llvm/lib/IR/Module.cpp
Rafael Espindola 2292996e1a Pass a MemoryBufferRef when we can avoid taking ownership.
The attached patch simplifies a few interfaces that don't need to take
ownership of a buffer.

For example, both parseAssembly and parseBitcodeFile will parse the
entire buffer before returning. There is no need to take ownership.

Using a MemoryBufferRef makes it obvious in the type signature that
there is no ownership transfer.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216488 91177308-0d34-0410-b5e6-96231b3b80d8
2014-08-26 21:49:01 +00:00

461 lines
16 KiB
C++

//===-- Module.cpp - Implement the Module class ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Module class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Module.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LeakDetector.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/RandomNumberGenerator.h"
#include <algorithm>
#include <cstdarg>
#include <cstdlib>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Methods to implement the globals and functions lists.
//
// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file.
template class llvm::SymbolTableListTraits<Function, Module>;
template class llvm::SymbolTableListTraits<GlobalVariable, Module>;
template class llvm::SymbolTableListTraits<GlobalAlias, Module>;
//===----------------------------------------------------------------------===//
// Primitive Module methods.
//
Module::Module(StringRef MID, LLVMContext &C)
: Context(C), Materializer(), ModuleID(MID), RNG(nullptr), DL("") {
ValSymTab = new ValueSymbolTable();
NamedMDSymTab = new StringMap<NamedMDNode *>();
Context.addModule(this);
}
Module::~Module() {
Context.removeModule(this);
dropAllReferences();
GlobalList.clear();
FunctionList.clear();
AliasList.clear();
NamedMDList.clear();
delete ValSymTab;
delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab);
delete RNG;
}
/// getNamedValue - Return the first global value in the module with
/// the specified name, of arbitrary type. This method returns null
/// if a global with the specified name is not found.
GlobalValue *Module::getNamedValue(StringRef Name) const {
return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
}
/// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
/// This ID is uniqued across modules in the current LLVMContext.
unsigned Module::getMDKindID(StringRef Name) const {
return Context.getMDKindID(Name);
}
/// getMDKindNames - Populate client supplied SmallVector with the name for
/// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
/// so it is filled in as an empty string.
void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
return Context.getMDKindNames(Result);
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the functions in the module.
//
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return
// it. This is nice because it allows most passes to get away with not handling
// the symbol table directly for this common task.
//
Constant *Module::getOrInsertFunction(StringRef Name,
FunctionType *Ty,
AttributeSet AttributeList) {
// See if we have a definition for the specified function already.
GlobalValue *F = getNamedValue(Name);
if (!F) {
// Nope, add it
Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name);
if (!New->isIntrinsic()) // Intrinsics get attrs set on construction
New->setAttributes(AttributeList);
FunctionList.push_back(New);
return New; // Return the new prototype.
}
// If the function exists but has the wrong type, return a bitcast to the
// right type.
if (F->getType() != PointerType::getUnqual(Ty))
return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty));
// Otherwise, we just found the existing function or a prototype.
return F;
}
Constant *Module::getOrInsertFunction(StringRef Name,
FunctionType *Ty) {
return getOrInsertFunction(Name, Ty, AttributeSet());
}
// getOrInsertFunction - Look up the specified function in the module symbol
// table. If it does not exist, add a prototype for the function and return it.
// This version of the method takes a null terminated list of function
// arguments, which makes it easier for clients to use.
//
Constant *Module::getOrInsertFunction(StringRef Name,
AttributeSet AttributeList,
Type *RetTy, ...) {
va_list Args;
va_start(Args, RetTy);
// Build the list of argument types...
std::vector<Type*> ArgTys;
while (Type *ArgTy = va_arg(Args, Type*))
ArgTys.push_back(ArgTy);
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
Constant *Module::getOrInsertFunction(StringRef Name,
Type *RetTy, ...) {
va_list Args;
va_start(Args, RetTy);
// Build the list of argument types...
std::vector<Type*> ArgTys;
while (Type *ArgTy = va_arg(Args, Type*))
ArgTys.push_back(ArgTy);
va_end(Args);
// Build the function type and chain to the other getOrInsertFunction...
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttributeSet());
}
// getFunction - Look up the specified function in the module symbol table.
// If it does not exist, return null.
//
Function *Module::getFunction(StringRef Name) const {
return dyn_cast_or_null<Function>(getNamedValue(Name));
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
/// getGlobalVariable - Look up the specified global variable in the module
/// symbol table. If it does not exist, return null. The type argument
/// should be the underlying type of the global, i.e., it should not have
/// the top-level PointerType, which represents the address of the global.
/// If AllowLocal is set to true, this function will return types that
/// have an local. By default, these types are not returned.
///
GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) {
if (GlobalVariable *Result =
dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
if (AllowLocal || !Result->hasLocalLinkage())
return Result;
return nullptr;
}
/// getOrInsertGlobal - Look up the specified global in the module symbol table.
/// 1. If it does not exist, add a declaration of the global and return it.
/// 2. Else, the global exists but has the wrong type: return the function
/// with a constantexpr cast to the right type.
/// 3. Finally, if the existing global is the correct declaration, return the
/// existing global.
Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
// See if we have a definition for the specified global already.
GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
if (!GV) {
// Nope, add it
GlobalVariable *New =
new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
nullptr, Name);
return New; // Return the new declaration.
}
// If the variable exists but has the wrong type, return a bitcast to the
// right type.
Type *GVTy = GV->getType();
PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
if (GVTy != PTy)
return ConstantExpr::getBitCast(GV, PTy);
// Otherwise, we just found the existing function or a prototype.
return GV;
}
//===----------------------------------------------------------------------===//
// Methods for easy access to the global variables in the module.
//
// getNamedAlias - Look up the specified global in the module symbol table.
// If it does not exist, return null.
//
GlobalAlias *Module::getNamedAlias(StringRef Name) const {
return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
}
/// getNamedMetadata - Return the first NamedMDNode in the module with the
/// specified name. This method returns null if a NamedMDNode with the
/// specified name is not found.
NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
SmallString<256> NameData;
StringRef NameRef = Name.toStringRef(NameData);
return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef);
}
/// getOrInsertNamedMetadata - Return the first named MDNode in the module
/// with the specified name. This method returns a new NamedMDNode if a
/// NamedMDNode with the specified name is not found.
NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
NamedMDNode *&NMD =
(*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name];
if (!NMD) {
NMD = new NamedMDNode(Name);
NMD->setParent(this);
NamedMDList.push_back(NMD);
}
return NMD;
}
/// eraseNamedMetadata - Remove the given NamedMDNode from this module and
/// delete it.
void Module::eraseNamedMetadata(NamedMDNode *NMD) {
static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName());
NamedMDList.erase(NMD);
}
/// getModuleFlagsMetadata - Returns the module flags in the provided vector.
void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
const NamedMDNode *ModFlags = getModuleFlagsMetadata();
if (!ModFlags) return;
for (const MDNode *Flag : ModFlags->operands()) {
if (Flag->getNumOperands() >= 3 && isa<ConstantInt>(Flag->getOperand(0)) &&
isa<MDString>(Flag->getOperand(1))) {
// Check the operands of the MDNode before accessing the operands.
// The verifier will actually catch these failures.
ConstantInt *Behavior = cast<ConstantInt>(Flag->getOperand(0));
MDString *Key = cast<MDString>(Flag->getOperand(1));
Value *Val = Flag->getOperand(2);
Flags.push_back(ModuleFlagEntry(ModFlagBehavior(Behavior->getZExtValue()),
Key, Val));
}
}
}
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Value *Module::getModuleFlag(StringRef Key) const {
SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
getModuleFlagsMetadata(ModuleFlags);
for (const ModuleFlagEntry &MFE : ModuleFlags) {
if (Key == MFE.Key->getString())
return MFE.Val;
}
return nullptr;
}
/// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. This method returns null if there are no
/// module-level flags.
NamedMDNode *Module::getModuleFlagsMetadata() const {
return getNamedMetadata("llvm.module.flags");
}
/// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
/// represents module-level flags. If module-level flags aren't found, it
/// creates the named metadata that contains them.
NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
return getOrInsertNamedMetadata("llvm.module.flags");
}
/// addModuleFlag - Add a module-level flag to the module-level flags
/// metadata. It will create the module-level flags named metadata if it doesn't
/// already exist.
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
Value *Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
Value *Ops[3] = {
ConstantInt::get(Int32Ty, Behavior), MDString::get(Context, Key), Val
};
getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
}
void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
uint32_t Val) {
Type *Int32Ty = Type::getInt32Ty(Context);
addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
}
void Module::addModuleFlag(MDNode *Node) {
assert(Node->getNumOperands() == 3 &&
"Invalid number of operands for module flag!");
assert(isa<ConstantInt>(Node->getOperand(0)) &&
isa<MDString>(Node->getOperand(1)) &&
"Invalid operand types for module flag!");
getOrInsertModuleFlagsMetadata()->addOperand(Node);
}
void Module::setDataLayout(StringRef Desc) {
DL.reset(Desc);
if (Desc.empty()) {
DataLayoutStr = "";
} else {
DataLayoutStr = DL.getStringRepresentation();
// DataLayoutStr is now equivalent to Desc, but since the representation
// is not unique, they may not be identical.
}
}
void Module::setDataLayout(const DataLayout *Other) {
if (!Other) {
DataLayoutStr = "";
DL.reset("");
} else {
DL = *Other;
DataLayoutStr = DL.getStringRepresentation();
}
}
const DataLayout *Module::getDataLayout() const {
if (DataLayoutStr.empty())
return nullptr;
return &DL;
}
// We want reproducible builds, but ModuleID may be a full path so we just use
// the filename to salt the RNG (although it is not guaranteed to be unique).
RandomNumberGenerator &Module::getRNG() const {
if (RNG == nullptr) {
StringRef Salt = sys::path::filename(ModuleID);
RNG = new RandomNumberGenerator(Salt);
}
return *RNG;
}
//===----------------------------------------------------------------------===//
// Methods to control the materialization of GlobalValues in the Module.
//
void Module::setMaterializer(GVMaterializer *GVM) {
assert(!Materializer &&
"Module already has a GVMaterializer. Call MaterializeAllPermanently"
" to clear it out before setting another one.");
Materializer.reset(GVM);
}
bool Module::isMaterializable(const GlobalValue *GV) const {
if (Materializer)
return Materializer->isMaterializable(GV);
return false;
}
bool Module::isDematerializable(const GlobalValue *GV) const {
if (Materializer)
return Materializer->isDematerializable(GV);
return false;
}
bool Module::Materialize(GlobalValue *GV, std::string *ErrInfo) {
if (!Materializer)
return false;
std::error_code EC = Materializer->Materialize(GV);
if (!EC)
return false;
if (ErrInfo)
*ErrInfo = EC.message();
return true;
}
void Module::Dematerialize(GlobalValue *GV) {
if (Materializer)
return Materializer->Dematerialize(GV);
}
std::error_code Module::materializeAll() {
if (!Materializer)
return std::error_code();
return Materializer->MaterializeModule(this);
}
std::error_code Module::materializeAllPermanently() {
if (std::error_code EC = materializeAll())
return EC;
Materializer.reset();
return std::error_code();
}
//===----------------------------------------------------------------------===//
// Other module related stuff.
//
// dropAllReferences() - This function causes all the subelements to "let go"
// of all references that they are maintaining. This allows one to 'delete' a
// whole module at a time, even though there may be circular references... first
// all references are dropped, and all use counts go to zero. Then everything
// is deleted for real. Note that no operations are valid on an object that
// has "dropped all references", except operator delete.
//
void Module::dropAllReferences() {
for (Function &F : *this)
F.dropAllReferences();
for (GlobalVariable &GV : globals())
GV.dropAllReferences();
for (GlobalAlias &GA : aliases())
GA.dropAllReferences();
}
unsigned Module::getDwarfVersion() const {
Value *Val = getModuleFlag("Dwarf Version");
if (!Val)
return dwarf::DWARF_VERSION;
return cast<ConstantInt>(Val)->getZExtValue();
}
Comdat *Module::getOrInsertComdat(StringRef Name) {
Comdat C;
StringMapEntry<Comdat> &Entry =
ComdatSymTab.GetOrCreateValue(Name, std::move(C));
Entry.second.Name = &Entry;
return &Entry.second;
}