mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-25 03:55:25 +00:00
7f68719517
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@103749 91177308-0d34-0410-b5e6-96231b3b80d8
2161 lines
80 KiB
C++
2161 lines
80 KiB
C++
//===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines an instruction selector for the ARM target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
UseRegSeq("neon-reg-sequence", cl::Hidden,
|
|
cl::desc("Use reg_sequence to model ld / st of multiple neon regs"));
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ARMDAGToDAGISel - ARM specific code to select ARM machine
|
|
/// instructions for SelectionDAG operations.
|
|
///
|
|
namespace {
|
|
class ARMDAGToDAGISel : public SelectionDAGISel {
|
|
ARMBaseTargetMachine &TM;
|
|
|
|
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const ARMSubtarget *Subtarget;
|
|
|
|
public:
|
|
explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm,
|
|
CodeGenOpt::Level OptLevel)
|
|
: SelectionDAGISel(tm, OptLevel), TM(tm),
|
|
Subtarget(&TM.getSubtarget<ARMSubtarget>()) {
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "ARM Instruction Selection";
|
|
}
|
|
|
|
/// getI32Imm - Return a target constant of type i32 with the specified
|
|
/// value.
|
|
inline SDValue getI32Imm(unsigned Imm) {
|
|
return CurDAG->getTargetConstant(Imm, MVT::i32);
|
|
}
|
|
|
|
SDNode *Select(SDNode *N);
|
|
|
|
bool SelectShifterOperandReg(SDNode *Op, SDValue N, SDValue &A,
|
|
SDValue &B, SDValue &C);
|
|
bool SelectAddrMode2(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode2Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode3(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc);
|
|
bool SelectAddrMode4(SDNode *Op, SDValue N, SDValue &Addr,
|
|
SDValue &Mode);
|
|
bool SelectAddrMode5(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &Offset);
|
|
bool SelectAddrMode6(SDNode *Op, SDValue N, SDValue &Addr, SDValue &Align);
|
|
|
|
bool SelectAddrModePC(SDNode *Op, SDValue N, SDValue &Offset,
|
|
SDValue &Label);
|
|
|
|
bool SelectThumbAddrModeRR(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &Offset);
|
|
bool SelectThumbAddrModeRI5(SDNode *Op, SDValue N, unsigned Scale,
|
|
SDValue &Base, SDValue &OffImm,
|
|
SDValue &Offset);
|
|
bool SelectThumbAddrModeS1(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm, SDValue &Offset);
|
|
bool SelectThumbAddrModeS2(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm, SDValue &Offset);
|
|
bool SelectThumbAddrModeS4(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm, SDValue &Offset);
|
|
bool SelectThumbAddrModeSP(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
|
|
bool SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
|
|
SDValue &BaseReg, SDValue &Opc);
|
|
bool SelectT2AddrModeImm12(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeImm8(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeImm8s4(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffImm);
|
|
bool SelectT2AddrModeSoReg(SDNode *Op, SDValue N, SDValue &Base,
|
|
SDValue &OffReg, SDValue &ShImm);
|
|
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "ARMGenDAGISel.inc"
|
|
|
|
private:
|
|
/// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for
|
|
/// ARM.
|
|
SDNode *SelectARMIndexedLoad(SDNode *N);
|
|
SDNode *SelectT2IndexedLoad(SDNode *N);
|
|
|
|
/// SelectVLD - Select NEON load intrinsics. NumVecs should be
|
|
/// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// loads of D registers and even subregs and odd subregs of Q registers.
|
|
/// For NumVecs <= 2, QOpcodes1 is not used.
|
|
SDNode *SelectVLD(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
|
|
unsigned *QOpcodes0, unsigned *QOpcodes1);
|
|
|
|
/// SelectVST - Select NEON store intrinsics. NumVecs should
|
|
/// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// stores of D registers and even subregs and odd subregs of Q registers.
|
|
/// For NumVecs <= 2, QOpcodes1 is not used.
|
|
SDNode *SelectVST(SDNode *N, unsigned NumVecs, unsigned *DOpcodes,
|
|
unsigned *QOpcodes0, unsigned *QOpcodes1);
|
|
|
|
/// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
|
|
/// be 2, 3 or 4. The opcode arrays specify the instructions used for
|
|
/// load/store of D registers and even subregs and odd subregs of Q registers.
|
|
SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, unsigned NumVecs,
|
|
unsigned *DOpcodes, unsigned *QOpcodes0,
|
|
unsigned *QOpcodes1);
|
|
|
|
/// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM.
|
|
SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
|
|
|
|
/// SelectCMOVOp - Select CMOV instructions for ARM.
|
|
SDNode *SelectCMOVOp(SDNode *N);
|
|
SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR,
|
|
SDValue InFlag);
|
|
SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR,
|
|
SDValue InFlag);
|
|
SDNode *SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR,
|
|
SDValue InFlag);
|
|
SDNode *SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR,
|
|
SDValue InFlag);
|
|
|
|
SDNode *SelectConcatVector(SDNode *N);
|
|
|
|
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
|
|
/// inline asm expressions.
|
|
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
|
|
char ConstraintCode,
|
|
std::vector<SDValue> &OutOps);
|
|
|
|
/// PairDRegs - Form a quad register from a pair of D registers.
|
|
///
|
|
SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1);
|
|
|
|
/// PairDRegs - Form a quad register pair from a pair of Q registers.
|
|
///
|
|
SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1);
|
|
|
|
/// QuadDRegs - Form a quad register pair from a quad of D registers.
|
|
///
|
|
SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
|
|
};
|
|
}
|
|
|
|
/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
|
|
/// operand. If so Imm will receive the 32-bit value.
|
|
static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
|
|
if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
|
|
Imm = cast<ConstantSDNode>(N)->getZExtValue();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// isInt32Immediate - This method tests to see if a constant operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isInt32Immediate(SDValue N, unsigned &Imm) {
|
|
return isInt32Immediate(N.getNode(), Imm);
|
|
}
|
|
|
|
// isOpcWithIntImmediate - This method tests to see if the node is a specific
|
|
// opcode and that it has a immediate integer right operand.
|
|
// If so Imm will receive the 32 bit value.
|
|
static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
|
|
return N->getOpcode() == Opc &&
|
|
isInt32Immediate(N->getOperand(1).getNode(), Imm);
|
|
}
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectShifterOperandReg(SDNode *Op,
|
|
SDValue N,
|
|
SDValue &BaseReg,
|
|
SDValue &ShReg,
|
|
SDValue &Opc) {
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
|
|
|
|
// Don't match base register only case. That is matched to a separate
|
|
// lower complexity pattern with explicit register operand.
|
|
if (ShOpcVal == ARM_AM::no_shift) return false;
|
|
|
|
BaseReg = N.getOperand(0);
|
|
unsigned ShImmVal = 0;
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
ShReg = CurDAG->getRegister(0, MVT::i32);
|
|
ShImmVal = RHS->getZExtValue() & 31;
|
|
} else {
|
|
ShReg = N.getOperand(1);
|
|
}
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode2(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
if (N.getOpcode() == ISD::MUL) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
// X * [3,5,9] -> X + X * [2,4,8] etc.
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC & 1) {
|
|
RHSC = RHSC & ~1;
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
if (isPowerOf2_32(RHSC)) {
|
|
unsigned ShAmt = Log2_32(RHSC);
|
|
Base = Offset = N.getOperand(0);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
|
|
ARM_AM::lsl),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
} else if (N.getOpcode() == ARMISD::Wrapper &&
|
|
!(Subtarget->useMovt() &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
|
|
Base = N.getOperand(0);
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Match simple R +/- imm12 operands.
|
|
if (N.getOpcode() == ISD::ADD)
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if ((RHSC >= 0 && RHSC < 0x1000) ||
|
|
(RHSC < 0 && RHSC > -0x1000)) { // 12 bits.
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Otherwise this is R +/- [possibly shifted] R.
|
|
ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::ADD ? ARM_AM::add:ARM_AM::sub;
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(1));
|
|
unsigned ShAmt = 0;
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
Offset = N.getOperand(1).getOperand(0);
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
// Try matching (R shl C) + (R).
|
|
if (N.getOpcode() == ISD::ADD && ShOpcVal == ARM_AM::no_shift) {
|
|
ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0));
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't
|
|
// fold it.
|
|
if (ConstantSDNode *Sh =
|
|
dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
Offset = N.getOperand(0).getOperand(0);
|
|
Base = N.getOperand(1);
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
}
|
|
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode2Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
|
|
int Val = (int)C->getZExtValue();
|
|
if (Val >= 0 && Val < 0x1000) { // 12 bits.
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
|
|
ARM_AM::no_shift),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Offset = N;
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
|
|
unsigned ShAmt = 0;
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
Offset = N.getOperand(0);
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode3(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &Offset,
|
|
SDValue &Opc) {
|
|
if (N.getOpcode() == ISD::SUB) {
|
|
// X - C is canonicalize to X + -C, no need to handle it here.
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is +/- imm8, fold into addr mode.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if ((RHSC >= 0 && RHSC < 256) ||
|
|
(RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Opc) {
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
|
|
? ARM_AM::add : ARM_AM::sub;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
|
|
int Val = (int)C->getZExtValue();
|
|
if (Val >= 0 && Val < 256) {
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Offset = N;
|
|
Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode4(SDNode *Op, SDValue N,
|
|
SDValue &Addr, SDValue &Mode) {
|
|
Addr = N;
|
|
Mode = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode5(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &Offset) {
|
|
if (N.getOpcode() != ISD::ADD) {
|
|
Base = N;
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
} else if (N.getOpcode() == ARMISD::Wrapper &&
|
|
!(Subtarget->useMovt() &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
|
|
Base = N.getOperand(0);
|
|
}
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is +/- imm8, fold into addr mode.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if ((RHSC & 3) == 0) { // The constant is implicitly multiplied by 4.
|
|
RHSC >>= 2;
|
|
if ((RHSC >= 0 && RHSC < 256) ||
|
|
(RHSC < 0 && RHSC > -256)) { // note -256 itself isn't allowed.
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
|
|
ARM_AM::AddrOpc AddSub = ARM_AM::add;
|
|
if (RHSC < 0) {
|
|
AddSub = ARM_AM::sub;
|
|
RHSC = - RHSC;
|
|
}
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Base = N;
|
|
Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Op, SDValue N,
|
|
SDValue &Addr, SDValue &Align) {
|
|
Addr = N;
|
|
// Default to no alignment.
|
|
Align = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectAddrModePC(SDNode *Op, SDValue N,
|
|
SDValue &Offset, SDValue &Label) {
|
|
if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
|
|
Offset = N.getOperand(0);
|
|
SDValue N1 = N.getOperand(1);
|
|
Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &Offset){
|
|
// FIXME dl should come from the parent load or store, not the address
|
|
DebugLoc dl = Op->getDebugLoc();
|
|
if (N.getOpcode() != ISD::ADD) {
|
|
ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
|
|
if (!NC || NC->getZExtValue() != 0)
|
|
return false;
|
|
|
|
Base = Offset = N;
|
|
return true;
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMDAGToDAGISel::SelectThumbAddrModeRI5(SDNode *Op, SDValue N,
|
|
unsigned Scale, SDValue &Base,
|
|
SDValue &OffImm, SDValue &Offset) {
|
|
if (Scale == 4) {
|
|
SDValue TmpBase, TmpOffImm;
|
|
if (SelectThumbAddrModeSP(Op, N, TmpBase, TmpOffImm))
|
|
return false; // We want to select tLDRspi / tSTRspi instead.
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetConstantPool)
|
|
return false; // We want to select tLDRpci instead.
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD) {
|
|
if (N.getOpcode() == ARMISD::Wrapper &&
|
|
!(Subtarget->useMovt() &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
|
|
Base = N.getOperand(0);
|
|
} else
|
|
Base = N;
|
|
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Thumb does not have [sp, r] address mode.
|
|
RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
|
|
RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1));
|
|
if ((LHSR && LHSR->getReg() == ARM::SP) ||
|
|
(RHSR && RHSR->getReg() == ARM::SP)) {
|
|
Base = N;
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// If the RHS is + imm5 * scale, fold into addr mode.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if ((RHSC & (Scale-1)) == 0) { // The constant is implicitly multiplied.
|
|
RHSC /= Scale;
|
|
if (RHSC >= 0 && RHSC < 32) {
|
|
Base = N.getOperand(0);
|
|
Offset = CurDAG->getRegister(0, MVT::i32);
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Base = N.getOperand(0);
|
|
Offset = N.getOperand(1);
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeS1(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI5(Op, N, 1, Base, OffImm, Offset);
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeS2(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI5(Op, N, 2, Base, OffImm, Offset);
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeS4(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm,
|
|
SDValue &Offset) {
|
|
return SelectThumbAddrModeRI5(Op, N, 4, Base, OffImm, Offset);
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0));
|
|
if (N.getOperand(0).getOpcode() == ISD::FrameIndex ||
|
|
(LHSR && LHSR->getReg() == ARM::SP)) {
|
|
// If the RHS is + imm8 * scale, fold into addr mode.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if ((RHSC & 3) == 0) { // The constant is implicitly multiplied.
|
|
RHSC >>= 2;
|
|
if (RHSC >= 0 && RHSC < 256) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDNode *Op, SDValue N,
|
|
SDValue &BaseReg,
|
|
SDValue &Opc) {
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N);
|
|
|
|
// Don't match base register only case. That is matched to a separate
|
|
// lower complexity pattern with explicit register operand.
|
|
if (ShOpcVal == ARM_AM::no_shift) return false;
|
|
|
|
BaseReg = N.getOperand(0);
|
|
unsigned ShImmVal = 0;
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
ShImmVal = RHS->getZExtValue() & 31;
|
|
Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
// Match simple R + imm12 operands.
|
|
|
|
// Base only.
|
|
if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB) {
|
|
if (N.getOpcode() == ISD::FrameIndex) {
|
|
// Match frame index...
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
} else if (N.getOpcode() == ARMISD::Wrapper &&
|
|
!(Subtarget->useMovt() &&
|
|
N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) {
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::TargetConstantPool)
|
|
return false; // We want to select t2LDRpci instead.
|
|
} else
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
if (SelectT2AddrModeImm8(Op, N, Base, OffImm))
|
|
// Let t2LDRi8 handle (R - imm8).
|
|
return false;
|
|
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (N.getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Base only.
|
|
Base = N;
|
|
OffImm = CurDAG->getTargetConstant(0, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
// Match simple R - imm8 operands.
|
|
if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::SUB) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getSExtValue();
|
|
if (N.getOpcode() == ISD::SUB)
|
|
RHSC = -RHSC;
|
|
|
|
if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
|
|
Base = N.getOperand(0);
|
|
if (Base.getOpcode() == ISD::FrameIndex) {
|
|
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
|
|
Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
}
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
|
|
SDValue &OffImm){
|
|
unsigned Opcode = Op->getOpcode();
|
|
ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
|
|
? cast<LoadSDNode>(Op)->getAddressingMode()
|
|
: cast<StoreSDNode>(Op)->getAddressingMode();
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N)) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC >= 0 && RHSC < 0x100) { // 8 bits.
|
|
OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
|
|
? CurDAG->getTargetConstant(RHSC, MVT::i32)
|
|
: CurDAG->getTargetConstant(-RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeImm8s4(SDNode *Op, SDValue N,
|
|
SDValue &Base, SDValue &OffImm) {
|
|
if (N.getOpcode() == ISD::ADD) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (((RHSC & 0x3) == 0) &&
|
|
((RHSC >= 0 && RHSC < 0x400) || (RHSC < 0 && RHSC > -0x400))) { // 8 bits.
|
|
Base = N.getOperand(0);
|
|
OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (N.getOpcode() == ISD::SUB) {
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (((RHSC & 0x3) == 0) && (RHSC >= 0 && RHSC < 0x400)) { // 8 bits.
|
|
Base = N.getOperand(0);
|
|
OffImm = CurDAG->getTargetConstant(-RHSC, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDNode *Op, SDValue N,
|
|
SDValue &Base,
|
|
SDValue &OffReg, SDValue &ShImm) {
|
|
// (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
|
|
if (N.getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
// Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
|
|
return false;
|
|
else if (RHSC < 0 && RHSC >= -255) // 8 bits
|
|
return false;
|
|
}
|
|
|
|
// Look for (R + R) or (R + (R << [1,2,3])).
|
|
unsigned ShAmt = 0;
|
|
Base = N.getOperand(0);
|
|
OffReg = N.getOperand(1);
|
|
|
|
// Swap if it is ((R << c) + R).
|
|
ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg);
|
|
if (ShOpcVal != ARM_AM::lsl) {
|
|
ShOpcVal = ARM_AM::getShiftOpcForNode(Base);
|
|
if (ShOpcVal == ARM_AM::lsl)
|
|
std::swap(Base, OffReg);
|
|
}
|
|
|
|
if (ShOpcVal == ARM_AM::lsl) {
|
|
// Check to see if the RHS of the shift is a constant, if not, we can't fold
|
|
// it.
|
|
if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
|
|
ShAmt = Sh->getZExtValue();
|
|
if (ShAmt >= 4) {
|
|
ShAmt = 0;
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
} else
|
|
OffReg = OffReg.getOperand(0);
|
|
} else {
|
|
ShOpcVal = ARM_AM::no_shift;
|
|
}
|
|
}
|
|
|
|
ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32);
|
|
|
|
return true;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// getAL - Returns a ARMCC::AL immediate node.
|
|
static inline SDValue getAL(SelectionDAG *CurDAG) {
|
|
return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
if (AM == ISD::UNINDEXED)
|
|
return NULL;
|
|
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
SDValue Offset, AMOpc;
|
|
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
|
|
unsigned Opcode = 0;
|
|
bool Match = false;
|
|
if (LoadedVT == MVT::i32 &&
|
|
SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Opcode = isPre ? ARM::LDR_PRE : ARM::LDR_POST;
|
|
Match = true;
|
|
} else if (LoadedVT == MVT::i16 &&
|
|
SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
|
|
? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
|
|
: (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
|
|
} else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
|
|
if (LD->getExtensionType() == ISD::SEXTLOAD) {
|
|
if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
|
|
}
|
|
} else {
|
|
if (SelectAddrMode2Offset(N, LD->getOffset(), Offset, AMOpc)) {
|
|
Match = true;
|
|
Opcode = isPre ? ARM::LDRB_PRE : ARM::LDRB_POST;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Match) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32), Chain };
|
|
return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
|
|
MVT::Other, Ops, 6);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
if (AM == ISD::UNINDEXED)
|
|
return NULL;
|
|
|
|
EVT LoadedVT = LD->getMemoryVT();
|
|
bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
SDValue Offset;
|
|
bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
|
|
unsigned Opcode = 0;
|
|
bool Match = false;
|
|
if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
|
|
switch (LoadedVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i32:
|
|
Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
|
|
break;
|
|
case MVT::i16:
|
|
if (isSExtLd)
|
|
Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
|
|
else
|
|
Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i1:
|
|
if (isSExtLd)
|
|
Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
|
|
else
|
|
Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
Match = true;
|
|
}
|
|
|
|
if (Match) {
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Base = LD->getBasePtr();
|
|
SDValue Ops[]= { Base, Offset, getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32), Chain };
|
|
return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32,
|
|
MVT::Other, Ops, 5);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/// PairDRegs - Form a quad register from a pair of D registers.
|
|
///
|
|
SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) {
|
|
DebugLoc dl = V0.getNode()->getDebugLoc();
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::DSUBREG_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::DSUBREG_1, MVT::i32);
|
|
if (llvm::ModelWithRegSequence()) {
|
|
const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
|
|
}
|
|
SDValue Undef =
|
|
SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0);
|
|
SDNode *Pair = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
|
|
VT, Undef, V0, SubReg0);
|
|
return CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
|
|
VT, SDValue(Pair, 0), V1, SubReg1);
|
|
}
|
|
|
|
/// PairQRegs - Form 4 consecutive D registers from a pair of Q registers.
|
|
///
|
|
SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) {
|
|
DebugLoc dl = V0.getNode()->getDebugLoc();
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::QSUBREG_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::QSUBREG_1, MVT::i32);
|
|
const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
|
|
}
|
|
|
|
/// QuadDRegs - Form 4 consecutive D registers.
|
|
///
|
|
SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1,
|
|
SDValue V2, SDValue V3) {
|
|
DebugLoc dl = V0.getNode()->getDebugLoc();
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::DSUBREG_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::DSUBREG_1, MVT::i32);
|
|
SDValue SubReg2 = CurDAG->getTargetConstant(ARM::DSUBREG_2, MVT::i32);
|
|
SDValue SubReg3 = CurDAG->getTargetConstant(ARM::DSUBREG_3, MVT::i32);
|
|
const SDValue Ops[] = { V0, SubReg0, V1, SubReg1, V2, SubReg2, V3, SubReg3 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 8);
|
|
}
|
|
|
|
/// GetNEONSubregVT - Given a type for a 128-bit NEON vector, return the type
|
|
/// for a 64-bit subregister of the vector.
|
|
static EVT GetNEONSubregVT(EVT VT) {
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled NEON type");
|
|
case MVT::v16i8: return MVT::v8i8;
|
|
case MVT::v8i16: return MVT::v4i16;
|
|
case MVT::v4f32: return MVT::v2f32;
|
|
case MVT::v4i32: return MVT::v2i32;
|
|
case MVT::v2i64: return MVT::v1i64;
|
|
}
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, unsigned NumVecs,
|
|
unsigned *DOpcodes, unsigned *QOpcodes0,
|
|
unsigned *QOpcodes1) {
|
|
assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SDValue MemAddr, Align;
|
|
if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
|
|
return NULL;
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vld type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
// Quad-register operations:
|
|
case MVT::v16i8: OpcodeIndex = 0; break;
|
|
case MVT::v8i16: OpcodeIndex = 1; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 2; break;
|
|
case MVT::v2i64: OpcodeIndex = 3;
|
|
assert(NumVecs == 1 && "v2i64 type only supported for VLD1");
|
|
break;
|
|
}
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
if (is64BitVector) {
|
|
unsigned Opc = DOpcodes[OpcodeIndex];
|
|
const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
|
|
std::vector<EVT> ResTys(NumVecs, VT);
|
|
ResTys.push_back(MVT::Other);
|
|
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
|
|
if (!llvm::ModelWithRegSequence() || NumVecs < 2)
|
|
return VLd;
|
|
|
|
assert(NumVecs <= 4);
|
|
SDValue RegSeq;
|
|
SDValue V0 = SDValue(VLd, 0);
|
|
SDValue V1 = SDValue(VLd, 1);
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
if (NumVecs == 2)
|
|
RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
|
|
else {
|
|
SDValue V2 = SDValue(VLd, 2);
|
|
// If it's a vld3, form a quad D-register but discard the last part.
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
|
|
: SDValue(VLd, 3);
|
|
RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
|
|
}
|
|
|
|
SDValue D0 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, VT, RegSeq);
|
|
ReplaceUses(SDValue(N, 0), D0);
|
|
SDValue D1 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, VT, RegSeq);
|
|
ReplaceUses(SDValue(N, 1), D1);
|
|
|
|
if (NumVecs > 2) {
|
|
SDValue D2 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_2, dl, VT, RegSeq);
|
|
ReplaceUses(SDValue(N, 2), D2);
|
|
}
|
|
if (NumVecs > 3) {
|
|
SDValue D3 = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_3, dl, VT, RegSeq);
|
|
ReplaceUses(SDValue(N, 3), D3);
|
|
}
|
|
ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, NumVecs));
|
|
return NULL;
|
|
}
|
|
|
|
EVT RegVT = GetNEONSubregVT(VT);
|
|
if (NumVecs <= 2) {
|
|
// Quad registers are directly supported for VLD1 and VLD2,
|
|
// loading pairs of D regs.
|
|
unsigned Opc = QOpcodes0[OpcodeIndex];
|
|
const SDValue Ops[] = { MemAddr, Align, Pred, Reg0, Chain };
|
|
std::vector<EVT> ResTys(2 * NumVecs, RegVT);
|
|
ResTys.push_back(MVT::Other);
|
|
SDNode *VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops, 5);
|
|
Chain = SDValue(VLd, 2 * NumVecs);
|
|
|
|
// Combine the even and odd subregs to produce the result.
|
|
if (llvm::ModelWithRegSequence()) {
|
|
if (NumVecs == 1) {
|
|
SDNode *Q = PairDRegs(VT, SDValue(VLd, 0), SDValue(VLd, 1));
|
|
ReplaceUses(SDValue(N, 0), SDValue(Q, 0));
|
|
} else {
|
|
SDValue QQ = SDValue(QuadDRegs(MVT::v4i64,
|
|
SDValue(VLd, 0), SDValue(VLd, 1),
|
|
SDValue(VLd, 2), SDValue(VLd, 3)), 0);
|
|
SDValue Q0 = CurDAG->getTargetExtractSubreg(ARM::QSUBREG_0, dl, VT, QQ);
|
|
SDValue Q1 = CurDAG->getTargetExtractSubreg(ARM::QSUBREG_1, dl, VT, QQ);
|
|
ReplaceUses(SDValue(N, 0), Q0);
|
|
ReplaceUses(SDValue(N, 1), Q1);
|
|
}
|
|
} else {
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
|
|
SDNode *Q = PairDRegs(VT, SDValue(VLd, 2*Vec), SDValue(VLd, 2*Vec+1));
|
|
ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
|
|
}
|
|
}
|
|
} else {
|
|
// Otherwise, quad registers are loaded with two separate instructions,
|
|
// where one loads the even registers and the other loads the odd registers.
|
|
|
|
std::vector<EVT> ResTys(NumVecs, RegVT);
|
|
ResTys.push_back(MemAddr.getValueType());
|
|
ResTys.push_back(MVT::Other);
|
|
|
|
// Load the even subregs.
|
|
unsigned Opc = QOpcodes0[OpcodeIndex];
|
|
const SDValue OpsA[] = { MemAddr, Align, Reg0, Pred, Reg0, Chain };
|
|
SDNode *VLdA = CurDAG->getMachineNode(Opc, dl, ResTys, OpsA, 6);
|
|
Chain = SDValue(VLdA, NumVecs+1);
|
|
|
|
// Load the odd subregs.
|
|
Opc = QOpcodes1[OpcodeIndex];
|
|
const SDValue OpsB[] = { SDValue(VLdA, NumVecs),
|
|
Align, Reg0, Pred, Reg0, Chain };
|
|
SDNode *VLdB = CurDAG->getMachineNode(Opc, dl, ResTys, OpsB, 6);
|
|
Chain = SDValue(VLdB, NumVecs+1);
|
|
|
|
// Combine the even and odd subregs to produce the result.
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
|
|
SDNode *Q = PairDRegs(VT, SDValue(VLdA, Vec), SDValue(VLdB, Vec));
|
|
ReplaceUses(SDValue(N, Vec), SDValue(Q, 0));
|
|
}
|
|
}
|
|
ReplaceUses(SDValue(N, NumVecs), Chain);
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, unsigned NumVecs,
|
|
unsigned *DOpcodes, unsigned *QOpcodes0,
|
|
unsigned *QOpcodes1) {
|
|
assert(NumVecs >=1 && NumVecs <= 4 && "VST NumVecs out-of-range");
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SDValue MemAddr, Align;
|
|
if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
|
|
return NULL;
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
EVT VT = N->getOperand(3).getValueType();
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vst type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
case MVT::v1i64: OpcodeIndex = 3; break;
|
|
// Quad-register operations:
|
|
case MVT::v16i8: OpcodeIndex = 0; break;
|
|
case MVT::v8i16: OpcodeIndex = 1; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 2; break;
|
|
case MVT::v2i64: OpcodeIndex = 3;
|
|
assert(NumVecs == 1 && "v2i64 type only supported for VST1");
|
|
break;
|
|
}
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
SmallVector<SDValue, 10> Ops;
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
|
|
if (is64BitVector) {
|
|
if (llvm::ModelWithRegSequence() && NumVecs >= 2) {
|
|
assert(NumVecs <= 4);
|
|
SDValue RegSeq;
|
|
SDValue V0 = N->getOperand(0+3);
|
|
SDValue V1 = N->getOperand(1+3);
|
|
|
|
// Form a REG_SEQUENCE to force register allocation.
|
|
if (NumVecs == 2)
|
|
RegSeq = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0);
|
|
else {
|
|
SDValue V2 = N->getOperand(2+3);
|
|
// If it's a vld3, form a quad D-register and leave the last part as
|
|
// an undef.
|
|
SDValue V3 = (NumVecs == 3)
|
|
? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
|
|
: N->getOperand(3+3);
|
|
RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0);
|
|
}
|
|
|
|
// Now extract the D registers back out.
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, VT,
|
|
RegSeq));
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, VT,
|
|
RegSeq));
|
|
if (NumVecs > 2)
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_2, dl, VT,
|
|
RegSeq));
|
|
if (NumVecs > 3)
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_3, dl, VT,
|
|
RegSeq));
|
|
} else {
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
Ops.push_back(N->getOperand(Vec+3));
|
|
}
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0); // predicate register
|
|
Ops.push_back(Chain);
|
|
unsigned Opc = DOpcodes[OpcodeIndex];
|
|
return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+5);
|
|
}
|
|
|
|
EVT RegVT = GetNEONSubregVT(VT);
|
|
if (NumVecs <= 2) {
|
|
// Quad registers are directly supported for VST1 and VST2,
|
|
// storing pairs of D regs.
|
|
unsigned Opc = QOpcodes0[OpcodeIndex];
|
|
if (llvm::ModelWithRegSequence() && NumVecs == 2) {
|
|
// First extract the pair of Q registers.
|
|
SDValue Q0 = N->getOperand(3);
|
|
SDValue Q1 = N->getOperand(4);
|
|
|
|
// Form a QQ register.
|
|
SDValue QQ = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0);
|
|
|
|
// Now extract the D registers back out.
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
|
|
QQ));
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
|
|
QQ));
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_2, dl, RegVT,
|
|
QQ));
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_3, dl, RegVT,
|
|
QQ));
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0); // predicate register
|
|
Ops.push_back(Chain);
|
|
return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), 5 + 4);
|
|
} else {
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
|
|
N->getOperand(Vec+3)));
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
|
|
N->getOperand(Vec+3)));
|
|
}
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0); // predicate register
|
|
Ops.push_back(Chain);
|
|
return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(),
|
|
5 + 2 * NumVecs);
|
|
}
|
|
}
|
|
|
|
// Otherwise, quad registers are stored with two separate instructions,
|
|
// where one stores the even registers and the other stores the odd registers.
|
|
|
|
Ops.push_back(Reg0); // post-access address offset
|
|
|
|
// Store the even subregs.
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(ARM::DSUBREG_0, dl, RegVT,
|
|
N->getOperand(Vec+3)));
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0); // predicate register
|
|
Ops.push_back(Chain);
|
|
unsigned Opc = QOpcodes0[OpcodeIndex];
|
|
SDNode *VStA = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
|
|
MVT::Other, Ops.data(), NumVecs+6);
|
|
Chain = SDValue(VStA, 1);
|
|
|
|
// Store the odd subregs.
|
|
Ops[0] = SDValue(VStA, 0); // MemAddr
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
Ops[Vec+3] = CurDAG->getTargetExtractSubreg(ARM::DSUBREG_1, dl, RegVT,
|
|
N->getOperand(Vec+3));
|
|
Ops[NumVecs+5] = Chain;
|
|
Opc = QOpcodes1[OpcodeIndex];
|
|
SDNode *VStB = CurDAG->getMachineNode(Opc, dl, MemAddr.getValueType(),
|
|
MVT::Other, Ops.data(), NumVecs+6);
|
|
Chain = SDValue(VStB, 1);
|
|
ReplaceUses(SDValue(N, 0), Chain);
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad,
|
|
unsigned NumVecs, unsigned *DOpcodes,
|
|
unsigned *QOpcodes0,
|
|
unsigned *QOpcodes1) {
|
|
assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
SDValue MemAddr, Align;
|
|
if (!SelectAddrMode6(N, N->getOperand(2), MemAddr, Align))
|
|
return NULL;
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
unsigned Lane =
|
|
cast<ConstantSDNode>(N->getOperand(NumVecs+3))->getZExtValue();
|
|
EVT VT = IsLoad ? N->getValueType(0) : N->getOperand(3).getValueType();
|
|
bool is64BitVector = VT.is64BitVector();
|
|
|
|
// Quad registers are handled by load/store of subregs. Find the subreg info.
|
|
unsigned NumElts = 0;
|
|
int SubregIdx = 0;
|
|
EVT RegVT = VT;
|
|
if (!is64BitVector) {
|
|
RegVT = GetNEONSubregVT(VT);
|
|
NumElts = RegVT.getVectorNumElements();
|
|
SubregIdx = (Lane < NumElts) ? ARM::DSUBREG_0 : ARM::DSUBREG_1;
|
|
}
|
|
|
|
unsigned OpcodeIndex;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("unhandled vld/vst lane type");
|
|
// Double-register operations:
|
|
case MVT::v8i8: OpcodeIndex = 0; break;
|
|
case MVT::v4i16: OpcodeIndex = 1; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: OpcodeIndex = 2; break;
|
|
// Quad-register operations:
|
|
case MVT::v8i16: OpcodeIndex = 0; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: OpcodeIndex = 1; break;
|
|
}
|
|
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
|
|
SmallVector<SDValue, 10> Ops;
|
|
Ops.push_back(MemAddr);
|
|
Ops.push_back(Align);
|
|
|
|
unsigned Opc = 0;
|
|
if (is64BitVector) {
|
|
Opc = DOpcodes[OpcodeIndex];
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
Ops.push_back(N->getOperand(Vec+3));
|
|
} else {
|
|
// Check if this is loading the even or odd subreg of a Q register.
|
|
if (Lane < NumElts) {
|
|
Opc = QOpcodes0[OpcodeIndex];
|
|
} else {
|
|
Lane -= NumElts;
|
|
Opc = QOpcodes1[OpcodeIndex];
|
|
}
|
|
// Extract the subregs of the input vector.
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
|
|
Ops.push_back(CurDAG->getTargetExtractSubreg(SubregIdx, dl, RegVT,
|
|
N->getOperand(Vec+3)));
|
|
}
|
|
Ops.push_back(getI32Imm(Lane));
|
|
Ops.push_back(Pred);
|
|
Ops.push_back(Reg0);
|
|
Ops.push_back(Chain);
|
|
|
|
if (!IsLoad)
|
|
return CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops.data(), NumVecs+6);
|
|
|
|
std::vector<EVT> ResTys(NumVecs, RegVT);
|
|
ResTys.push_back(MVT::Other);
|
|
SDNode *VLdLn =
|
|
CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), NumVecs+6);
|
|
// For a 64-bit vector load to D registers, nothing more needs to be done.
|
|
if (is64BitVector)
|
|
return VLdLn;
|
|
|
|
// For 128-bit vectors, take the 64-bit results of the load and insert them
|
|
// as subregs into the result.
|
|
for (unsigned Vec = 0; Vec < NumVecs; ++Vec) {
|
|
SDValue QuadVec = CurDAG->getTargetInsertSubreg(SubregIdx, dl, VT,
|
|
N->getOperand(Vec+3),
|
|
SDValue(VLdLn, Vec));
|
|
ReplaceUses(SDValue(N, Vec), QuadVec);
|
|
}
|
|
|
|
Chain = SDValue(VLdLn, NumVecs);
|
|
ReplaceUses(SDValue(N, NumVecs), Chain);
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N,
|
|
bool isSigned) {
|
|
if (!Subtarget->hasV6T2Ops())
|
|
return NULL;
|
|
|
|
unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
|
|
: (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
|
|
|
|
|
|
// For unsigned extracts, check for a shift right and mask
|
|
unsigned And_imm = 0;
|
|
if (N->getOpcode() == ISD::AND) {
|
|
if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
|
|
|
|
// The immediate is a mask of the low bits iff imm & (imm+1) == 0
|
|
if (And_imm & (And_imm + 1))
|
|
return NULL;
|
|
|
|
unsigned Srl_imm = 0;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
|
|
Srl_imm)) {
|
|
assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
|
|
|
|
unsigned Width = CountTrailingOnes_32(And_imm);
|
|
unsigned LSB = Srl_imm;
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
CurDAG->getTargetConstant(LSB, MVT::i32),
|
|
CurDAG->getTargetConstant(Width, MVT::i32),
|
|
getAL(CurDAG), Reg0 };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Otherwise, we're looking for a shift of a shift
|
|
unsigned Shl_imm = 0;
|
|
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
|
|
assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
|
|
unsigned Srl_imm = 0;
|
|
if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
|
|
assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
|
|
unsigned Width = 32 - Srl_imm;
|
|
int LSB = Srl_imm - Shl_imm;
|
|
if (LSB < 0)
|
|
return NULL;
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0).getOperand(0),
|
|
CurDAG->getTargetConstant(LSB, MVT::i32),
|
|
CurDAG->getTargetConstant(Width, MVT::i32),
|
|
getAL(CurDAG), Reg0 };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::
|
|
SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
|
|
SDValue CPTmp0;
|
|
SDValue CPTmp1;
|
|
if (SelectT2ShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1)) {
|
|
unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue();
|
|
unsigned SOShOp = ARM_AM::getSORegShOp(SOVal);
|
|
unsigned Opc = 0;
|
|
switch (SOShOp) {
|
|
case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break;
|
|
case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break;
|
|
case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break;
|
|
case ARM_AM::ror: Opc = ARM::t2MOVCCror; break;
|
|
default:
|
|
llvm_unreachable("Unknown so_reg opcode!");
|
|
break;
|
|
}
|
|
SDValue SOShImm =
|
|
CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32);
|
|
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
|
|
SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::
|
|
SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
|
|
SDValue CPTmp0;
|
|
SDValue CPTmp1;
|
|
SDValue CPTmp2;
|
|
if (SelectShifterOperandReg(N, TrueVal, CPTmp0, CPTmp1, CPTmp2)) {
|
|
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
|
|
SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag };
|
|
return CurDAG->SelectNodeTo(N, ARM::MOVCCs, MVT::i32, Ops, 7);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::
|
|
SelectT2CMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
|
|
ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
|
|
if (!T)
|
|
return 0;
|
|
|
|
if (Predicate_t2_so_imm(TrueVal.getNode())) {
|
|
SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
|
|
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
|
|
SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
|
|
return CurDAG->SelectNodeTo(N,
|
|
ARM::t2MOVCCi, MVT::i32, Ops, 5);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::
|
|
SelectARMCMOVSoImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal,
|
|
ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) {
|
|
ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal);
|
|
if (!T)
|
|
return 0;
|
|
|
|
if (Predicate_so_imm(TrueVal.getNode())) {
|
|
SDValue True = CurDAG->getTargetConstant(T->getZExtValue(), MVT::i32);
|
|
SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32);
|
|
SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag };
|
|
return CurDAG->SelectNodeTo(N,
|
|
ARM::MOVCCi, MVT::i32, Ops, 5);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue FalseVal = N->getOperand(0);
|
|
SDValue TrueVal = N->getOperand(1);
|
|
SDValue CC = N->getOperand(2);
|
|
SDValue CCR = N->getOperand(3);
|
|
SDValue InFlag = N->getOperand(4);
|
|
assert(CC.getOpcode() == ISD::Constant);
|
|
assert(CCR.getOpcode() == ISD::Register);
|
|
ARMCC::CondCodes CCVal =
|
|
(ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue();
|
|
|
|
if (!Subtarget->isThumb1Only() && VT == MVT::i32) {
|
|
// Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
|
|
// Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc)
|
|
// Pattern complexity = 18 cost = 1 size = 0
|
|
SDValue CPTmp0;
|
|
SDValue CPTmp1;
|
|
SDValue CPTmp2;
|
|
if (Subtarget->isThumb()) {
|
|
SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal,
|
|
CCVal, CCR, InFlag);
|
|
if (!Res)
|
|
Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal,
|
|
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
|
|
if (Res)
|
|
return Res;
|
|
} else {
|
|
SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal,
|
|
CCVal, CCR, InFlag);
|
|
if (!Res)
|
|
Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal,
|
|
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
|
|
if (Res)
|
|
return Res;
|
|
}
|
|
|
|
// Pattern: (ARMcmov:i32 GPR:i32:$false,
|
|
// (imm:i32)<<P:Predicate_so_imm>>:$true,
|
|
// (imm:i32):$cc)
|
|
// Emits: (MOVCCi:i32 GPR:i32:$false,
|
|
// (so_imm:i32 (imm:i32):$true), (imm:i32):$cc)
|
|
// Pattern complexity = 10 cost = 1 size = 0
|
|
if (Subtarget->isThumb()) {
|
|
SDNode *Res = SelectT2CMOVSoImmOp(N, FalseVal, TrueVal,
|
|
CCVal, CCR, InFlag);
|
|
if (!Res)
|
|
Res = SelectT2CMOVSoImmOp(N, TrueVal, FalseVal,
|
|
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
|
|
if (Res)
|
|
return Res;
|
|
} else {
|
|
SDNode *Res = SelectARMCMOVSoImmOp(N, FalseVal, TrueVal,
|
|
CCVal, CCR, InFlag);
|
|
if (!Res)
|
|
Res = SelectARMCMOVSoImmOp(N, TrueVal, FalseVal,
|
|
ARMCC::getOppositeCondition(CCVal), CCR, InFlag);
|
|
if (Res)
|
|
return Res;
|
|
}
|
|
}
|
|
|
|
// Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
|
|
// Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
//
|
|
// Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
|
|
// Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 11 size = 0
|
|
//
|
|
// Also FCPYScc and FCPYDcc.
|
|
SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32);
|
|
SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag };
|
|
unsigned Opc = 0;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: assert(false && "Illegal conditional move type!");
|
|
break;
|
|
case MVT::i32:
|
|
Opc = Subtarget->isThumb()
|
|
? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo)
|
|
: ARM::MOVCCr;
|
|
break;
|
|
case MVT::f32:
|
|
Opc = ARM::VMOVScc;
|
|
break;
|
|
case MVT::f64:
|
|
Opc = ARM::VMOVDcc;
|
|
break;
|
|
}
|
|
return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) {
|
|
// The only time a CONCAT_VECTORS operation can have legal types is when
|
|
// two 64-bit vectors are concatenated to a 128-bit vector.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.is128BitVector() || N->getNumOperands() != 2)
|
|
llvm_unreachable("unexpected CONCAT_VECTORS");
|
|
DebugLoc dl = N->getDebugLoc();
|
|
SDValue V0 = N->getOperand(0);
|
|
SDValue V1 = N->getOperand(1);
|
|
SDValue SubReg0 = CurDAG->getTargetConstant(ARM::DSUBREG_0, MVT::i32);
|
|
SDValue SubReg1 = CurDAG->getTargetConstant(ARM::DSUBREG_1, MVT::i32);
|
|
const SDValue Ops[] = { V0, SubReg0, V1, SubReg1 };
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 4);
|
|
}
|
|
|
|
SDNode *ARMDAGToDAGISel::Select(SDNode *N) {
|
|
DebugLoc dl = N->getDebugLoc();
|
|
|
|
if (N->isMachineOpcode())
|
|
return NULL; // Already selected.
|
|
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::Constant: {
|
|
unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
|
|
bool UseCP = true;
|
|
if (Subtarget->hasThumb2())
|
|
// Thumb2-aware targets have the MOVT instruction, so all immediates can
|
|
// be done with MOV + MOVT, at worst.
|
|
UseCP = 0;
|
|
else {
|
|
if (Subtarget->isThumb()) {
|
|
UseCP = (Val > 255 && // MOV
|
|
~Val > 255 && // MOV + MVN
|
|
!ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL
|
|
} else
|
|
UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV
|
|
ARM_AM::getSOImmVal(~Val) == -1 && // MVN
|
|
!ARM_AM::isSOImmTwoPartVal(Val)); // two instrs.
|
|
}
|
|
|
|
if (UseCP) {
|
|
SDValue CPIdx =
|
|
CurDAG->getTargetConstantPool(ConstantInt::get(
|
|
Type::getInt32Ty(*CurDAG->getContext()), Val),
|
|
TLI.getPointerTy());
|
|
|
|
SDNode *ResNode;
|
|
if (Subtarget->isThumb1Only()) {
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() };
|
|
ResNode = CurDAG->getMachineNode(ARM::tLDRcp, dl, MVT::i32, MVT::Other,
|
|
Ops, 4);
|
|
} else {
|
|
SDValue Ops[] = {
|
|
CPIdx,
|
|
CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getTargetConstant(0, MVT::i32),
|
|
getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getEntryNode()
|
|
};
|
|
ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
|
|
Ops, 6);
|
|
}
|
|
ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
|
|
return NULL;
|
|
}
|
|
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::FrameIndex: {
|
|
// Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
|
|
int FI = cast<FrameIndexSDNode>(N)->getIndex();
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());
|
|
if (Subtarget->isThumb1Only()) {
|
|
return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, TFI,
|
|
CurDAG->getTargetConstant(0, MVT::i32));
|
|
} else {
|
|
unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
|
|
ARM::t2ADDri : ARM::ADDri);
|
|
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
case ISD::SRL:
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
|
|
return I;
|
|
break;
|
|
case ISD::SRA:
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true))
|
|
return I;
|
|
break;
|
|
case ISD::MUL:
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
unsigned RHSV = C->getZExtValue();
|
|
if (!RHSV) break;
|
|
if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
|
|
unsigned ShImm = Log2_32(RHSV-1);
|
|
if (ShImm >= 32)
|
|
break;
|
|
SDValue V = N->getOperand(0);
|
|
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
|
|
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6);
|
|
} else {
|
|
SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::ADDrs, MVT::i32, Ops, 7);
|
|
}
|
|
}
|
|
if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
|
|
unsigned ShImm = Log2_32(RHSV+1);
|
|
if (ShImm >= 32)
|
|
break;
|
|
SDValue V = N->getOperand(0);
|
|
ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
|
|
SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32);
|
|
SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 5);
|
|
} else {
|
|
SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 };
|
|
return CurDAG->SelectNodeTo(N, ARM::RSBrs, MVT::i32, Ops, 7);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::AND: {
|
|
// Check for unsigned bitfield extract
|
|
if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false))
|
|
return I;
|
|
|
|
// (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
|
|
// of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
|
|
// are entirely contributed by c2 and lower 16-bits are entirely contributed
|
|
// by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
|
|
// Select it to: "movt x, ((c1 & 0xffff) >> 16)
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
break;
|
|
unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
|
|
? ARM::t2MOVTi16
|
|
: (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
|
|
if (!Opc)
|
|
break;
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (!N1C)
|
|
break;
|
|
if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
|
|
SDValue N2 = N0.getOperand(1);
|
|
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
|
|
if (!N2C)
|
|
break;
|
|
unsigned N1CVal = N1C->getZExtValue();
|
|
unsigned N2CVal = N2C->getZExtValue();
|
|
if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
|
|
(N1CVal & 0xffffU) == 0xffffU &&
|
|
(N2CVal & 0xffffU) == 0x0U) {
|
|
SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
|
|
MVT::i32);
|
|
SDValue Ops[] = { N0.getOperand(0), Imm16,
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ARMISD::VMOVRRD:
|
|
return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32,
|
|
N->getOperand(0), getAL(CurDAG),
|
|
CurDAG->getRegister(0, MVT::i32));
|
|
case ISD::UMUL_LOHI: {
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32, Ops,4);
|
|
} else {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::UMULL, dl, MVT::i32, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
case ISD::SMUL_LOHI: {
|
|
if (Subtarget->isThumb1Only())
|
|
break;
|
|
if (Subtarget->isThumb()) {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32, Ops,4);
|
|
} else {
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
|
|
getAL(CurDAG), CurDAG->getRegister(0, MVT::i32),
|
|
CurDAG->getRegister(0, MVT::i32) };
|
|
return CurDAG->getMachineNode(ARM::SMULL, dl, MVT::i32, MVT::i32, Ops, 5);
|
|
}
|
|
}
|
|
case ISD::LOAD: {
|
|
SDNode *ResNode = 0;
|
|
if (Subtarget->isThumb() && Subtarget->hasThumb2())
|
|
ResNode = SelectT2IndexedLoad(N);
|
|
else
|
|
ResNode = SelectARMIndexedLoad(N);
|
|
if (ResNode)
|
|
return ResNode;
|
|
|
|
// VLDMQ must be custom-selected for "v2f64 load" to set the AM5Opc value.
|
|
if (Subtarget->hasVFP2() &&
|
|
N->getValueType(0).getSimpleVT().SimpleTy == MVT::v2f64) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue AM5Opc =
|
|
CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(1), AM5Opc, Pred, PredReg, Chain };
|
|
return CurDAG->getMachineNode(ARM::VLDMQ, dl, MVT::v2f64, MVT::Other,
|
|
Ops, 5);
|
|
}
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ISD::STORE: {
|
|
// VSTMQ must be custom-selected for "v2f64 store" to set the AM5Opc value.
|
|
if (Subtarget->hasVFP2() &&
|
|
N->getOperand(1).getValueType().getSimpleVT().SimpleTy == MVT::v2f64) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue AM5Opc =
|
|
CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::ia, 4), MVT::i32);
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(1), N->getOperand(2),
|
|
AM5Opc, Pred, PredReg, Chain };
|
|
return CurDAG->getMachineNode(ARM::VSTMQ, dl, MVT::Other, Ops, 6);
|
|
}
|
|
// Other cases are autogenerated.
|
|
break;
|
|
}
|
|
case ARMISD::BRCOND: {
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
// Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
|
|
// Pattern complexity = 6 cost = 1 size = 0
|
|
|
|
unsigned Opc = Subtarget->isThumb() ?
|
|
((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue N3 = N->getOperand(3);
|
|
SDValue InFlag = N->getOperand(4);
|
|
assert(N1.getOpcode() == ISD::BasicBlock);
|
|
assert(N2.getOpcode() == ISD::Constant);
|
|
assert(N3.getOpcode() == ISD::Register);
|
|
|
|
SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
|
|
cast<ConstantSDNode>(N2)->getZExtValue()),
|
|
MVT::i32);
|
|
SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
|
|
SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
|
|
MVT::Flag, Ops, 5);
|
|
Chain = SDValue(ResNode, 0);
|
|
if (N->getNumValues() == 2) {
|
|
InFlag = SDValue(ResNode, 1);
|
|
ReplaceUses(SDValue(N, 1), InFlag);
|
|
}
|
|
ReplaceUses(SDValue(N, 0),
|
|
SDValue(Chain.getNode(), Chain.getResNo()));
|
|
return NULL;
|
|
}
|
|
case ARMISD::CMOV:
|
|
return SelectCMOVOp(N);
|
|
case ARMISD::CNEG: {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue N3 = N->getOperand(3);
|
|
SDValue InFlag = N->getOperand(4);
|
|
assert(N2.getOpcode() == ISD::Constant);
|
|
assert(N3.getOpcode() == ISD::Register);
|
|
|
|
SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned)
|
|
cast<ConstantSDNode>(N2)->getZExtValue()),
|
|
MVT::i32);
|
|
SDValue Ops[] = { N0, N1, Tmp2, N3, InFlag };
|
|
unsigned Opc = 0;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: assert(false && "Illegal conditional move type!");
|
|
break;
|
|
case MVT::f32:
|
|
Opc = ARM::VNEGScc;
|
|
break;
|
|
case MVT::f64:
|
|
Opc = ARM::VNEGDcc;
|
|
break;
|
|
}
|
|
return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5);
|
|
}
|
|
|
|
case ARMISD::VZIP: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VZIPd8; break;
|
|
case MVT::v4i16: Opc = ARM::VZIPd16; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: Opc = ARM::VZIPd32; break;
|
|
case MVT::v16i8: Opc = ARM::VZIPq8; break;
|
|
case MVT::v8i16: Opc = ARM::VZIPq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VZIPq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
|
|
}
|
|
case ARMISD::VUZP: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VUZPd8; break;
|
|
case MVT::v4i16: Opc = ARM::VUZPd16; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: Opc = ARM::VUZPd32; break;
|
|
case MVT::v16i8: Opc = ARM::VUZPq8; break;
|
|
case MVT::v8i16: Opc = ARM::VUZPq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VUZPq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
|
|
}
|
|
case ARMISD::VTRN: {
|
|
unsigned Opc = 0;
|
|
EVT VT = N->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return NULL;
|
|
case MVT::v8i8: Opc = ARM::VTRNd8; break;
|
|
case MVT::v4i16: Opc = ARM::VTRNd16; break;
|
|
case MVT::v2f32:
|
|
case MVT::v2i32: Opc = ARM::VTRNd32; break;
|
|
case MVT::v16i8: Opc = ARM::VTRNq8; break;
|
|
case MVT::v8i16: Opc = ARM::VTRNq16; break;
|
|
case MVT::v4f32:
|
|
case MVT::v4i32: Opc = ARM::VTRNq32; break;
|
|
}
|
|
SDValue Pred = getAL(CurDAG);
|
|
SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
|
|
return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4);
|
|
}
|
|
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vld1: {
|
|
unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
|
|
ARM::VLD1d32, ARM::VLD1d64 };
|
|
unsigned QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
|
|
ARM::VLD1q32, ARM::VLD1q64 };
|
|
return SelectVLD(N, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2: {
|
|
unsigned DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
|
|
ARM::VLD2d32, ARM::VLD1q64 };
|
|
unsigned QOpcodes[] = { ARM::VLD2q8, ARM::VLD2q16, ARM::VLD2q32 };
|
|
return SelectVLD(N, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld3: {
|
|
unsigned DOpcodes[] = { ARM::VLD3d8, ARM::VLD3d16,
|
|
ARM::VLD3d32, ARM::VLD1d64T };
|
|
unsigned QOpcodes0[] = { ARM::VLD3q8_UPD,
|
|
ARM::VLD3q16_UPD,
|
|
ARM::VLD3q32_UPD };
|
|
unsigned QOpcodes1[] = { ARM::VLD3q8odd_UPD,
|
|
ARM::VLD3q16odd_UPD,
|
|
ARM::VLD3q32odd_UPD };
|
|
return SelectVLD(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld4: {
|
|
unsigned DOpcodes[] = { ARM::VLD4d8, ARM::VLD4d16,
|
|
ARM::VLD4d32, ARM::VLD1d64Q };
|
|
unsigned QOpcodes0[] = { ARM::VLD4q8_UPD,
|
|
ARM::VLD4q16_UPD,
|
|
ARM::VLD4q32_UPD };
|
|
unsigned QOpcodes1[] = { ARM::VLD4q8odd_UPD,
|
|
ARM::VLD4q16odd_UPD,
|
|
ARM::VLD4q32odd_UPD };
|
|
return SelectVLD(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2lane: {
|
|
unsigned DOpcodes[] = { ARM::VLD2LNd8, ARM::VLD2LNd16, ARM::VLD2LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VLD2LNq16, ARM::VLD2LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VLD2LNq16odd, ARM::VLD2LNq32odd };
|
|
return SelectVLDSTLane(N, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld3lane: {
|
|
unsigned DOpcodes[] = { ARM::VLD3LNd8, ARM::VLD3LNd16, ARM::VLD3LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VLD3LNq16, ARM::VLD3LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VLD3LNq16odd, ARM::VLD3LNq32odd };
|
|
return SelectVLDSTLane(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld4lane: {
|
|
unsigned DOpcodes[] = { ARM::VLD4LNd8, ARM::VLD4LNd16, ARM::VLD4LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VLD4LNq16, ARM::VLD4LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VLD4LNq16odd, ARM::VLD4LNq32odd };
|
|
return SelectVLDSTLane(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst1: {
|
|
unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
|
|
ARM::VST1d32, ARM::VST1d64 };
|
|
unsigned QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
|
|
ARM::VST1q32, ARM::VST1q64 };
|
|
return SelectVST(N, 1, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst2: {
|
|
unsigned DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
|
|
ARM::VST2d32, ARM::VST1q64 };
|
|
unsigned QOpcodes[] = { ARM::VST2q8, ARM::VST2q16, ARM::VST2q32 };
|
|
return SelectVST(N, 2, DOpcodes, QOpcodes, 0);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst3: {
|
|
unsigned DOpcodes[] = { ARM::VST3d8, ARM::VST3d16,
|
|
ARM::VST3d32, ARM::VST1d64T };
|
|
unsigned QOpcodes0[] = { ARM::VST3q8_UPD,
|
|
ARM::VST3q16_UPD,
|
|
ARM::VST3q32_UPD };
|
|
unsigned QOpcodes1[] = { ARM::VST3q8odd_UPD,
|
|
ARM::VST3q16odd_UPD,
|
|
ARM::VST3q32odd_UPD };
|
|
return SelectVST(N, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst4: {
|
|
unsigned DOpcodes[] = { ARM::VST4d8, ARM::VST4d16,
|
|
ARM::VST4d32, ARM::VST1d64Q };
|
|
unsigned QOpcodes0[] = { ARM::VST4q8_UPD,
|
|
ARM::VST4q16_UPD,
|
|
ARM::VST4q32_UPD };
|
|
unsigned QOpcodes1[] = { ARM::VST4q8odd_UPD,
|
|
ARM::VST4q16odd_UPD,
|
|
ARM::VST4q32odd_UPD };
|
|
return SelectVST(N, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst2lane: {
|
|
unsigned DOpcodes[] = { ARM::VST2LNd8, ARM::VST2LNd16, ARM::VST2LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VST2LNq16, ARM::VST2LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VST2LNq16odd, ARM::VST2LNq32odd };
|
|
return SelectVLDSTLane(N, false, 2, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst3lane: {
|
|
unsigned DOpcodes[] = { ARM::VST3LNd8, ARM::VST3LNd16, ARM::VST3LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VST3LNq16, ARM::VST3LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VST3LNq16odd, ARM::VST3LNq32odd };
|
|
return SelectVLDSTLane(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
unsigned DOpcodes[] = { ARM::VST4LNd8, ARM::VST4LNd16, ARM::VST4LNd32 };
|
|
unsigned QOpcodes0[] = { ARM::VST4LNq16, ARM::VST4LNq32 };
|
|
unsigned QOpcodes1[] = { ARM::VST4LNq16odd, ARM::VST4LNq32odd };
|
|
return SelectVLDSTLane(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::CONCAT_VECTORS:
|
|
return SelectConcatVector(N);
|
|
}
|
|
|
|
return SelectCode(N);
|
|
}
|
|
|
|
bool ARMDAGToDAGISel::
|
|
SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
|
|
std::vector<SDValue> &OutOps) {
|
|
assert(ConstraintCode == 'm' && "unexpected asm memory constraint");
|
|
// Require the address to be in a register. That is safe for all ARM
|
|
// variants and it is hard to do anything much smarter without knowing
|
|
// how the operand is used.
|
|
OutOps.push_back(Op);
|
|
return false;
|
|
}
|
|
|
|
/// createARMISelDag - This pass converts a legalized DAG into a
|
|
/// ARM-specific DAG, ready for instruction scheduling.
|
|
///
|
|
FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new ARMDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
/// ModelWithRegSequence - Return true if isel should use REG_SEQUENCE to model
|
|
/// operations involving sub-registers.
|
|
bool llvm::ModelWithRegSequence() {
|
|
return UseRegSeq;
|
|
}
|