llvm/lib/CodeGen/LiveRangeEdit.h
Jakob Stoklund Olesen 3520019931 When dead code elimination removes all but one use, try to fold the single def into the remaining use.
Rematerialization can leave single-use loads behind that we might as well fold whenever possible.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@128918 91177308-0d34-0410-b5e6-96231b3b80d8
2011-04-05 20:20:26 +00:00

201 lines
7.9 KiB
C++

//===---- LiveRangeEdit.h - Basic tools for split and spill -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//
// The parent register is never changed. Instead, a number of new virtual
// registers are created and added to the newRegs vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
#define LLVM_CODEGEN_LIVERANGEEDIT_H
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/ADT/SmallPtrSet.h"
namespace llvm {
class AliasAnalysis;
class LiveIntervals;
class MachineLoopInfo;
class MachineRegisterInfo;
class VirtRegMap;
class LiveRangeEdit {
public:
/// Callback methods for LiveRangeEdit owners.
struct Delegate {
/// Called immediately before erasing a dead machine instruction.
virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
/// Called when a virtual register is no longer used. Return false to defer
/// its deletion from LiveIntervals.
virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
/// Called before shrinking the live range of a virtual register.
virtual void LRE_WillShrinkVirtReg(unsigned) {}
/// Called after cloning a virtual register.
/// This is used for new registers representing connected components of Old.
virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {}
virtual ~Delegate() {}
};
private:
LiveInterval &parent_;
SmallVectorImpl<LiveInterval*> &newRegs_;
Delegate *const delegate_;
const SmallVectorImpl<LiveInterval*> *uselessRegs_;
/// firstNew_ - Index of the first register added to newRegs_.
const unsigned firstNew_;
/// scannedRemattable_ - true when remattable values have been identified.
bool scannedRemattable_;
/// remattable_ - Values defined by remattable instructions as identified by
/// tii.isTriviallyReMaterializable().
SmallPtrSet<const VNInfo*,4> remattable_;
/// rematted_ - Values that were actually rematted, and so need to have their
/// live range trimmed or entirely removed.
SmallPtrSet<const VNInfo*,4> rematted_;
/// scanRemattable - Identify the parent_ values that may rematerialize.
void scanRemattable(LiveIntervals &lis,
const TargetInstrInfo &tii,
AliasAnalysis *aa);
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx, LiveIntervals &lis);
/// foldAsLoad - If LI has a single use and a single def that can be folded as
/// a load, eliminate the register by folding the def into the use.
bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead,
MachineRegisterInfo&, LiveIntervals&, const TargetInstrInfo&);
public:
/// Create a LiveRangeEdit for breaking down parent into smaller pieces.
/// @param parent The register being spilled or split.
/// @param newRegs List to receive any new registers created. This needn't be
/// empty initially, any existing registers are ignored.
/// @param uselessRegs List of registers that can't be used when
/// rematerializing values because they are about to be removed.
LiveRangeEdit(LiveInterval &parent,
SmallVectorImpl<LiveInterval*> &newRegs,
Delegate *delegate = 0,
const SmallVectorImpl<LiveInterval*> *uselessRegs = 0)
: parent_(parent), newRegs_(newRegs),
delegate_(delegate),
uselessRegs_(uselessRegs),
firstNew_(newRegs.size()),
scannedRemattable_(false) {}
LiveInterval &getParent() const { return parent_; }
unsigned getReg() const { return parent_.reg; }
/// Iterator for accessing the new registers added by this edit.
typedef SmallVectorImpl<LiveInterval*>::const_iterator iterator;
iterator begin() const { return newRegs_.begin()+firstNew_; }
iterator end() const { return newRegs_.end(); }
unsigned size() const { return newRegs_.size()-firstNew_; }
bool empty() const { return size() == 0; }
LiveInterval *get(unsigned idx) const { return newRegs_[idx+firstNew_]; }
/// FIXME: Temporary accessors until we can get rid of
/// LiveIntervals::AddIntervalsForSpills
SmallVectorImpl<LiveInterval*> *getNewVRegs() { return &newRegs_; }
const SmallVectorImpl<LiveInterval*> *getUselessVRegs() {
return uselessRegs_;
}
/// createFrom - Create a new virtual register based on OldReg.
LiveInterval &createFrom(unsigned OldReg, LiveIntervals&, VirtRegMap&);
/// create - Create a new register with the same class and original slot as
/// parent.
LiveInterval &create(LiveIntervals &LIS, VirtRegMap &VRM) {
return createFrom(getReg(), LIS, VRM);
}
/// anyRematerializable - Return true if any parent values may be
/// rematerializable.
/// This function must be called before any rematerialization is attempted.
bool anyRematerializable(LiveIntervals&, const TargetInstrInfo&,
AliasAnalysis*);
/// checkRematerializable - Manually add VNI to the list of rematerializable
/// values if DefMI may be rematerializable.
void checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI,
const TargetInstrInfo&, AliasAnalysis*);
/// Remat - Information needed to rematerialize at a specific location.
struct Remat {
VNInfo *ParentVNI; // parent_'s value at the remat location.
MachineInstr *OrigMI; // Instruction defining ParentVNI.
explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI), OrigMI(0) {}
};
/// canRematerializeAt - Determine if ParentVNI can be rematerialized at
/// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
/// When cheapAsAMove is set, only cheap remats are allowed.
bool canRematerializeAt(Remat &RM,
SlotIndex UseIdx,
bool cheapAsAMove,
LiveIntervals &lis);
/// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
/// instruction into MBB before MI. The new instruction is mapped, but
/// liveness is not updated.
/// Return the SlotIndex of the new instruction.
SlotIndex rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned DestReg,
const Remat &RM,
LiveIntervals&,
const TargetInstrInfo&,
const TargetRegisterInfo&);
/// markRematerialized - explicitly mark a value as rematerialized after doing
/// it manually.
void markRematerialized(const VNInfo *ParentVNI) {
rematted_.insert(ParentVNI);
}
/// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool didRematerialize(const VNInfo *ParentVNI) const {
return rematted_.count(ParentVNI);
}
/// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
/// to erase it from LIS.
void eraseVirtReg(unsigned Reg, LiveIntervals &LIS);
/// eliminateDeadDefs - Try to delete machine instructions that are now dead
/// (allDefsAreDead returns true). This may cause live intervals to be trimmed
/// and further dead efs to be eliminated.
void eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
LiveIntervals&, VirtRegMap&,
const TargetInstrInfo&);
/// calculateRegClassAndHint - Recompute register class and hint for each new
/// register.
void calculateRegClassAndHint(MachineFunction&, LiveIntervals&,
const MachineLoopInfo&);
};
}
#endif