate memory for common symbols!");
|
|
uint64_t Offset = 0;
|
|
Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
|
|
memset(Addr, 0, TotalSize);
|
|
|
|
DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
|
|
<< format("%p", Addr) << " DataSize: " << TotalSize << "\n");
|
|
|
|
// Assign the address of each symbol
|
|
for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
|
|
itEnd = CommonSymbols.end(); it != itEnd; ++it) {
|
|
uint64_t Size = it->second.first;
|
|
uint64_t Align = it->second.second;
|
|
StringRef Name;
|
|
it->first.getName(Name);
|
|
if (Align) {
|
|
// This symbol has an alignment requirement.
|
|
uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
|
|
Addr += AlignOffset;
|
|
Offset += AlignOffset;
|
|
DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
|
|
<< format("%p\n", Addr));
|
|
}
|
|
Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
|
|
SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
|
|
Offset += Size;
|
|
Addr += Size;
|
|
}
|
|
}
|
|
|
|
unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
|
|
const SectionRef &Section, bool IsCode) {
|
|
|
|
StringRef data;
|
|
uint64_t Alignment64;
|
|
Check(Section.getContents(data));
|
|
Check(Section.getAlignment(Alignment64));
|
|
|
|
unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
|
|
bool IsRequired;
|
|
bool IsVirtual;
|
|
bool IsZeroInit;
|
|
bool IsReadOnly;
|
|
uint64_t DataSize;
|
|
unsigned PaddingSize = 0;
|
|
unsigned StubBufSize = 0;
|
|
StringRef Name;
|
|
Check(Section.isRequiredForExecution(IsRequired));
|
|
Check(Section.isVirtual(IsVirtual));
|
|
Check(Section.isZeroInit(IsZeroInit));
|
|
Check(Section.isReadOnlyData(IsReadOnly));
|
|
Check(Section.getSize(DataSize));
|
|
Check(Section.getName(Name));
|
|
|
|
StubBufSize = computeSectionStubBufSize(Obj, Section);
|
|
|
|
// The .eh_frame section (at least on Linux) needs an extra four bytes padded
|
|
// with zeroes added at the end. For MachO objects, this section has a
|
|
// slightly different name, so this won't have any effect for MachO objects.
|
|
if (Name == ".eh_frame")
|
|
PaddingSize = 4;
|
|
|
|
uintptr_t Allocate;
|
|
unsigned SectionID = Sections.size();
|
|
uint8_t *Addr;
|
|
const char *pData = nullptr;
|
|
|
|
// Some sections, such as debug info, don't need to be loaded for execution.
|
|
// Leave those where they are.
|
|
if (IsRequired) {
|
|
Allocate = DataSize + PaddingSize + StubBufSize;
|
|
Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
|
|
Name)
|
|
: MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
|
|
Name, IsReadOnly);
|
|
if (!Addr)
|
|
report_fatal_error("Unable to allocate section memory!");
|
|
|
|
// Virtual sections have no data in the object image, so leave pData = 0
|
|
if (!IsVirtual)
|
|
pData = data.data();
|
|
|
|
// Zero-initialize or copy the data from the image
|
|
if (IsZeroInit || IsVirtual)
|
|
memset(Addr, 0, DataSize);
|
|
else
|
|
memcpy(Addr, pData, DataSize);
|
|
|
|
// Fill in any extra bytes we allocated for padding
|
|
if (PaddingSize != 0) {
|
|
memset(Addr + DataSize, 0, PaddingSize);
|
|
// Update the DataSize variable so that the stub offset is set correctly.
|
|
DataSize += PaddingSize;
|
|
}
|
|
|
|
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
|
|
<< " obj addr: " << format("%p", pData)
|
|
<< " new addr: " << format("%p", Addr)
|
|
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate << "\n");
|
|
Obj.updateSectionAddress(Section, (uint64_t)Addr);
|
|
} else {
|
|
// Even if we didn't load the section, we need to record an entry for it
|
|
// to handle later processing (and by 'handle' I mean don't do anything
|
|
// with these sections).
|
|
Allocate = 0;
|
|
Addr = nullptr;
|
|
DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
|
|
<< " obj addr: " << format("%p", data.data()) << " new addr: 0"
|
|
<< " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
|
|
<< " Allocate: " << Allocate << "\n");
|
|
}
|
|
|
|
Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
|
|
return SectionID;
|
|
}
|
|
|
|
unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
|
|
const SectionRef &Section,
|
|
bool IsCode,
|
|
ObjSectionToIDMap &LocalSections) {
|
|
|
|
unsigned SectionID = 0;
|
|
ObjSectionToIDMap::iterator i = LocalSections.find(Section);
|
|
if (i != LocalSections.end())
|
|
SectionID = i->second;
|
|
else {
|
|
SectionID = emitSection(Obj, Section, IsCode);
|
|
LocalSections[Section] = SectionID;
|
|
}
|
|
return SectionID;
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
|
|
unsigned SectionID) {
|
|
Relocations[SectionID].push_back(RE);
|
|
}
|
|
|
|
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
|
|
StringRef SymbolName) {
|
|
// Relocation by symbol. If the symbol is found in the global symbol table,
|
|
// create an appropriate section relocation. Otherwise, add it to
|
|
// ExternalSymbolRelocations.
|
|
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
ExternalSymbolRelocations[SymbolName].push_back(RE);
|
|
} else {
|
|
// Copy the RE since we want to modify its addend.
|
|
RelocationEntry RECopy = RE;
|
|
RECopy.Addend += Loc->second.second;
|
|
Relocations[Loc->second.first].push_back(RECopy);
|
|
}
|
|
}
|
|
|
|
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
|
|
unsigned AbiVariant) {
|
|
if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
|
|
Arch == Triple::arm64 || Arch == Triple::arm64_be) {
|
|
// This stub has to be able to access the full address space,
|
|
// since symbol lookup won't necessarily find a handy, in-range,
|
|
// PLT stub for functions which could be anywhere.
|
|
uint32_t *StubAddr = (uint32_t *)Addr;
|
|
|
|
// Stub can use ip0 (== x16) to calculate address
|
|
*StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
|
|
StubAddr++;
|
|
*StubAddr = 0xd61f0200; // br ip0
|
|
|
|
return Addr;
|
|
} else if (Arch == Triple::arm || Arch == Triple::armeb) {
|
|
// TODO: There is only ARM far stub now. We should add the Thumb stub,
|
|
// and stubs for branches Thumb - ARM and ARM - Thumb.
|
|
uint32_t *StubAddr = (uint32_t *)Addr;
|
|
*StubAddr = 0xe51ff004; // ldr pc,<label>
|
|
return (uint8_t *)++StubAddr;
|
|
} else if (Arch == Triple::mipsel || Arch == Triple::mips) {
|
|
uint32_t *StubAddr = (uint32_t *)Addr;
|
|
// 0: 3c190000 lui t9,%hi(addr).
|
|
// 4: 27390000 addiu t9,t9,%lo(addr).
|
|
// 8: 03200008 jr t9.
|
|
// c: 00000000 nop.
|
|
const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
|
|
const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
|
|
|
|
*StubAddr = LuiT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = AdduiT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = JrT9Instr;
|
|
StubAddr++;
|
|
*StubAddr = NopInstr;
|
|
return Addr;
|
|
} else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
|
|
// Depending on which version of the ELF ABI is in use, we need to
|
|
// generate one of two variants of the stub. They both start with
|
|
// the same sequence to load the target address into r12.
|
|
writeInt32BE(Addr, 0x3D800000); // lis r12, highest(addr)
|
|
writeInt32BE(Addr+4, 0x618C0000); // ori r12, higher(addr)
|
|
writeInt32BE(Addr+8, 0x798C07C6); // sldi r12, r12, 32
|
|
writeInt32BE(Addr+12, 0x658C0000); // oris r12, r12, h(addr)
|
|
writeInt32BE(Addr+16, 0x618C0000); // ori r12, r12, l(addr)
|
|
if (AbiVariant == 2) {
|
|
// PowerPC64 stub ELFv2 ABI: The address points to the function itself.
|
|
// The address is already in r12 as required by the ABI. Branch to it.
|
|
writeInt32BE(Addr+20, 0xF8410018); // std r2, 24(r1)
|
|
writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
|
|
writeInt32BE(Addr+28, 0x4E800420); // bctr
|
|
} else {
|
|
// PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
|
|
// Load the function address on r11 and sets it to control register. Also
|
|
// loads the function TOC in r2 and environment pointer to r11.
|
|
writeInt32BE(Addr+20, 0xF8410028); // std r2, 40(r1)
|
|
writeInt32BE(Addr+24, 0xE96C0000); // ld r11, 0(r12)
|
|
writeInt32BE(Addr+28, 0xE84C0008); // ld r2, 0(r12)
|
|
writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
|
|
writeInt32BE(Addr+36, 0xE96C0010); // ld r11, 16(r2)
|
|
writeInt32BE(Addr+40, 0x4E800420); // bctr
|
|
}
|
|
return Addr;
|
|
} else if (Arch == Triple::systemz) {
|
|
writeInt16BE(Addr, 0xC418); // lgrl %r1,.+8
|
|
writeInt16BE(Addr+2, 0x0000);
|
|
writeInt16BE(Addr+4, 0x0004);
|
|
writeInt16BE(Addr+6, 0x07F1); // brc 15,%r1
|
|
// 8-byte address stored at Addr + 8
|
|
return Addr;
|
|
} else if (Arch == Triple::x86_64) {
|
|
*Addr = 0xFF; // jmp
|
|
*(Addr+1) = 0x25; // rip
|
|
// 32-bit PC-relative address of the GOT entry will be stored at Addr+2
|
|
} else if (Arch == Triple::x86) {
|
|
*Addr = 0xE9; // 32-bit pc-relative jump.
|
|
}
|
|
return Addr;
|
|
}
|
|
|
|
// Assign an address to a symbol name and resolve all the relocations
|
|
// associated with it.
|
|
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
|
|
uint64_t Addr) {
|
|
// The address to use for relocation resolution is not
|
|
// the address of the local section buffer. We must be doing
|
|
// a remote execution environment of some sort. Relocations can't
|
|
// be applied until all the sections have been moved. The client must
|
|
// trigger this with a call to MCJIT::finalize() or
|
|
// RuntimeDyld::resolveRelocations().
|
|
//
|
|
// Addr is a uint64_t because we can't assume the pointer width
|
|
// of the target is the same as that of the host. Just use a generic
|
|
// "big enough" type.
|
|
Sections[SectionID].LoadAddress = Addr;
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
|
|
uint64_t Value) {
|
|
for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
|
|
const RelocationEntry &RE = Relocs[i];
|
|
// Ignore relocations for sections that were not loaded
|
|
if (Sections[RE.SectionID].Address == nullptr)
|
|
continue;
|
|
resolveRelocation(RE, Value);
|
|
}
|
|
}
|
|
|
|
void RuntimeDyldImpl::resolveExternalSymbols() {
|
|
while (!ExternalSymbolRelocations.empty()) {
|
|
StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
|
|
|
|
StringRef Name = i->first();
|
|
if (Name.size() == 0) {
|
|
// This is an absolute symbol, use an address of zero.
|
|
DEBUG(dbgs() << "Resolving absolute relocations."
|
|
<< "\n");
|
|
RelocationList &Relocs = i->second;
|
|
resolveRelocationList(Relocs, 0);
|
|
} else {
|
|
uint64_t Addr = 0;
|
|
SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
|
|
if (Loc == GlobalSymbolTable.end()) {
|
|
// This is an external symbol, try to get its address from
|
|
// MemoryManager.
|
|
Addr = MemMgr->getSymbolAddress(Name.data());
|
|
// The call to getSymbolAddress may have caused additional modules to
|
|
// be loaded, which may have added new entries to the
|
|
// ExternalSymbolRelocations map. Consquently, we need to update our
|
|
// iterator. This is also why retrieval of the relocation list
|
|
// associated with this symbol is deferred until below this point.
|
|
// New entries may have been added to the relocation list.
|
|
i = ExternalSymbolRelocations.find(Name);
|
|
} else {
|
|
// We found the symbol in our global table. It was probably in a
|
|
// Module that we loaded previously.
|
|
SymbolLoc SymLoc = Loc->second;
|
|
Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
|
|
}
|
|
|
|
// FIXME: Implement error handling that doesn't kill the host program!
|
|
if (!Addr)
|
|
report_fatal_error("Program used external function '" + Name +
|
|
"' which could not be resolved!");
|
|
|
|
updateGOTEntries(Name, Addr);
|
|
DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
|
|
<< format("0x%lx", Addr) << "\n");
|
|
// This list may have been updated when we called getSymbolAddress, so
|
|
// don't change this code to get the list earlier.
|
|
RelocationList &Relocs = i->second;
|
|
resolveRelocationList(Relocs, Addr);
|
|
}
|
|
|
|
ExternalSymbolRelocations.erase(i);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RuntimeDyld class implementation
|
|
RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
|
|
// FIXME: There's a potential issue lurking here if a single instance of
|
|
// RuntimeDyld is used to load multiple objects. The current implementation
|
|
// associates a single memory manager with a RuntimeDyld instance. Even
|
|
// though the public class spawns a new 'impl' instance for each load,
|
|
// they share a single memory manager. This can become a problem when page
|
|
// permissions are applied.
|
|
Dyld = nullptr;
|
|
MM = mm;
|
|
ProcessAllSections = false;
|
|
}
|
|
|
|
RuntimeDyld::~RuntimeDyld() { delete Dyld; }
|
|
|
|
static std::unique_ptr<RuntimeDyldELF>
|
|
createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
|
|
std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
|
|
Dyld->setProcessAllSections(ProcessAllSections);
|
|
return Dyld;
|
|
}
|
|
|
|
static std::unique_ptr<RuntimeDyldMachO>
|
|
createRuntimeDyldMachO(Triple::ArchType Arch, RTDyldMemoryManager *MM,
|
|
bool ProcessAllSections) {
|
|
std::unique_ptr<RuntimeDyldMachO> Dyld(RuntimeDyldMachO::create(Arch, MM));
|
|
Dyld->setProcessAllSections(ProcessAllSections);
|
|
return Dyld;
|
|
}
|
|
|
|
ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
|
|
std::unique_ptr<ObjectImage> InputImage;
|
|
|
|
ObjectFile &Obj = *InputObject;
|
|
|
|
if (InputObject->isELF()) {
|
|
InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
|
|
if (!Dyld)
|
|
Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
|
|
} else if (InputObject->isMachO()) {
|
|
InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
|
|
if (!Dyld)
|
|
Dyld = createRuntimeDyldMachO(
|
|
static_cast<Triple::ArchType>(InputImage->getArch()),
|
|
MM, ProcessAllSections).release();
|
|
} else
|
|
report_fatal_error("Incompatible object format!");
|
|
|
|
if (!Dyld->isCompatibleFile(&Obj))
|
|
report_fatal_error("Incompatible object format!");
|
|
|
|
Dyld->loadObject(InputImage.get());
|
|
return InputImage.release();
|
|
}
|
|
|
|
ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
|
|
std::unique_ptr<ObjectImage> InputImage;
|
|
sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
|
|
|
|
switch (Type) {
|
|
case sys::fs::file_magic::elf_relocatable:
|
|
case sys::fs::file_magic::elf_executable:
|
|
case sys::fs::file_magic::elf_shared_object:
|
|
case sys::fs::file_magic::elf_core:
|
|
InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
|
|
if (!Dyld)
|
|
Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
|
|
break;
|
|
case sys::fs::file_magic::macho_object:
|
|
case sys::fs::file_magic::macho_executable:
|
|
case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
|
|
case sys::fs::file_magic::macho_core:
|
|
case sys::fs::file_magic::macho_preload_executable:
|
|
case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
|
|
case sys::fs::file_magic::macho_dynamic_linker:
|
|
case sys::fs::file_magic::macho_bundle:
|
|
case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
|
|
case sys::fs::file_magic::macho_dsym_companion:
|
|
InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
|
|
if (!Dyld)
|
|
Dyld = createRuntimeDyldMachO(
|
|
static_cast<Triple::ArchType>(InputImage->getArch()),
|
|
MM, ProcessAllSections).release();
|
|
break;
|
|
case sys::fs::file_magic::unknown:
|
|
case sys::fs::file_magic::bitcode:
|
|
case sys::fs::file_magic::archive:
|
|
case sys::fs::file_magic::coff_object:
|
|
case sys::fs::file_magic::coff_import_library:
|
|
case sys::fs::file_magic::pecoff_executable:
|
|
case sys::fs::file_magic::macho_universal_binary:
|
|
case sys::fs::file_magic::windows_resource:
|
|
report_fatal_error("Incompatible object format!");
|
|
}
|
|
|
|
if (!Dyld->isCompatibleFormat(InputBuffer))
|
|
report_fatal_error("Incompatible object format!");
|
|
|
|
Dyld->loadObject(InputImage.get());
|
|
return InputImage.release();
|
|
}
|
|
|
|
void *RuntimeDyld::getSymbolAddress(StringRef Name) {
|
|
if (!Dyld)
|
|
return nullptr;
|
|
return Dyld->getSymbolAddress(Name);
|
|
}
|
|
|
|
uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
|
|
if (!Dyld)
|
|
return 0;
|
|
return Dyld->getSymbolLoadAddress(Name);
|
|
}
|
|
|
|
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
|
|
|
|
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
|
|
Dyld->reassignSectionAddress(SectionID, Addr);
|
|
}
|
|
|
|
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
|
|
uint64_t TargetAddress) {
|
|
Dyld->mapSectionAddress(LocalAddress, TargetAddress);
|
|
}
|
|
|
|
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
|
|
|
|
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
|
|
|
|
void RuntimeDyld::registerEHFrames() {
|
|
if (Dyld)
|
|
Dyld->registerEHFrames();
|
|
}
|
|
|
|
void RuntimeDyld::deregisterEHFrames() {
|
|
if (Dyld)
|
|
Dyld->deregisterEHFrames();
|
|
}
|
|
|
|
} // end namespace llvm
|