llvm/test/ExecutionEngine/MCJIT/test-arith.ll
Peter Collingbourne fbb662f840 Introduce llvm::sys::getProcessTriple() function.
In r143502, we renamed getHostTriple() to getDefaultTargetTriple()
as part of work to allow the user to supply a different default
target triple at configure time.  This change also affected the JIT.
However, it is inappropriate to use the default target triple in the
JIT in most circumstances because this will not necessarily match
the current architecture used by the process, leading to illegal
instruction and other such errors at run time.

Introduce the getProcessTriple() function for use in the JIT and
its clients, and cause the JIT to use it.  On architectures with a
single bitness, the host and process triples are identical.  On other
architectures, the host triple represents the architecture of the
host CPU, while the process triple represents the architecture used
by the host CPU to interpret machine code within the current process.
For example, when executing 32-bit code on a 64-bit Linux machine,
the host triple may be 'x86_64-unknown-linux-gnu', while the process
triple may be 'i386-unknown-linux-gnu'.

This fixes JIT for the 32-on-64-bit (and vice versa) build on non-Apple
platforms.

Differential Revision: http://llvm-reviews.chandlerc.com/D254

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172627 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-16 17:27:22 +00:00

35 lines
1.5 KiB
LLVM

; RUN: %lli_mcjit %s > /dev/null
define i32 @main() {
%A = add i8 0, 12 ; <i8> [#uses=1]
%B = sub i8 %A, 1 ; <i8> [#uses=2]
%C = mul i8 %B, %B ; <i8> [#uses=2]
%D = sdiv i8 %C, %C ; <i8> [#uses=2]
%E = srem i8 %D, %D ; <i8> [#uses=0]
%F = udiv i8 5, 6 ; <i8> [#uses=0]
%G = urem i8 6, 5 ; <i8> [#uses=0]
%A.upgrd.1 = add i16 0, 12 ; <i16> [#uses=1]
%B.upgrd.2 = sub i16 %A.upgrd.1, 1 ; <i16> [#uses=2]
%C.upgrd.3 = mul i16 %B.upgrd.2, %B.upgrd.2 ; <i16> [#uses=2]
%D.upgrd.4 = sdiv i16 %C.upgrd.3, %C.upgrd.3 ; <i16> [#uses=2]
%E.upgrd.5 = srem i16 %D.upgrd.4, %D.upgrd.4 ; <i16> [#uses=0]
%F.upgrd.6 = udiv i16 5, 6 ; <i16> [#uses=0]
%G.upgrd.7 = urem i32 6, 5 ; <i32> [#uses=0]
%A.upgrd.8 = add i32 0, 12 ; <i32> [#uses=1]
%B.upgrd.9 = sub i32 %A.upgrd.8, 1 ; <i32> [#uses=2]
%C.upgrd.10 = mul i32 %B.upgrd.9, %B.upgrd.9 ; <i32> [#uses=2]
%D.upgrd.11 = sdiv i32 %C.upgrd.10, %C.upgrd.10 ; <i32> [#uses=2]
%E.upgrd.12 = srem i32 %D.upgrd.11, %D.upgrd.11 ; <i32> [#uses=0]
%F.upgrd.13 = udiv i32 5, 6 ; <i32> [#uses=0]
%G1 = urem i32 6, 5 ; <i32> [#uses=0]
%A.upgrd.14 = add i64 0, 12 ; <i64> [#uses=1]
%B.upgrd.15 = sub i64 %A.upgrd.14, 1 ; <i64> [#uses=2]
%C.upgrd.16 = mul i64 %B.upgrd.15, %B.upgrd.15 ; <i64> [#uses=2]
%D.upgrd.17 = sdiv i64 %C.upgrd.16, %C.upgrd.16 ; <i64> [#uses=2]
%E.upgrd.18 = srem i64 %D.upgrd.17, %D.upgrd.17 ; <i64> [#uses=0]
%F.upgrd.19 = udiv i64 5, 6 ; <i64> [#uses=0]
%G.upgrd.20 = urem i64 6, 5 ; <i64> [#uses=0]
ret i32 0
}