llvm/lib/CodeGen/ELFWriter.cpp
Chris Lattner 80ed8faaea Add support for emitting the symbol table (and its string table) of the
module to the ELF file.  Test it by adding support for emitting common
symbols.  This allows us to compile this:

%X = weak global int 0
%Y = weak global int 0
%Z = weak global int 0

to an elf file that 'readelf's this:

Symbol table '.symtab' contains 4 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND
     1: 00000004     4 OBJECT  GLOBAL DEFAULT  COM X
     2: 00000004     4 OBJECT  GLOBAL DEFAULT  COM Y
     3: 00000004     4 OBJECT  GLOBAL DEFAULT  COM Z


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22343 91177308-0d34-0410-b5e6-96231b3b80d8
2005-07-07 07:02:20 +00:00

318 lines
12 KiB
C++

//===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent ELF writer. This file writes out
// the ELF file in the following order:
//
// #1. ELF Header
// #2. '.text' section
// #3. '.data' section
// #4. '.bss' section (conceptual position in file)
// ...
// #X. '.shstrtab' section
// #Y. Section Table
//
// The entries in the section table are laid out as:
// #0. Null entry [required]
// #1. ".text" entry - the program code
// #2. ".data" entry - global variables with initializers. [ if needed ]
// #3. ".bss" entry - global variables without initializers. [ if needed ]
// ...
// #N. ".shstrtab" entry - String table for the section names.
//
// NOTE: This code should eventually be extended to support 64-bit ELF (this
// won't be hard), but we haven't done so yet!
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/ELFWriter.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
ELFWriter::ELFWriter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) {
e_machine = 0; // e_machine defaults to 'No Machine'
e_flags = 0; // e_flags defaults to 0, no flags.
is64Bit = TM.getTargetData().getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData().isLittleEndian();
}
// doInitialization - Emit the file header and all of the global variables for
// the module to the ELF file.
bool ELFWriter::doInitialization(Module &M) {
outbyte(0x7F); // EI_MAG0
outbyte('E'); // EI_MAG1
outbyte('L'); // EI_MAG2
outbyte('F'); // EI_MAG3
outbyte(is64Bit ? 2 : 1); // EI_CLASS
outbyte(isLittleEndian ? 1 : 2); // EI_DATA
outbyte(1); // EI_VERSION
for (unsigned i = OutputBuffer.size(); i != 16; ++i)
outbyte(0); // EI_PAD up to 16 bytes.
// This should change for shared objects.
outhalf(1); // e_type = ET_REL
outhalf(e_machine); // e_machine = whatever the target wants
outword(1); // e_version = 1
outaddr(0); // e_entry = 0 -> no entry point in .o file
outaddr(0); // e_phoff = 0 -> no program header for .o
ELFHeader_e_shoff_Offset = OutputBuffer.size();
outaddr(0); // e_shoff
outword(e_flags); // e_flags = whatever the target wants
assert(!is64Bit && "These sizes need to be adjusted for 64-bit!");
outhalf(52); // e_ehsize = ELF header size
outhalf(0); // e_phentsize = prog header entry size
outhalf(0); // e_phnum = # prog header entries = 0
outhalf(40); // e_shentsize = sect header entry size
ELFHeader_e_shnum_Offset = OutputBuffer.size();
outhalf(0); // e_shnum = # of section header ents
ELFHeader_e_shstrndx_Offset = OutputBuffer.size();
outhalf(0); // e_shstrndx = Section # of '.shstrtab'
// Add the null section.
SectionList.push_back(ELFSection());
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolTable.push_back(ELFSym(0));
// FIXME: Should start the .text section.
return false;
}
void ELFWriter::EmitGlobal(GlobalVariable *GV, ELFSection &DataSection,
ELFSection &BSSSection) {
// If this is an external global, emit it...
assert(GV->hasInitializer() && "FIXME: unimp");
// If this global has a zero initializer, it is part of the .bss or common
// section.
if (GV->getInitializer()->isNullValue()) {
// If this global is part of the common block, add it now. Variables are
// part of the common block if they are zero initialized and allowed to be
// merged with other symbols.
if (GV->hasLinkOnceLinkage() || GV->hasWeakLinkage()) {
ELFSym CommonSym(GV);
// Value for common symbols is the alignment required.
const Type *GVType = (const Type*)GV->getType();
CommonSym.Value = TM.getTargetData().getTypeAlignment(GVType);
CommonSym.Size = TM.getTargetData().getTypeSize(GVType);
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
// TODO SOMEDAY: add ELF visibility.
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolTable.push_back(CommonSym);
return;
}
// FIXME: Implement the .bss section.
return;
}
// FIXME: handle .rodata
//assert(!GV->isConstant() && "unimp");
// FIXME: handle .data
//assert(0 && "unimp");
}
bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
return false;
}
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
// Okay, the .text section has now been finalized.
// FIXME: finalize the .text section.
// Okay, the ELF header and .text sections have been completed, build the
// .data, .bss, and "common" sections next.
ELFSection DataSection(".data", OutputBuffer.size());
ELFSection BSSSection (".bss");
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I, DataSection, BSSSection);
// If the .data section is nonempty, add it to our list.
if (DataSection.Size) {
DataSection.Align = 4; // FIXME: Compute!
// FIXME: Set the right flags and stuff.
SectionList.push_back(DataSection);
}
// If the .bss section is nonempty, add it to our list.
if (BSSSection.Size) {
BSSSection.Offset = OutputBuffer.size();
BSSSection.Align = 4; // FIXME: Compute!
// FIXME: Set the right flags and stuff.
SectionList.push_back(BSSSection);
}
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
// FIXME: Emit the relocations now.
// Emit the string table for the sections in the ELF file we have.
EmitSectionTableStringTable();
// Emit the .o file section table.
EmitSectionTable();
// Emit the .o file to the specified stream.
O.write((char*)&OutputBuffer[0], OutputBuffer.size());
// Free the output buffer.
std::vector<unsigned char>().swap(OutputBuffer);
return false;
}
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolTable.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
SectionList.push_back(ELFSection(".strtab", OutputBuffer.size()));
ELFSection &StrTab = SectionList.back();
StrTab.Type = ELFSection::SHT_STRTAB;
StrTab.Align = 1;
// Set the zero'th symbol to a null byte, as required.
outbyte(0);
SymbolTable[0].NameIdx = 0;
unsigned Index = 1;
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
// FIXME: USE A MANGLER!!
const std::string &Name = SymbolTable[i].GV->getName();
if (Name.empty()) {
SymbolTable[i].NameIdx = 0;
} else {
SymbolTable[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
OutputBuffer.insert(OutputBuffer.end(), Name.begin(), Name.end());
// Add a null terminator.
OutputBuffer.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
StrTab.Size = OutputBuffer.size()-StrTab.Offset;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
assert(!is64Bit && "Should this be 8 byte aligned for 64-bit?"
" (check .Align below also)");
align(4);
SectionList.push_back(ELFSection(".symtab", OutputBuffer.size()));
ELFSection &SymTab = SectionList.back();
SymTab.Type = ELFSection::SHT_SYMTAB;
SymTab.Align = 4; // FIXME: check for ELF64
SymTab.Link = SectionList.size()-2; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
SymTab.EntSize = 16; // Size of each symtab entry. FIXME: wrong for ELF64
assert(!is64Bit && "check this!");
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i) {
ELFSym &Sym = SymbolTable[i];
outword(Sym.NameIdx);
outaddr(Sym.Value);
outword(Sym.Size);
outbyte(Sym.Info);
outbyte(Sym.Other);
outhalf(Sym.SectionIdx);
}
SymTab.Size = OutputBuffer.size()-SymTab.Offset;
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
/// ELF Section Table string table: the string table that holds all of the
/// section names.
void ELFWriter::EmitSectionTableStringTable() {
// First step: add the section for the string table to the list of sections:
SectionList.push_back(ELFSection(".shstrtab", OutputBuffer.size()));
SectionList.back().Type = ELFSection::SHT_STRTAB;
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
fixhalf(SectionList.size()-1, ELFHeader_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
for (unsigned i = 0, e = SectionList.size(); i != e; ++i) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
SectionList[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
OutputBuffer.insert(OutputBuffer.end(), SectionList[i].Name.begin(),
SectionList[i].Name.end());
// Add a null terminator.
OutputBuffer.push_back(0);
// Keep track of the number of bytes emitted to this section.
Index += SectionList[i].Name.size()+1;
}
// Set the size of .shstrtab now that we know what it is.
SectionList.back().Size = Index;
}
/// EmitSectionTable - Now that we have emitted the entire contents of the file
/// (all of the sections), emit the section table which informs the reader where
/// the boundaries are.
void ELFWriter::EmitSectionTable() {
// Now that all of the sections have been emitted, set the e_shnum entry in
// the ELF header.
fixhalf(SectionList.size(), ELFHeader_e_shnum_Offset);
// Now that we know the offset in the file of the section table (which we emit
// next), update the e_shoff address in the ELF header.
fixaddr(OutputBuffer.size(), ELFHeader_e_shoff_Offset);
// Emit all of the section table entries.
for (unsigned i = 0, e = SectionList.size(); i != e; ++i) {
const ELFSection &S = SectionList[i];
outword(S.NameIdx); // sh_name - Symbol table name idx
outword(S.Type); // sh_type - Section contents & semantics
outword(S.Flags); // sh_flags - Section flags.
outaddr(S.Addr); // sh_addr - The mem address this section appears in.
outaddr(S.Offset); // sh_offset - The offset from the start of the file.
outword(S.Size); // sh_size - The section size.
outword(S.Link); // sh_link - Section header table index link.
outword(S.Info); // sh_info - Auxillary information.
outword(S.Align); // sh_addralign - Alignment of section.
outword(S.EntSize); // sh_entsize - Size of each entry in the section.
}
// Release the memory allocated for the section list.
std::vector<ELFSection>().swap(SectionList);
}